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Abstract

Accurate simulation of flow and transport processes in fractured rocks requires that
flow in fractures and shear zones to be coupled with flow in the porous rock matrix.
To this end, we will herein consider a single-continuum approach in which both
fractures and the porous rock are represented as volumetric objects, i.e., as cells in
an unstructured triangular grid with a permeability and a porosity value associated
with each cell. Hence, from a numerical point of view, there is no distinction between
flow in the fractures and the rock matrix. This enables modelling of realistic cases
with very complex structures. To compute single-phase advective transport in such
a model, we propose to use a family of higher-order discontinuous Galerkin methods.
Single-phase transport equations are hyperbolic and have an inherent causality in
the sense that information propagates along streamlines. This causality is preserved
in our discontinuous Galerkin discretization. We can therefore use a simple topo-
logical sort of the graph of discrete fluxes to reorder the degrees-of-freedom such
that the discretised linear system gets a lower block-triangular form, from which
the solution can be computed very efficiently using a single-pass forward block sub-
stitution. The accuracy and utility of the resulting transport solver is illustrated
through several numerical experiments.
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1 Introduction

Fractured reservoirs are complex geological structures, for which fractures
(cracks and joints created by rock stress) have higher permeability and porosity
than the surrounding rock. Although the aperture of fractures is very small
compared with the dimensions of the reservoir, the fracture network often
forms the primary pathway for fluid flow and mass transfer and has a signif-
icant impact on the flow characteristics of the porous medium. The matrix
blocks between the conducting fractures, on the other hand, can significantly
increase the storage capacity of the rock. Accurate representation of fractures
is a challenge in characterisation, modelling, and simulation of petroleum and
groundwater reservoirs [1–3].

Fractured media have traditionally been modelled using either discrete or mul-
ticontinua models. In multicontinua models, one assumes that an representa-
tive elementary volume can be obtained both for the porous medium (the rock
matrix) and for the fractured system. In a dual-porosity model, for instance,
the rock is characterised as two overlapping continua, which are both treated
as porous media, meaning that also the matrix blocks are assigned a value
of porosity greater than zero. The interaction between the matrix and the
fracture systems are described using exchange terms [4]. For a rock with large
porous blocks between the conducting fractures, multicontinua models have
been used to account for the release of fluid from storage in the matrix blocks
into the fracture network. The primary advantage of multicontinua flow mod-
els is that they provide a mechanism to account for the delay in the hydraulic
response of the rock caused by fluid that is resident in the less permeable
matrix blocks.

The interaction of fracture and matrix porosities and permeabilities is very
complex and often makes simple models highly inaccurate. Indeed, it is widely
recognised that state-of-the-art simulation methods based upon multicontinua
descriptions are not able to deliver sufficient resolution of the complex flow pat-
terns that develop when a fractured reservoir is produced. Several approaches
have therefore been taken to accurately describe fracture systems on a grid-
cell scale, that is, based upon complex gridding schemes in which fractures
are represented explicitly as lower-dimensional objects at the cell faces. With
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such discrete models, it is possible to model single- and multiphase flow and
transport processes more accurately.

Herein we consider an even more ambitious modelling approach that has in-
creased in popularity lately; in this approach fractures are represented explic-
itly as thin volumetric objects in a highly detailed geological model. In the
following we consider single-phase flow in semi-realistic 2D models of fractured
reservoirs and use unstructured, conforming triangular grids in which the frac-
tures themselves are represented explicitly as cells with small width and high
permeability (and porosity). This will lead to models with high contrasts in
reservoir properties, and very complex hydraulic conductivities. For such a
model, flow and transport in fractures and rock matrix are solved simultane-
ously using a single-continuum approach.

A simplified single-phase model is often sufficient to reveal the major displace-
ment patterns in a subsurface model. Computing single-phase flow essentially
amounts to solving an elliptic pressure equation. However, to further under-
stand the flow mechanisms one can consider various derived quantities like
streamlines, timelines, influence regions, reservoir partitioning, tracer profiles,
well pairs, etc., that may be more visual and intuitive than pressure values
and discrete fluxes. Such quantities are usually associated with, and computed
by a streamline method [5]. The purpose of our paper is to develop an alter-
native approach based on conservative finite-volume methods. In particular,
we will focus on the time-of-flight, which can be used to identify areas af-
fected by contamination in groundwater flow or to determine drainage and
flooded volumes in petroleum reservoirs if the effects of diffusion, dispersion,
degradation, and sorption, are insignificant. The ideas presented herein are a
continuation of the research in [6], in which we presented a family of discontin-
uous Galerkin schemes for simulating flow in idealised fractured media using
rectangular grids.

To discretize the time-of-flight equation, we will use a higher-order discontin-
uous Galerkin (dG) method, which results in a linear system having a block
structure in which each block corresponds to the degrees-of-freedom in a sin-
gle element (i.e., cell). Blocks corresponding to neighbouring elements in the
grid are coupled through the numerical flux function used to approximate the
physical flux over element faces. By introducing an upwind flux approxima-
tion, the elements can be ordered to ensure that the linear system has a lower
block-triangular form. Each block corresponds to the degrees-of-freedom in a
single element or in a collection of elements having circular dependence due
to rotation in the discrete flow field. Given the triangular form, the linear
system can be solved very efficiently using a forward block substitution (i.e.,
a Gauss–Seidel iteration). This solution procedure also has very low memory
requirements: once the elements have been reordered, the linear system can
be assembled and solved in a local block-by-block fashion. The exact same
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idea can be applied to the nonlinear boundary value problem arising from a
implicit temporal semi-discretization of multiphase advective transport. This
is discussed in detail by Natvig and Lie [7,8], who also present studies of the
efficiency of the reordering method. Discontinuous Galerkin methods based on
explicit temporal discretizations are discussed in [9].

In a certain sense, the reordering idea can be seen as a special case of the fast
sweeping methodology developed for eikonal [10,11] and nonlinear Hamilton–
Jacobi equations [12,13]. In essence, the fast sweeping method consists of up-
wind discretizations combined with nonlinear Gauss–Seidel iterations with
alternating orderings to treat groups of characteristics in parallel. Altogether
this gives an algorithm of complexity O(N) for N grid cells. There are two
main differences between the fast sweeping method and our reordering method.
First, the possibility of cyclic dependencies in the discrete flow field, a strict
causality principle is not necessarily fulfilled for the discretized transport equa-
tion. Second, the transport equations considered herein (and in [7,8]) only have
a single group of characteristics (i.e., streamlines) and thus only require a sin-
gle ordering.

The rest of this paper is organised as follows: In Section 2 the equations used
to model single-phase flow are described in detail. Next, Section 3 introduces
the discontinuous Galerkin method used to discretize the fluid transport equa-
tions. Then, numerical results for single-phase transport in fractured 2D media
are given in Section 4. We also verify the accuracy and convergence rates of
our schemes using a simple unfractured case with known analytical solution.
Finally, in Section 5 we summarise and give main conclusions.

2 Single-Phase Flow Models

Single-phase flow in an incompressible porous medium is typically modelled
by a mass-balance equation in combination with Darcy’s law. If we assume
gravity to be negligible, the governing equations can be written

∇ · v = f, v = − 1

µ
K∇p, x ∈ Ω. (1)

Given a specification of the fluid sources f , the rock permeability K, the fluid
viscosity µ, and proper conditions at the boundary ∂Ω of the physical domain
Ω, the system (1) can be solved to compute the pressure p and the volumetric
flow density v. To simplify the presentation, we assume that there are no
internal fluid sources or sinks and that the flow governed by (1) is driven
entirely by conditions set on the inflow and outflow boundaries, denoted ∂Ω−

and ∂Ω+, respectively.
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For many purposes, (1) does not give a sufficient description of the flow pat-
terns and it is therefore customary to introduce additional transport equations
to describe quantities like tracers, contaminants, etc. that are passively ad-
vected with the single-phase flow. For simplicity, we will henceforth assume
that v = v(x) is given and is steady, divergence free, and irrotational. (Later
we will also assume that v is given implicitly in the form of fluxes that are con-
stant on each element interface.) Given a fixed flow velocity, the concentration
q of a passively advected quantity evolves according to the linear hyperbolic
equation

φqt + v · ∇q = 0, q|∂Ω− = q−(x, t), (2)

where φ is the porosity of the medium. The steady-state version of (2),

v · ∇q = 0, q|∂Ω− = q−(x), (3)

describes the stationary distribution of a tracer that is injected into a reservoir
at the inflow boundary ∂Ω−. This equation can, for instance, be used to deter-
mine the spatial region influenced by an inflow boundary (or a fluid source),
or by reversing the sign of v, the region influencing an outflow boundary (or
drained by a fluid sink). Within reservoir simulation, this could typically be
used to compute the swept region of an injector or the drainage region of a
producer (or combinations thereof).

Another quantity of interest is the time-of-flight, which is the time it takes
a passive particle to travel from a point on the inflow boundary to the given
point in the reservoir. For a steady velocity, the particle will travel along a
streamline, that is, a curve that at any point is tangential to the velocity v.
The time-of-flight τ is therefore defined as

τ(x) =
∫

ψ

φ(r) dr

|v(x(r))| , (4)

where ψ denotes the streamline that connects x to an inflow boundary (or
fluid source) and r is arclength along the streamline. Iso-contours of τ define
natural timelines in a reservoir and therefore modern streamline methods use
τ rather than r as a spatial coordinate. Equation (4) may alternatively be
written in differential form as,

v · ∇τ = φ, τ |x∈∂Ω− = 0. (5)

The transport equations (3) and (5) are special cases of the more general
equation

v · ∇q = H(q,x), q|Ω− = h(x, t). (6)
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Similarly, (2) takes the form (6) if we introduce a semi-discretization in time.
Accurate solution of (6) is important in areas such as oil recovery and ground-
water hydrology to reveal the transport properties of v. Solving (6) is rather
easy for smooth velocities, but becomes harder when v has large spatial vari-
ations and exhibits fine-scale details that are important for the global flow
pattern.

In the next section, we present an efficient strategy for solving (6) numerically
on unstructured triangular grids.

3 Discontinuous Galerkin Schemes with Optimal Ordering

To develop higher-order discontinuous Galerkin methods, we start with a vari-
ational formulation of (6). We partition Ω into an unstructured grid consist-
ing of non-overlapping triangular elements (cells) {Tk} and seek solutions in a
finite-dimensional space Vh consisting of piecewise smooth functions that may
be discontinuous over element interfaces. Let Qn = span{xrys : 0 ≤ r+s ≤ n}
be the space of polynomials of degree at most n, and let V

(n)
h = {ϕ : ϕ|Tk

∈
Qn}. Thus, V

(0)
h is the space of elementwise constant functions, which will give

a scheme that is formally first-order accurate. Similarly, V
(1)
h is the space of

elementwise linear functions giving a formally second-order accurate scheme,
and so forth. Henceforth, we use dG(n) to denote the discontinuous Galerkin
approximation of polynomial order n. Inside each element Tk, the discrete
solution qh can be written

qh(Tk) =
mk∑

i=1

qki L
k
i , ∀Tk. (7)

where {Lki } is some basis for V
(n)
h on Tk, and mk is the number of associated

degrees-of-freedom. The unknown coefficients {qki } are collected in the vector
Q for the whole domain and in (sub)vector QT for element T .

The approximate solution qh is determined as the unique solution of the fol-
lowing weak formulation of (6)

ahT (qh, ϕh) = bhT (qh, ϕh) ∀T, ∀ϕh ∈ V (n)
h , (8)

where

ahT (qh, ϕh) = −
∫

T
(qhv) · ∇ϕhdx +

∫

∂T
v · n qhϕhds,

bhT (qh, ϕh) =
∫

T
H(qh,x)ϕhdx.

(9)
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Since the solution is discontinuous over element interfaces, we will use an
upwind flux to approximate the integrand of the second integral in ahT (·, ·),

v · n qh ≈ f̂(qh, q
ext
h ,v · n)

= qh max(v · n, 0) + qexth min(v · n, 0).
(10)

Here qh and qexth are the inner and outer approximations of the unknown
quantity q (i.e., the concentration of the advected quantity in (2), the tracer
concentration in (3), or the time-of-flight in (5)) at the element interfaces.
The upwind approximation of the flux preserves the directional dependency
of the underlying continuous equation (6). In other words, the solution in T
will only be influenced by elements U(T ) that are intermediate neighbours
in the upwind direction, which we will later exploit to compute the solution
in a blockwise fashion. Formally, U(T ) consists of all elements E such that
(v · nT )|∂E∩∂T < 0, where nT is the outward-pointing normal to T .

For the special case of the time-of-flight equation (5), we introduce an ad-
ditional clipping, max(qexth , 0), to prevent negative values from propagating
downstream. Time-of-flight is non-negative by definition, but negative values
may arise when using high-order polynomials. Alternatively, undesired oscilla-
tions may be suppressed by introducing local hp-refinement, see [14] for more
details.

To find a solution to (8), we choose trial functions ϕh = Lki and evaluate
the inner products (9) using appropriate quadrature rules. This gives a set of
linear equations for the degrees-of-freedom in each element,

ATQ = BT , (AT )ij = ahT (Li, Lj), (BT )i = bhT (Li, Lj).

For convenience, we split the coefficient matrix into the element stiffness ma-
trix RT and the coupling to other elements through the numerical flux inte-
gral FT (Q). Given the upwind approximation of the flux (10), we can split
the flux integral in two part, where F+

T QT denotes the flux out of element T
and F−T QU(T ) denotes the flux into element T . Hence, the following system of
linear equations is obtained

(
−RT + F+

T

)
QT + F−T QU(T ) = BT , ∀T. (11)

The coefficient matrix has a block-banded structure, where the size of each
block is given by the number of degrees-of-freedom in each element or con-
nected collection of elements, see [7] for a more detailed discussion.

A fast linear solver can now be constructed by observing that the solution in
each element can be computed by inverting (−RT + F+

T ) once the solution is
known in all upstream neighbours U(T ) of T . We may therefore construct the
solution locally, starting at inflow boundaries (or fluid sources) and proceeding
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downstream, element by element. From a computational point of view, it is
more convenient to look at this as an optimal ordering of unknowns that
renders the system of equations (11) in lower block-triangular form. If such
an ordering exists, it can be found in Ne operations for Ne elements. If the
reordering does not exist, there must be circular dependence among some
of the elements and these mutually dependent elements must be solved for
simultaneously. Nevertheless, the reordering still applies, the only difference
is that we locally get a block system associated with a set of interconnected
elements. More details are found in [14,7].

We have previously shown that the dG-reordering method is both accurate
and highly efficient for rectangular grids [14,6,15]. In [7], we demonstrated
that the same technique can be applied to semi-discrete nonlinear transport
equations of the form v · ∇F(q) = H(q,x, t) that describe multiphase and
multicomponent flow when gravity, capillarity, and dispersivity are neglected.

4 Numerical Examples

We have previously [6] used dG schemes to compute time-of-flight in fractured
media represented as a rectangular grid, which restricted the orientation of
fractures to be either horizontal or vertical. Here, we will consider more realis-
tic fracture distributions modelled on triangular grids. Hybrid grids consisting
of both rectangular and triangular cells are within reach because of the lo-
calised nature of the dG formulation, but are not considered herein. However,
we show one example of adaptively refined grids. For each example, the forcing
velocity field will either be given by an analytical expression or be computed
by a standard conservative method for (1), in which case the velocity will be
divergence free and nearly irrotational.

In all cases, except Case 2, we will use equations in non-dimensional form.
This means that one time unit corresponds to the time it takes to inject one
pore volume into the computational domain.

Case 1 (Convergence Study) We start by assessing the accuracy and ver-
ifying convergence rates on triangular elements. To this end, we consider a
rotating velocity field v = (y,−x) in the domain [1, 2] × [1, 2]. We set τ = 0
on the inflow boundaries (x = 1 and y = 2). Then the exact time-of-flight is
given by:

τ(x, y) = − arctan
(
y

x

)
+ arctan


 min(

√
x2 + y2 − 1, 2)

max(
√

max(x2 + y2 − 4, 0), 1)


 . (12)

Figures 3 and 4 present L2-errors and convergence rates for a grid-refinement
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Fig. 1. Velocity field and the time-of-flight reference solution (12) for the convergence
study.
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Fig. 2. Two refinement levels for Grids 2, 3, and 4.

study performed by increasing the order n in dG(n) on four grid types with
increasing roughness (see Figure 2):

Grid 1 triangulation of a uniform N ×N Cartesian grid.
Grid 2 uniform refinement and triangulation of a 10× 10 base grid in which

each internal node has been given a random perturbation up to 20% in each
spatial direction.

Grid 3 same as Grid 1, but with a perturbation up to 20% of all inner nodes
on the 2N ×N grid.

Grid 4 same as Grid 2, but with a perturbation up to 20% of all new nodes
on the 2N ×N grid for each refinement.

Figure 3 shows L2-errors measured in a smooth part of the domain, [1, 1.3]×
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[1, 1.3], while Figure 4 shows errors integrated over the whole domain. The
figures indicate how different roughness 1 in the refined grids impacts the con-
vergence rates. For the perturbed grids, convergence rates are computed by
comparing to an h defined by averaging of the maximum edge of all elements.
We also measured convergence versus the largest cell edge in the domain, but
these results were somewhat inconclusive and are not included.

Grids 1 and 2 are refined such that the elements approach half of parallel-
ograms in the asymptotic limit, and hence we observe the expected order of
accuracy in smooth regions. For the whole domain, however, we observe re-
duced convergence rates because of the kink in the solution along the circular
arc x2 + y2 = 5 (see Figure 1), as is to be expected. These results agree with
the results in [14] for rectangular elements.

Figure 5 shows histograms of the mesh sizes for Grid 3 and Grid 4, both with
grid size N = 80. Grid 3 has a normal distribution of the measured mesh sizes,
which explains that the observed convergence rates are only marginally lower
than the formal order of each method. The first refinement level of Grid 4 has a
normal distribution, but as the grids are refined, the mesh distribution becomes
more and more skewed, with a significant tail to the right, corresponding to
elements with longer edges. Because of this kind of distribution (short triangle
edges combined with longer triangle edges), the mesh quality diminishes as the
grid is refined, which introduces an opposite effect to the pure reduction of edge
lengths seen for the other grids. The observed convergence orders are therefore
significantly lower than their theoretical value and also seem to decrease with
the refinement level, indicating a stronger effect of the skewed mesh distribution
for increasing numbers of grid cells. Note also that the decay increases with
the order of the basis functions.

These results should be compared with the theoretical results obtained in [16]
and [17], where the convergence of the pressure equation (1) is studied for gen-
eral permeability description and irregular geometry. When transforming the
pressure equation on general quadrilateral grids with general permeability to
computational space, the evaluation of a quantity which may be viewed as the
computational space permeability depending on the Piola mapping, becomes
important. Different evaluations of the computational space permeability may
have a very different behaviour on rough grids, and convergence may be lost
entirely for rough grids that do not handle this evaluation properly.

1 Rough grids are defined in the literature (see e.g., [16]) as quadrilateral grids
that do not approach parallelograms as the grids are refined. Here, the triangular
grids are constructed by dividing each quadrilateral of a quadrilateral grid into two
triangles which have one common edge. By this definition, Grids 3 and 4 are rough
grids. Similar convergence studies have been performed in [17], where in general a
decay in convergence rates may be seen.
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Fig. 3. L2-errors and convergence rates over a smooth part of the domain,
[1, 1.3] × [1, 1.3], for a grid refinement study with dG(n) on a series of 2N × N
grids for Grids 1, 2, 3, and 4.
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Fig. 6. Time-of-flights for Layer 77 from the SPE10 test case.

In the next example, we consider a case with strongly heterogeneous media
properties.

Case 2 (A Fluvial Medium) Consider a 2D quarter five-spot case with per-
meability and porosity data from Layer 77 of Model 2 from the 10th SPE Com-
parative Solution Project [18]. This permeability field is highly heterogeneous
with permeability variation up to eleven orders of magnitude and strong con-
trasts between the low-permeability background and a set of intertwined high-
permeability channels, see Figure 6. The rectangular grid consists of 220× 60
cells, each of size 10 ft ×20 ft, while the triangular grid is created by di-
viding each rectangular element into two triangles. The right column in the
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Fig. 7. The computed time-of-flights along vertical cross sections at
x = 550, 1100, 1650, 2200 ft.

figure shows the computed time-of-flights on triangular elements for dG(n),
n = 0, 1, 3, 5. For comparison, the left column shows the corresponding solu-
tions using the dG scheme on rectangular elements, see [14]. The plots were
created by sampling the polynomial patches in 10 × 10 uniformly distributed
points inside each rectangular element. In the visual norm, the accuracy is
approximately the same on the triangular and on the rectangular grid.

Figure 7 shows time-of-flights for four different vertical cross sections at x =
550, 1100, 1650, 2200 ft. The thick lines show the dG(5) solution computed on
the triangular grid and the thin lines show the solution obtained by back-
tracing approximately 8 000 streamlines. The corresponding relative L1-errors
are present in Table 7. Altogether, we observe that strong heterogeneities in
the permeability field influence the accuracy of the computed time-of-flights.

Case 3 (Three Fractures) In this example, we consider a case with three
high-permeability fractures inside the unit square. We impose no-flow bound-
aries at bottom and top, inflow at the left boundary, and outflow at the right
boundary. The aperture of the fractures is 10−4 length units and the permeabil-
ity of the fracture (Kf) is assumed to be either 103 and 105 times higher than
the permeability (Km) of the homogeneous and isotropic background field.
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Table 1
The relative L1-errors of the computed time-of-flights for different vertical cross
sections. See Figure 7 for the computed time-of-flights.

x dG(0) dG(1) dG(2) dG(3) dG(4) dG(5)

550 2.07e-01 1.85e-01 1.74e-10 1.59e-01 1.40e-01 1.26e-01

1100 4.35e-01 3.30e-01 2.95e-01 2.58e-01 2.20e-01 2.02e-01

1650 6.15e-01 5.27e-01 5.01e-01 4.70e-01 4.32e-01 3.89e-01

2200 3.28e-01 1.83e-01 1.68e-01 1.44e-01 1.33e-01 1.25e-01

Table 2
Degrees-of-freedom for different order and grid resolution.

N dG(0) dG(1) dG(2) dG(3) dG(4) dG(5)

437 437 1311 2622 4370 6555 9177

5048 5048 15144 30288 50480 75720 106008

5301 5301 15903 31806 53010 79515 111321

23463 23463 70389 140778 234630 351945 492723

We compare time-of-flights computed using the four grids depicted in the top
row of Figure 8. From the plots, we observe three qualitative tendencies: (i)
for the same number of unknowns (see Table 2), the solution is better for
the grid without adaptivity; (ii) increased polynomial order is more important
than increased grid resolution; and (iii) the improvements obtained by using
finer grid resolutions decay with the polynomial order of the scheme. Finally,
we observe that all dG solutions establish the qualitative structures of the flow
pattern.

Next, we consider the pointwise accuracy at the outflow boundary compared
with a highly resolved solution computed by back-tracing approximately 16 000
streamlines. Figure 9 shows the relative L1-errors for the time-of-flight and
the mass flux across the outflow boundary. Figure 10 shows the time-of-flight
at the boundary for permeability ratio 1 : 103. Similarly, Figure 11 shows the
tracer production curve (average tracer concentration at the outflow boundary
versus time) that results from injecting a tracer slug in the time interval t ∈
[0, 0.05]. As above, we observe that high polynomial order is more important
than high grid resolution. In particular, Figure 11 shows that using dG(3)
gives the same qualitative structures for all grid resolutions, whereas dG(0)
fails to compute the correct tracer production on all grids. We also observe
from Figure 9 that the error increases with increasing ratio between the matrix
and fracture permeability. This observation agrees with the results in [14].

When increasing the grid resolution in the example above, the grid inside the
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Fig. 8. Time-of-flight for Case 3 with ratio between matrix and fracture permeability
equal 1 : 105. In the first row, we only show a zoom of the area [0.2, 0.6]× [0.1, 0.5]
for the three refined grids.

thin fractures only increased resolution in the longitudinal direction. For the
simple Cartesian grids studied in [6], we observed that it was more impor-
tant to increase the grid resolution in the latitudinal direction of the fractures
to accurately resolve sharp transitions in time-of-flight arising when the flow
changes from matrix to fracture and vice versa. In the next example, we there-
fore also consider refinement in the latitudinal direction of the fractures.

Case 4 (Latitudinal Refinement in Fractures) Consider a unit square
with flow from left to right and no-flow boundaries at bottom and top. The
fracture network consists of five horizontal fractures and a skew vertical frac-
ture extending from top to bottom. The aperture of the fractures is 10−4 unit
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Fig. 9. Discrete relative L1-errors in time-of-flight and mass flow at the outflow
boundary for Case 3. The dG(n) solutions for n = 0, . . . , 5 are compared with
solutions computed by back-tracing approximately 16 000 streamlines.

lengths and the permeability ratio is 1 : 105. Figure 12 shows time-of-flight
computed with dG(n) for n = 0, 1, 3. The upper row shows the time-of-flights
computed on a grid in which each fracture is represented with one rectangular
element divided into two triangle elements in the latitudinal direction. The
lower row shows the solutions with eight rectangular elements (sixteen trian-
gular elements) in the latitudinal direction.

Table 3 reports the error in the time-of-flights and mass flow computed at
the outflow boundary for the permeability ratios 1 : 103 and 1 : 105 compared
with a reference solution obtained by back-tracking streamlines from uniformly
distributed points inside each element at the outflow boundary for a refined
grid. With one exception, the errors decrease when refining the grid in the
latitudinal direction inside the fractures. This agrees with results reported in
[6], where we observed the importance of sufficient latitudinal grid resolution to
correctly capture large spatial variations inside the fractures. Capturing these
variations is necessary because the time-of-flight is an integrated quantity that
is strongly affected globally by local discretization errors.

Criteria to guide the choice between single and multicontinua (porosity) for-
mulations in site-specific applications are not easily defined. A simple method
is to consider by measuring the (outflow) concentration of some species present
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Fig. 10. Time-of-flight at the outflow boundary for Case 3 with ratio between matrix
and fracture permeability equal 1 : 103. The thick lines show the dG(n) solutions
for n = 0, 1, 3 and the thin lines are solutions computed by tracing approximately
16 000 streamlines.
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Fig. 11. Average tracer concentration over the outflow boundary as a function of
time for the simulations shown in Figure 10.
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Fig. 12. Time-of-flight for Case 4 with ratio between matrix and fracture perme-
ability equal 1 : 105. The upper row shows the results using no latitudinal grid
refinement, while the lower row shows the solutions for a refinement with eight rect-
angular (divided in sixteen triangular) elements in the latitudinal direction of the
fractures. The distribution of fractures is depicted as thick lines.

Table 3
Discrete relative L1-errors in time-of-flight (upper half) and mass flow (lower half)
at the outflow boundary for Case 4 using M elements across the fractures. The so-
lutions are compared to solutions computed by tracing approximately 4 000 stream-
lines.

Km:Kf M dG(0) dG(1) dG(2) dG(3) dG(4) dG(5)

1 : 103 1 (2) 1.58e-01 6.77e-02 3.83e-02 2.82e-02 2.07e-02 1.94e-02

8 (16) 1.53e-01 5.74e-02 3.29e-02 2.30e-02 1.70e-02 1.62e-02

1 : 105 1 (2) 7.80e-01 5.86e-01 3.97e-01 3.59e-01 3.22e-01 2.93e-01

8 (16) 7.49e-01 4.66e-01 2.11e-01 1.51e-01 1.32e-01 1.07e-01

1 : 103 1 (2) 1.11e-00 7.59e-01 6.45e-01 5.53e-01 4.34e-01 4.31e-01

8 (16) 1.20e-00 5.91e-01 3.85e-01 3.00e-01 2.34e-01 2.42e-01

1 : 105 1 (2) 1.47e-00 1.29e-00 6.21e-01 6.37e-01 3.92e-01 3.77e-01

8 (16) 8.36e-01 2.64e-01 2.54e-01 2.66e-01 1.82e-01 1.92e-01
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Fig. 13. Computed mass flow over the outflow boundary. The thick lines give the
dG(n) solutions and the thin lines give solutions computed by back-tracing approx-
imately 4 000 streamlines.

in a reservoir model during some predefined time interval. Here we consider
breakthrough curves resulting from the injection of a tracer slug/pulse. If the
curve has two peaks, there are two distinct transport mechanisms correspond-
ing to flow in fractures and matrix. On the other hand, if the curve has a single
peak, the medium can be modelled using a discrete model. In the next exam-
ple we demonstrate that our dG scheme can provide a fast and easy method
for evaluating tracer-breakthrough curves for flow in fractured porous media.

Case 5 (Discrete Versus Multicontinua Model) Consider the same test
example as in Case 4, now with grid refinement in the latitudinal direction of
the fractures. We measure the concentration over the outflow boundaries re-
sulting from a pulse injection of tracer in the time interval, t ∈ [0, 0.05]. Fig-
ure 13 shows the mass flow over the outflow boundary computed using dG(n)
for n = 0, 1, 4 compared with a highly resolved streamline simulation on a re-
fined grid. For permeability ratio 1 : 103, shown in the upper row, we obtain
multiple peaks, where the first peak represents the tracer going through the
fractures and the next peak represent tracer flowing through the rock matrix,
which has lower permeability. The results for permeability ratio 1 : 105 only
show a single peak, that breaks through very early, meaning that the tracer goes
straight through the fractures and that this is the predominant transport mech-
anism. Thus, for the first case it is necessary to use a multicontinua model,
while for the second case a discrete model may be appropriate.

The previous example demonstrates that the time-of-flight formalism can be
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used to find breakthrough curves for highly resolved small-scale models in
which fractures are represented explicitly as volumetric object. This may be
used as a guide when choosing an appropriate conceptual model to be used
on a larger scale. Hence, our method may serve as a technical guide for the
choice of single and multicontinua formulation in fractured rocks.

In the next example, we demonstrate how our dG methods can be used to
delineate the reservoir by determining swept and drainage volumes and well
connectivities. To this end, we will solve the steady tracer-concentration equa-
tion (3) rather than the time-of-flight equation. The stationary tracer equation
describes the steady concentration arising if we continuously inject tracer at a
certain part of the inflow boundary. Hence, if the tracer concentration is posi-
tive at a point, the point is influenced by the part of the inflow boundary from
which we inject tracer. To partition a reservoir, we define the swept/drained
volumes as the volumes having a concentration larger than 0.5. Notice in par-
ticular that due to the efficient sequential solution procedure, computing each
drainage volume is a single-sweep computation that can be performed with
high accuracy and modest demands on storage and computing power.

Case 6 (Stationary Tracer Distribution) We consider the stationary tracer
distribution for a fractured reservoir, in which the permeability ratio between
the matrix and the fractures is 1 : 105 and the aperture of the fractures is 10−4

length units. One injection well is located in each corner and two production
wells are located inside the domain. Figure 14 shows the tracer distribution
for each injector computed using basis functions of increasing order. The four
sweep areas are shown in different grey-tones, with boundaries between the
sweep areas defined as the 0.5 contour of the different tracer concentrations.
The figure illustrates that low-order approximations generally provide sufficient
accuracy to delineate the reservoir. This was also observed in [14].

Figure 15 shows the stationary tracer distribution for a reservoir with more
complex geometry. The distribution of the fractures is depicted in the figures,
and the permeability ratio between matrix and the fractures is 1 : 103. One
producer is located in the lower left corner and three injectors are located in
the three other corners. Each row in Figure 15 shows the sweep areas for the
three different injectors computed using dG(0) in the first column and dG(2)
in the second column.

5 Final Remarks

We have previously shown that the combination of a discontinuous Galerkin
spatial discretization and an optimal ordering of cells is a robust, accurate,
and efficient numerical approach for the solution of incompressible flow of
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Fig. 14. Stationary tracer distribution with one injector placed in each corner and
two producers placed inside the domain.
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Fig. 15. Tracer distribution for three injectors placed in three of the corners and
one producers placed in the lower left corner.
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fluids in porous media, see [14,7]. For multiphase flow [7,8] and single-phase
flow in media with mild heterogeneity, our experience indicates that a low-
order dG method (the standard upwind method, dG(0), or the second-order
dG(1)) is sufficient to accurately capture the fluid transport. For single-phase
flow in strongly heterogeneous media, one may need to increase the order to
accurately capture integrated quantities like time-of-flight and steady tracer
concentration.

For fractured media, explicit modelling of complex fracture networks will give
rise to very complex structures, and using unstructured triangular (tetra-
hedral) grids, at least locally, may be necessary to accurately model realis-
tic cases. In this paper, we have made the first steps toward extending our
dG methodology to unstructured grids by presenting results for triangular
elements in 2D, from which the extension to tetrahedral elements in 3D is
straightforward.

Two features with our methodology may prove very useful when attacking
complex 3D models. First, by using a discontinuous Galerkin discretization
in combination with an upwind flux, we localise the degrees-of-freedom (and
their assembly) and simplify the coupling of different element types. Second,
the optimal ordering of the unknowns enables us to compute the solutions in
an element-by-element fashion that is quite general and applies to any grid
for which the inter-element dependence can be described by a graph.

For triangular grids, the dG method is convergent for smooth solutions, but
loses accuracy near discontinuities. Case 1 in Section 4 shows how the rough-
ness of randomly perturbed grids impacts the accuracy, leading to reduced
convergence rates. Considering polynomial degree versus grid resolution, our
examples indicate that increasing the order of the basis functions is more im-
portant than increasing the grid resolution (provided the flux is resolved with
sufficient accuracy). Our experience is that a dG discretisation of sufficiently
high order is a relatively robust alternative to streamlines and performs well
for a wide range of realistic cases. However, high permeability contrasts reduce
the accuracy of the solution. This may be countermanded by introducing a hp-
refinement [14], in which we reduce the order of the basis functions and refine
the grid in areas with high media contrasts. Finally, to accurately compute
time-of-flight in fractured porous media, it is important to have a sufficient
grid resolution in the latitudinal direction of the fractures. This is necessary
since the time-of-flight is an integrated quantity that is very sensitive to small-
scale variations in media properties, and contains large spatial variation, in
particular within and close to fractures.

We have also demonstrated how the framework can be used to compute accu-
rate approximations to the stationary tracer distribution in a reservoir. Two
test cases indicate that low-order approximations have sufficient accuracy to
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produce reasonable delineations of a reservoir volume.

Altogether, we have demonstrated that the dG schemes in most cases can
accurately compute time-of-flight and stationary tracer distribution. These
quantities are of practical importance for applications in petroleum reservoir
simulation and groundwater modelling. For petroleum reservoir simulation,
time-of-flight gives the timelines in the reservoir, whereas computing the tracer
distribution can determine the spatial regions swept or drained by well. Within
groundwater applications, time-of-flight may be an important tool to visualise
the spreading of contaminants and to help understanding the different trans-
port processes.
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