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Abstract
We consider three high-resolution schemes for computing
shallow-water waves as described by the Saint-Venant sys-
tem and discuss how to develop highly efficient implementa-
tions using graphical processing units (GPUs). The schemes
are well-balanced for lake-at-rest problems, handle dry states,
and support linear friction models. The first two schemes
handle dry states by switching variables in the reconstruc-
tion step, so that that bilinear reconstructions are computed
using physical variables for small water depths and con-
served variables elsewhere. In the third scheme, reconstruct-
ed slopes are modified in cells containing dry zones to en-
sure non-negative values at integration points. We discuss
how single and double-precision arithmetics affect accuracy
and efficiency, scalability and resource utilization for our
implementations, and demonstrate that all three schemes map
very well to current GPU hardware. We have also imple-
mented direct and close-to-photo-realistic visualization of
simulation results on the GPU, giving visual simulations
with interactive speeds for reasonably-sized grids.

Keywords GPU · Shallow Water · Saint-Venant ·Conserva-
tion Laws · Visualization · Finite Volume · High-Resolution
Scheme

1 Introduction

Accurate simulations of shallow water waves as described
by the Saint-Venant system are highly important in many
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application areas. Herein, our primary interest is flood sim-
ulation and interactive studies of multiple scenarios for flood
prevention, for which a main challenge is simulation time:
the computational power of standard CPUs cannot provide
the performance needed for grids with sufficient resolution.
In an effort to overcome this problem, we present efficient
implementations of three high-resolution schemes for the
Saint-Venant system [11,7,13] on graphical processing units
(GPUs). Leveraging the computational power of a GPU can
potentially provide close to real-time simulation and visu-
alization, thereby significantly improving user interactivity.
Our work contributes a state-of-the-art implementation of
explicit finite-volume schemes on modern graphics hard-
ware, including interactive visualization with photo-realistic
effects. The particular schemes capture steady states like
the lake-at-rest case, support dry states, and include sim-
ple source terms accounting for bottom friction. Verifica-
tion against analytical solutions and validation against ex-
perimental data for the Malpasset dambreak are described
in a separate paper [5].

Graphical processing units have in recent years devel-
oped from being hardware accelerators of computer graph-
ics into high-performance computational engines. The use
of GPUs in scientific computing has gone from early proof-
of-concept studies around ten years ago (e.g., matrix oper-
ations carried out by using graphics operations [14]), to the
current widespread use. Examples from a wide range of ap-
plications show how one can obtain a significant computa-
tional speedup by harnessing the computational power of a
GPU [20]. A comprehensive description of current state-of-
the-art GPU technology, including hardware, software, and
algorithms, can be found in Brodtkorb et al. [4].

GPUs are stream processors that operate in parallel by
running a single kernel on multiple instances of a data stream.
This type of parallelization is particularly well suited for the
stencil computations that constitute an explicit high-resolu-
tion scheme. The idea of using GPUs to accelerate (high-
resolution) schemes for systems of conservation and bal-
ance laws is not new. To the best of our knowledge, it was
first suggested in 2005 by Hagen et al. [7] for the Saint-
Venant system and then later for the Euler equations of ideal
gas dynamics [8]. Using OpenGL, the authors demonstrated
how the stencil computations of several classical and high-
resolution schemes could be implemented as operations in
the fragment processing units, see [6]. Moreover, for sys-
tems of conservation laws, one could utilize the vector oper-
ations of four-component graphics (RGBA) to obtain accel-
eration beyond the number of parallel pipelines. Compared
with a highly tuned CPU implementation, speedup factors
in the range 15–30 were observed. Another important ob-
servation was that explicit schemes for hyperbolic conser-
vation laws and balance laws are memory bound, and hence
larger speedups were observed for high-resolution schemes
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that are more compute intensive than classical schemes like
Lax–Friedrichs, Lax–Wendroff, etc. Since then, there have
been several publications devoted to the use of GPUs for the
shallow-water equations and other conservation and balance
laws, see e.g., [2,3,22,16,10,26,15,1].

In the current paper, we revisit the shallow-water simula-
tions from [7], now using implementations in CUDA rather
than OpenGL to give an up-to-date demonstration of the
feasibility of GPU computing for the Saint-Venant system.
The two main points in the paper are: (i) a discussion of
how to implement high-resolution schemes as efficiently as
possible on current GPUs, and (ii) a comparison of the effi-
ciency of GPU implementations of the Kurganov–Levy [11]
and Kurganov–Petrova [13] schemes. In assessing computa-
tional efficiency, it has become quite popular to report speed-
up factors compared with a CPU implementation, and the
literature is filled with optimistic figures that report several
orders of magnitude speedups. Unfortunately, most of these
findings are overly optimistic (and not examples of good sci-
ence); by comparing theoretical performance numbers for
GPUs and CPUs, it is easy to see that speedup factors ex-
ceeding 100 are very unlikely on current hardware. Herein,
we will therefore instead consider the degree of resource uti-
lization, which in our opinion is a better measure of how
well a particular algorithm maps to the GPU.

2 Model Equations

Waves in shallow waters can be described by the following
Saint-Venant system
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Here h is the water depth, hu is the discharge along the x-
axis, hv is the discharge along the y-axis, g is the gravita-
tional constant, and B is the bathymetry (see Figure 1). On
vector form, we can write the equation as

Qt + F (Q)x +G(Q)y = H(Q,∇B), (2)

where Q is the vector of conserved variables, F and G are
flux functions, and H represents the source terms. The fric-
tion source term is assumed to be linear in velocity with a
constant of proportionality that depends on h,

κ(h) =
αh

1 + βh
. (3)

For all synthetic test cases considered herein, α and β have
been set, rather haphazardly, to 10−2 and 102, respectively.

hu

B

h
w

Fig. 1: Variables in the shallow-water equations in one di-
mension: h is the water depth, B is the bathymetry, w is the
total water elevation, and hu is the discharge.

3 Numerical Schemes

There are many aspects to consider when studying numer-
ical methods for the Saint-Venant system. First of all, it is
important for any numerical method to be conservative. Sec-
ond, the method should be accurate on smooth parts of the
solution and not create spurious oscillations near disconti-
nuities or sharp transitions in the solution. Moreover, many
simulations are perturbations of a steady state. Consider, for
example, a lake at rest, in which the hydrostatic contribu-
tions to the flux in (1) perfectly balances the bathymetry gra-
dient in the source term. An ideal method should therefore
be well balanced in the sense that source terms and fluxes
balance exactly also in the discretized equations for zero ve-
locities.

Likewise, to simulate inundating (flooding), we require
that the scheme does not break down in the presence of dry
states (h = 0) and that it is well-behaved in shoal zones (h
very small). Solving the Saint-Venant system numerically
with dry states is difficult. To compute numerical fluxes, one
will typically have to divide quantities by the water depth h.
As h approaches zero, we get divisions by very small num-
bers, resulting in large errors in the fluxes. To make matters
worse, if the water depth becomes negative, the whole com-
putation breaks down since the eigenvalues of the system are
u±
√
gh.

High-resolution schemes. There are many good schemes
available in the literature that satisfy the critaria above. Here-
in, we are mainly interested in problems characterized by
strong discontinuities, which typically can be satisfactorily
resolved using a well-balanced second-order scheme with
capabilities for resolving dry states. For other types of prob-
lems involving more smooth phenomena, e.g., the formation
of eddies in shelf-slope jets [21], well-balanced schemes of
higher order may be required [17]. In choosing among dif-
ferent second-order schemes, our previous experience is that
the Kurganov–Levy scheme [11], and its slightly modified
version reported in [7], offer a good compromise between
simplicity of implementation and efficiency, accuracy, and
robustness for the simulation scenarios considered herein.
In addition, we consider an improved version developed by
Kurganov and Petrova [13], which allows discontinuities in
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the bathymetry, contains less branching, requires less shared
memory, and has been verified against both analytical and
experimental data [24].

The three second-order, semi-discrete, central-difference
schemes considered herein are based on the same basic dis-
cretization principles on a regular Cartesian mesh, using the
generalized minmod flux limiter to obtain a high-resolution
[9,25] non-oscillatory reconstruction. We start by integrat-
ing (1) over each cell in the mesh to obtain a system of evolu-
tionary equations for the cell averages Qij of the conserved
quantities Q,

dQij
dt

=H(Qij ,∇B)−
[
F (Qi+1/2,j)− F (Qi−1/2,j)

]
−
[
G(Qi,j+1/2)−G(Qi,j−1/2)

]
=R(Qij).

(4)

Here Fi,±1/2,j and Gi,j±1/2 denote the fluxes over the cell
interfaces in the x and y-directions. Then the temporal evo-
lution of cell averagesQij in cell ij can be approximated us-
ing a second-order stability-preserving Runge–Kutta method,

Q∗ij = Qnij +∆tR(Qnij)

Qn+1
ij = 1

2Q
n
ij +

1
2

[
Q∗ij +∆tR(Q∗ij)

]
.

(5)

The timestep in the Runge–Kutta solver is restricted by a
CFL condition,

∆t ≤ 1
4 min

{
∆x

maxΩ |u±
√
gh|

,
∆y

maxΩ |v ±
√
gh|

}
(6)

that limits the propagation of waves to one quarter of a grid
cell per timestep.

From (5), we see that we need to compute the flux and
source terms twice for each timestep. To compute fluxes,
we introduce a quadrature rule for the spatial integration
over each cell interface and hence express each flux as a
weighted sum of point values of the flux functions F or G.
To compute these point values, we reconstruct a bilinear ap-
proximation of Q inside each grid cell. The slope in each
spatial direction is computed as a nonlinear combination of
the forward, central and backward differences using the cell
averages Qij , Qi±1,j and Qij , Qi,j±1, respectively. In each
integration point, we hence obtain two one-sided point val-
ues, reconstructed in the two cells on opposite sides of the
interface. These two values are combined through a numeri-
cal flux function; herein we use the central-upwind flux [12].
Finally, the source term can be computed by approximat-
ing ∇B from the bathymetry evaluated at the cell vertices,
see Figure 2. The resulting stencil is obviously highly par-
allel, arithmetically intensive, and hence very suitable for
GPUs [7].

Fig. 2: Reconstruction of surface elevation and bathymetry.
For a bilinear reconstruction, the cell averages coincide with
the values at the cell centers. The bathymetry is approxi-
mated by its values at the cell vertices.

Kurganov–Levy (KL02). To cope with the problem of dry
zones, Kurganov and Levy [11] proposed to use a different
reconstruction in shoal and wet zones. For the wet zones,
they proposed to perform reconstruction and flux calcula-
tions based on the variables U = [h + B, hu, hv] rather
than on the conserved variables. By using special quadrature
rules and discretizing the source term appropriately, recon-
struction from these variables leads to a well-balanced and
conservative scheme. However, the scheme does not guar-
antee a non-negative water depth h.

To guarantee non-negative values, they use another re-
construction based on the physical variables W = [h, u, v]

in the shoal zones given by h < K for some small pre-
scribed constant K. The resulting scheme is unfortunately
not well-balanced and will cause global errors in conserva-
tion. Moreover, spurious waves can emerge initially in the
shoal zones, but here the solution rapidly reaches a steady
state, in which the fluxes balance the source terms. The spu-
rious waves therefore only have a small effect on the global
solution.

Modified Kurganov–Levy (KLL05). The Kurganov–Levy
scheme (KL02) uses one integration point per cell interfaces
to compute fluxes. This limits the scheme to second-order
accuracy. Hagen et al. [7] therefore proposed a slightly mod-
ified scheme that uses a two-point interior Gaussian quadra-
ture along each interface. This quadrature rule is accurate for
reconstructions up to fifth order and thus supports higher-
order reconstructions, including the WENO reconstruction
[23], as used in [6] for gas dynamics.

Kurganov–Petrova (KP07). Whilst the KL02 and KLL05
schemes avoid negative values for h by switching to phys-
ical variables, the Kurganov–Petrova scheme [13] is based
on adjusting the reconstruction for cells where the value
at the integration points will become negative. If the re-
constructed slope creates negative values at the integration
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8© Visualize
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Fig. 3: Program flow for the implemented schemes. Each of the four bottom boxes represents a computational kernel that
executes on the GPU. The visualization is also performed directly on the GPU, without copying data over the PCI express
bus.

points, the steepness of the water slope is adjusted (reduced
or increased) so that the negative value at the integration
point becomes zero. This guarantees that all water depths
used in the calculations are non-negative. However, very
small water depths can still create large errors in the flux
calculations. The KP07 scheme handles this by desingular-
izing the calculated velocity used in the flux calculation for
shoal zones:

u =

√
2h(hu)√

h4 +max(h4, ε)
. (7)

This slope fix will ultimately affect the fluxes in shoal zones
and thus compromise the well-balanced property. However,
as with the KL02 and KLL05 schemes, the fluxes rapidly
balance the source term, and these spurious initial waves
have small effects on the solution. One thing should be noted,
though. The slope fix, and the corresponding errors intro-
duced in the solution, depend strongly on the slope of the
bathymetry. If the slope fix is triggered for a cell with a very
steep bottom slope, one obtains a very steep water slope as
well. Moreover, generalizations of this fix to higher-order re-
constructions are difficult, if possible at all. This is because
one can only alter the slope to guarantee non-negativeness at
one point per cell interface, and higher-order reconstruction
require more integration points.

The KL02 and KLL05 schemes assume that the bathy-
metry B is given as a continuous function sampled at the
integration points. The KP07 scheme, on the other hand, as-
sumes that the bathymetry is bilinear within each cell. Using
this assumption, discontinuous bottom surfaces can be han-
dled and approximated by a piecewise bilinear function.

4 Implementation

We have implemented our solver using C++ and NVIDIA
CUDA [18], with heavy use of templates for both the CPU
and GPU-parts of the code. We have grouped computations
into a set of four kernels, as shown in Figure 3, to best suit

the architecture of current GPUs and still fulfill the require-
ments of the algorithm.

Figure 3 illustrates the program flow of our implementa-
tion. We start by initializing the computational domain and
data storage between kernels in 1©. In total, we need sixteen
buffers the size of the computational domain: three to hold
U , three to hold Q, two to hold H , six to hold F and G, one
to hold B at cell vertices, and one to hold B at the cell cen-
ters. We have precomputed B at both cell centers and ver-
tices as a performance optimization: the flux kernel 3© needs
the vertex values, whilst the Runge–Kutta kernel 5© requires
the value at cell centers to ensure non-negative water depths.
We also need a buffer to hold the eigenvalues computed in
the flux kernel, 3©, and used in the maximum ∆t kernel,
4©, to compute the timestep. This buffer, however, is much

smaller than the other buffers, as will be explained later.
After allocating and initializing buffers, we enter the

main simulation loop, which contains one or more Runge–
Kutta substeps ( 3©– 6©). For each substep, we start by re-
constructing a piecewise planar function for each grid cell
and evaluate the fluxes and source terms in 3©. For the first
substep, we also compute the maximum eigenvalues in 3©,
and reduce them to the global maximum in 4©. Then we can
compute the maximum timestep satisfying the CFL condi-
tion (see (6)) and solve the ODEs (5) in 5©. Finally, we can
set the values of the global ghost cells to impose boundary
conditions in 6©. After the final substep, we may also opt to
visualize the current solution.

The following describes in detail our implementation of
the kernels used for the KP07 scheme. The other two schemes,
KL02 and KLL05, use similar ideas and optimizations.

4.1 Block Decomposition

CUDA uses the concept of blocks to structure computation.
Each block will execute independently of all other blocks
and consists of a specified number of threads, the block size.
Threads are organized in a logical 2D array, where threads
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Fig. 4: Data needed to compute the flux across the interface at i+ 1
2 . In (a), we have the input water elevation and velocities,

from which we reconstruct the slopes (b). We then evaluate the water elevation and velocities at the integration points from
the right and left cell in (c). Finally, we compute the flux using the values at the integration points (d).
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Fig. 5: Data needed to compute the source term at cell i and data needed to perform time integration. In (a), we have the
input water elevation from which we reconstruct the slope (b). We then evaluate the source term using the water elevation
and bottom topography slope (c). The Runge–Kutta substep kernel (d) simply evolves and averages the solution to the next
substep using the original water elevation, computed fluxes and source term, and the average water depth (computed by
subtracting B). We also need the bottom elevation to make sure our evolved solution gives non-negative water depths.

belonging to the same block can communicate and cooper-
ate using shared memory. Shared memory is an on-chip pro-
grammable cache on NVIDIA GPUs, accessible to threads
within the same block. Its maximum size is dictated by the
physically available memory on each streaming multipro-
cessor, currently 16 KB.

Our finite-volume scheme is in essence a set of com-
plex stencil computations. The fluxes are computed using
a neighborhood of four cells, as shown in Figure 4, and
the source terms are similarly computed using three cells,
shown in Figure 5. The Runge–Kutta substep kernel, shown
in Figure 5d, uses the fluxes and source terms from the pre-
vious kernel to evolve the solution. This means that we need
to use blocks with overlapping input domains for these ker-
nels, as shown in Figures 6 and 7. Finding a good block
size is vital for high performance, but determining what this
block size should be is a difficult problem with many opti-
mization parameters. We have used a block size of 16 × 14

for the flux kernel, and 16 × 16 for the Runge–Kutta ker-
nel. For the KL02 and KLL05 schemes, our block sizes for
the flux kernel are even smaller, as they use shared mem-
ory for both the physical and the conserved variables. For
double precision, all block sizes are effectively cut in half.
Our block sizes have been chosen through general optimiza-
tion guidelines and experimentation, and the following is a
rationale behind the choices.

One optimization parameter is shared-memory access.
Shared memory is organized into 16 banks, where one thread
can access each bank every other cycle. When multiple
threads access the same bank (also called bank conflicts),
their access is serialized. Thus, we should ensure that the
block width is a multiple of 17 to avoid bank conflicts hor-
izontally and vertically. We also want to maximize our use
of shared memory, which means that we want the ratio of
internal cells to ghost cells to be as high as possible for
each block. We do this by aiming for a square block size,
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(b) Runge–Kutta step.

Fig. 6: Domain decomposition. In (a), we show a single
block with ghost cells for the kernel computing flux and
source terms. The seemingly asymmetric data dependency
is because we compute the flux across the east and north in-
terfaces of each cell, see Figure 4. In (b), we show a single
block with ghost cells for the Runge–Kutta kernel.

i.e., trying to equalize height and width. The block size of
16× 14 gives a shared memory size of 19× 17 which gives
almost full use of shared memory, and the size is relatively
square. This does not ensure that we have no bank conflicts,
but it has been more important to ensure that the number
of threads in the block is a multiple of 32, since the GPU
executes warps of 32 threads in SIMD fashion.

To optimize memory access, we want to achieve coa-
lesced reads and writes, which means that the width of data
read into the kernel for each warp must be a multiple of 128
bytes, and that the starting address is aligned on a 128-byte
boundary. Unfortunately, we cannot fulfill these two require-
ments at the same time for all blocks because our scheme re-
quires overlapping blocks. To lessen the performance impact
of slower global memory access, we use the texture cache to
fetch data from global memory. It should be noted that the
hardware used in our tests does not support double-precision
texture fetches. Thus, we employ the standard technique of
using an int2 representation during texture fetches, followed
by reinterpreting the result as a double.

4.2 CUDA Kernels

Flux and Source Term ( 3©). The kernel that computes flux
and source terms is the main computational kernel in our
solver. The kernel starts by reading data into shared memory,
including the overlapping domain dictated by our stencils,
shown in Figure 6a. Each thread (i, j) within each block is
responsible for calculating the flux across the east (i+ 1

2 , j)

and north (i, j + 1
2 ) interface, in addition to the source term

for cell (i, j). By examining the dependencies required by
both the flux and the source term calculation, we see that
we need one ghost cell to the south and west, and two ghost
cells to the east and north.

Fig. 7: Grid decomposition for our flux kernel. Within each
block (solid lines), we compute the source term for all cells
and the flux across the north and east interfaces. The global
ghost cells are used to implement boundary conditions. No-
tice that our computational domain covers one of the global
ghost cells to bottom and left of the domain. This is because
our kernel computes the flux across the north and east cell
interfaces (see also Figure 6). Also notice that the blocks
read overlapping data from the global domain to satisfy data
dependencies dictated by our stencils.

The kernel begins by readingB and U into shared mem-
ory. From these, we reconstruct the slopes of U and calcu-
late B at the integration points, totaling to twelve shared-
memory variables. These variables are the ones needed by
more than one thread. We compute the value of the bathy-
metry at the integration points in the kernel, as opposed to
reading them from a precomputed buffer. This dramatically
lessens the burden on the memory subsystem, and adds only
a few extra computations. Reconstructing the slope of U is
done using the branchless generalized minmod limiter [6],
for which we use efficient bit operations to compute the sign
function. To guarantee non-negative water depths at the in-
tegration points, we also correct the slopes for affected cells.
This is done consistently in shared memory by choosing the
slope that interpolates the bathymetry (at the negative inte-
gration point) and the average grid cell water elevation.

After reconstructing the slopes, we can evaluate U at the
east and north integration points and compute the flux and
the source term for the cell. If we are at the first Runge–
Kutta substep, we also compute the eigenvalues and find
the maximum within each block using reduction in shared
memory. This is very efficient, as we reduce the number of
elements the maximum ∆t kernel 4© has to read by a fac-
tor 16 × 14 = 224 with our current block size. This also
reduces the storage requirement, as mentioned in the begin-
ning of this section.

Maximum ∆t ( 4©). The kernel that computes maximum ∆t

simply finds the maximum eigenvalue within the whole com-
putational domain and computes the timestep ∆t using (6).
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We use a single block, where each thread loops through a
strided subset. This ensures coalescing of data reads, thus
maximizing memory performance of this memory-bound ker-
nel. Once all eigenvalues for each thread have been consid-
ered, we perform in-block reduction between threads using
shared memory. Finally, one thread computes and writes the
maximum timestep to global memory.

Runge–Kutta ( 5©). The Runge–Kutta substep kernel com-
putes one substep of the Runge–Kutta ODE integrator (5).
It is a memory-bound kernel that performs few computa-
tions, but accesses global memory many times. First, we
read the fluxes F and G into shared memory. We then read
the source term H , the existing solution U (and Q∗ for the
second substep), the bathymetry B, and finally the timestep
∆t into registers for each thread. We then evolve the solu-
tion one substep. We also make sure all water elevations are
non-negative, as floating-point round-off errors might cause
negative water elevations.

Boundary Conditions ( 6©). This kernel is quite similar to
the maximum ∆t kernel 4©. The kernel is memory bound,
as it performs very few computations. We only launch one
block, which simply fills the ghost cells at the boundary with
appropriate values. In our case, we have implemented wall
conditions, i.e., we copy the cells closest to the boundary
to the ghost cells and change the sign of the perpendicular
velocity component. As an alternative to using a separate
kernel to set boundary conditions, we could have used an
extra buffer to identify boundary cells. This, however, would
dramatically increase the load on the memory bus.

Other Optimizations. We need to pass a large amount of pa-
rameters to each of the kernels outlined above. For 32-bit
operating systems, we can pass them in the normal fash-
ion. However, for 64-bit systems, the size of pointers double,
and exceed the maximum size allowed by CUDA. We thus
use constant memory, which is auto-coalesced and cached
global memory on the GPU. This enabled us to pass the pa-
rameters on 64-bit systems, and further proved to be a sig-
nificant performance boost on 32-bit systems.

4.3 Visualization

The purpose of visualization is to improve our understand-
ing of, and extract information from the simulation results.
Hence, what variables to chose and what visualization tech-
niques to use will strongly depend on what features of the
solution on is interested in. Herein, we focus on producing a
birds-eye view of the water surface and the surrounding ter-
rain. To this end, we have implemented direct visualization
of simulation results in OpenGL [19] with photo-realistic

effects, as shown in Figure 8d. First, we render the terrain
using a quadrilateral mesh where the nodes are displaced ac-
cording to the height of the bathymetry B. The mesh is then
draped with a texture and we use Phong shading (a method
for calculating light reflected from surfaces by by interpolat-
ing surface normals across rasterized polygons) to compute
per-pixel lighting. The water surface is also rendered using a
quadrilateral mesh and displaced according to the water ele-
vation w. We use the Fresnel equations to compute the angle
of reflected and refracted rays, and the amount refraction.
The reflected ray is then used to look up into the environ-
ment map (the skybox1), and our refracted ray is used to look
up into the terrain texture. Environment mapping combined
with reflection is a very good tool to spot discrepancies in
the simulation, as our eyes rapidly detect imperfections in
the mirror-like surface.

We visualize the bathymetry given at the center of each
grid cell as a piecewise bilinear function, and the same is
done for the cell averages of the water elevation. This means
that the visualization is slightly erroneous and can give rise
to visual artifacts where the water depth approaches zero
(see along the shore in Figure 8d). However, we find it a
reasonable approximation that gives users a good overview
of the simulation results.

For each timestep to be visualized, we start by copying
simulation results from CUDA memory to OpenGL texture
memory. We accomplish this by copying from CUDA sim-
ulation memory to a CUDA mapped pointer of an OpenGL
pixel-buffer object. Then, we synchronize the pixel-buffer
object with an OpenGL texture. One optimization would be
to remove the first of these copies and instead run the simu-
lation using a CUDA mapped pointer to an OpenGL pixel-
buffer object directly. However, this would increase the code
complexity of the simulator and also couple the simulation
code with the visualization code. The second copy might
also seem superfluous, but is mandatory in current driver
versions and is very efficient: it is performed entirely on the
GPU, without the need to transfer data over the PCI express
bus.

5 Numerical Experiments

To assess the performance of our implementation of the three
schemes (KL02, KLL05, and KP07), we consider four dif-
ferent cases, see Figure 8. Case 1 consists of a bell-shaped
water elevation over a flat bathymetry. In Case 1a, the water
elevation is set very low so that the schemes interpret the so-
lution to be in the shoal zone, in which dry-state reconstruc-

1 Skyboxes are used in computer graphics to create the illusion that
the displayed scene is larger than it actually is. The rendered schene
is embedded inside a box, and images of the sky and the distant land-
scapes are projected on the faces of the box to illude the unreachable
3D space surrounding the scene.
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(a) Case 1a: low water elevation. (b) Case 1b: high water elevation. (c) Case 2: discontinuous bathyme-
try.

(d) Case 3: dambreak simulation.

Fig. 8: The different test cases used in our benchmarks. For Cases 1a, 1b and 2, we have a 2D domain with a bell-shaped water
elevation at the center of the domain. Case 3 is an synthetic terrain with a breaking dam. The height map is superimposed on
the image.

tion is triggered for KL02 and KLL05, and desingularized
flux computation (7) is triggered for KP07. In Case 1b, the
water elevation is so high that the entire solution is in the
wet zone. Case 2 has the same setup, but now with a discon-
tinuous bathymetry; this to illustrate the difference between
the KL02/KLL05 and KP07 schemes. Finally, Case 3 con-
sists of a synthetic bathymetry that defines a “dambreak”
simulation in which a high-altitude dam floods an underly-
ing valley and lake terrain, creating a combination of wet
regions, shoal regions, and dry states.

5.1 Float vs. Double Precision

Double-precision arithmetics has so far not been supported
very well on GPUs, and when available, has come with a
big performance penalty. Hence, it is advantageous if the
high-resolution schemes can rely solely on single-precisions
arithmetics. We therefore start by investigating how using
single-precision influences the accuracy of our schemes. To

this end, we consider the relative errors in mass conserva-
tion,

Ec =

∫
Ω
h0 dx−

∫
Ω
hn dx∫

Ω
h0 dx

, (8)

where h0 is the initial water depth and hn is the water depth
at timestep n (using a fixed timestep). Figure 9 reports this
error for single-precision (SP) and double-precision (DP) ver-
sions of the Kurganov–Petrova scheme (KP07). Likewise,
we report the absolute discrepancy between the two solu-
tions for each timestep. It is interesting to note that single
precision gives round-off errors that violate conservation of
water, both for low and high water elevations, even for flat
bottom topographies. The absolute discrepancy between the
two solutions is also growing for Cases 1a, 1b, and 2. The
two Kurganov–Levy schemes exhibit the exact same behav-
ior and plots are not included.

When dry states and varying bathymetry is included
(Case 3), we see that error increases significantly and that
the overall error of the scheme dominates the effects of sin-
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(a) Case 1a: low water elevation.
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(b) Case 1b: high water elevation.
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(c) Case 2: discontinuous bathymetry.
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(d) Case 3: dambreak simulation.
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(e) Case 3: dambreak, semilog scale.
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(f) Case 3: dambreak simulation.

Fig. 9: Comparison of single-precision and double-precision versions of the KP07 scheme on a 1024×1024 grid. In (a) to (e),
relative errors in mass conservation (Ec in (8)) are shown together with the discrepancy between single and double-precision
simulations. Subplot (f) shows the error for all three schemes.
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Fig. 10: Plot of time versus number of timesteps for Case 2.

gle versus double precision. The increase in error comes
from the switching in the Kurganov–Levy schemes and the
slope fix in the Kurganov–Petrova scheme. Hence, we con-
clude that when the schemes are used for the type of prob-
lems they were designed for with shoal zones and dry states,
the error induced by floating-point precision is negligible (as
originally stated in [7], based on CPU simulations in single
and double precision). It is interesting to see that the added
integration points in the modified Kurganov–Levy seems to
negatively affect the conservation. Our explanation to this is
that the modified scheme performs twice the number of flux
evaluations, and should thus experiences more round-off er-
rors.

We have further verified our wall boundary conditions
by checking their effect on conservation. The boundary con-
ditions did not affect the conservation for the wet-bed test
cases.

5.2 Discontinuous Bathymetry

The Kurganov–Levy schemes assume a continuous bathy-
metry, and a straightforward sampling of a discontinuous
bathymetry, as in Case 2, will result in very steep gradi-
ents in the bathymetry approximation, which in turn will ef-
fect the CFL number and drive the stable timesteps toward
zero. This effect is illustrated in Figure 10: when the wave
reaches the discontinuity in the bathymetry, the timestep in
the Kurganov–Levy schemes decays to zero and even after
5000 timesteps, the simulation is still at time t ≈ 23. The
Kurganov–Petrova scheme, on the other hand, propagates
the wave with nearly unaffected timesteps past the disconti-
nuity.

5.3 Efficiency

Ever since the first applications on GPUs were published,
there has been a trend to report speedups over the CPU. At
the time when [7,8,6] was written, general-purpose com-
putation on graphics processing units (GPGPU) was still in
its infancy, and an important statement was to demonstrate
that it was possible to use GPUs for general-purpose com-
putation, and to convince the reader that a GPU code could
be much faster than a corresponding CPU code. Gigaflops
and execution-time metrics have been used extensively, and
speedup factors between 2 to 200 are commonly found in
articles, still today. However, by examining the theoretical
performance numbers for GPUs and CPUs, one quickly re-
alizes that a speedup of over 100 seems unlikely on current
hardware. Typically, these figures emerge from comparing
an unoptimized (or even worse, claimed to be optimized)
CPU code to a highly-tuned GPU implementation. There are
cases, e.g., for algorithms dominated by expensive trigono-
metric computations, where the use of highly efficient, al-
beit less accurate, hardware implementations found on the
GPU can give a speedup larger than what one would ex-
pect by only comparing memory speed, clock frequencies,
and number of arithmetic units. For most algorithms, how-
ever, these high speedups are not attainable. Our view is that
quoting such high speedups has had its mission and is now
destructive to the reputation of GPU computing.

We would like to see less of these speedup figures and
more figures that show efficient hardware utilization and
scalability. Reporting utilization of hardware resources will
thus give the user an idea of what to expect, not only on cur-
rent hardware, but also for future hardware generations. We
have measured the efficiency of our implementations on the
NVIDIA GeForce GTX 285 using the CUDA Visual Profiler
supplied with the CUDA SDK. We have used the profiler to
give us detailed statistics over runtime, memory bandwidth
utilization, and instruction throughput. The profiler has also
been actively used during development, to find and remove
bottlenecks.

The flux and source term kernel is the most time-consu-
ming of our kernels. For the KP07 scheme, this kernel takes
up 72% of the GPU runtime. It utilizes only 17.6% of peak
bandwidth for global store because we violate coalescing
rules. For global load, our original version had an efficiency
of 11%. However, when using texture fetches, we saw a
large performance boost. The kernel has an instruction
throughput of 80%, which means we idle 20% of the time.
We have profiled this kernel also on other GPUs with less
bandwidth relative to compute power, and the instruction
throughput has remained at 80%. Our experiments and
benchmarks thus indicate that the idling is caused by data
dependencies and instruction latencies, and not due to wait-
ing on data from global memory. Thus, we conclude that the
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flux and source term kernel is compute bound for the bench-
marked GPUs.

For the KL02 and KLL05 schemes, our flux kernel is
also the most time consuming, with 82% and 84% of the to-
tal runtime, respectively. These two kernels have a memory
efficiency equivalent to the KP07 kernel, as they perform the
same memory operations. However, the instruction through-
put is at a mere 66%. This can be explained by the number
of threads we are able to schedule to each multiprocessor.
Because we are limited by shared-memory usage, we have
fewer threads for these two kernels, meaning we do not have
as many other threads to run whilst we wait for data. This
is often referred to as the occupancy, and our occupancy is
22% for the KP07 scheme, yet only 12.5% for the KL02 and
KLL05 schemes.

The Runge–Kutta substep kernel is our second most time-
consuming kernel, with 28%, 18%, and 16% of the GPU
runtime for KP07, KL02 and KLL05, respectively. This ker-
nel is heavily memory bound, and penalized for violating the
coalescing rules. We achieve 15% global store efficiency,
and 11% global load efficiency. However, as with the flux
and source term kernel, we use textures for most reads, which
again showed to give a substantial performance gain. This
kernel has also an instruction throughput of 80%. However,
when profiling on GPUs with less relative bandwidth, we see
that the instruction throughput is proportional to the band-
width. Thus, we conclude that the Runge–Kutta kernel is
memory bound.

The rest of the GPU time is spent, in decreasing order, on
copying data to the GPU, running the maximum ∆t kernel,
and downloading data to the CPU. As can be seen from the
previously presented numbers, these operations are negligi-
ble for the GPU runtime. However, they do impose a soft-
ware overhead. The upload of data is done for each kernel, as
we need to upload the parameters to constant memory before
each kernel invocation. It should be possible to make this a
GPU–GPU copy instead of a CPU–GPU copy, but we have
not pursued this option because of the little time it takes.
The maximum ∆t kernel has a memory efficiency of 20%
for store, and 40% for load. The kernel obeys all coalesc-
ing rules, but is penalized because of the very few items it
considers. Finally, the download to the CPU is to keep track
of the global simulation time, as the maximum ∆t kernel
places the result in GPU memory.

5.4 Performance and Scalability.

Figure 11 shows the performance of our schemes for Case 3
on the NVIDIA GeForce GTX 285. The most important grid
sizes are those larger than or equal to 5122, as this is where
we best utilize the hardware. For this grid size, the KP07
implementation is able to run at 387 iterations per second
in floating-point precision, and 45 in double precision, i.e.,

a factor 8.6 slower. The cause for this massive speed-down
is that the benchmark GPU only has one double-precision
unit per streaming multiprocessor, but eight single-precision
units. Further, the double-precision implementation also im-
poses other overheads, such as more register space and a
need for handling texture fetches in a special way. Our dou-
ble-precision numbers for other grid sizes are similar.

When we increase the workload by four we would ex-
pect the number of iterations per second to decrease by four
as well. However, going from 5122 to 10242, we get more
than one fourth of the performance for single precision. This
is partly caused by the need to pad our domain to fit an in-
teger number of blocks, which has a larger impact on the
smaller domain sizes. Going from 10242 to 20482, this penal-
ty becomes negligible, and we attain almost perfect weak
scaling, also reflected in the double-precision results. For
larger sizes, however, we quickly run out of graphics mem-
ory, as our benchmark machine is limited to 1 GB. The max-
imum simulation size we have been able to run is a 3900 ×
3900 grid, which consumes around 928 MB of graphics me-
mory.

The main reason that the KP07 scheme is faster than
KL02 and KLL05 is that the latter needs to reconstruct both
from the positivity-preserving and the conserved variables,
as we do not know, a priori, whether a cell is in the shoal
zone or not. This double reconstruction increases the amount
of computations dramatically. Furthermore, the KP07 scheme
consumes far less shared memory in the flux and source-
term kernel. The shared-memory use dictates the maximum
block size, and for larger block sizes, the relative size of the
overlapping ghost-cell regions goes down, lessening both
the number of computations and the burden on the memory
subsystem.

Finally, it is interesting to note that there seems to be
no performance impact for the added integration points for
the KLL05 scheme, which enables the use of higher-order
reconstructions up to degree five. Our explanation to this is
that the Kurganov–Levy based kernels are memory bound
so that we can add more computations without severely af-
fecting performance.

5.5 Visualization

Our simulator can run both with and without visualization.
When visualization is enabled, we visualize every fifteenth
timestep. This, unfortunately, has a negative impact on the
simulator performance, as both the simulator and visualizer
use the same hardware resources. To make matters worse,
there is an overhead connected with mapping and unmap-
ping OpenGL memory for use with CUDA, in addition to
overheads related to the context switch between CUDA and
OpenGL. For the 5122 grid of Case 3, we achieve 300 time-
steps per second using the KP07 scheme, which is a 22%
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Fig. 11: Performance of the different schemes for Case 3 on grids with n×n cells running on the NVIDIA GeForce GTX 285.
From left to right, the three columns for each domain size display the performance of KL02, KLL05, and KP07, respectively.
The graph is normalized relative to single-precision KP07. The figures in bold over each column indicates the number of
timesteps for our KP07 implementation in single precision. The superimposed columns are for the same schemes in double
precision, and the figures in bold indicate the number of timesteps for the KP07 implementation.

drop from the 389 timesteps per second we get without visu-
alization. Nevertheless, this translates directly to an interac-
tive 20 frames per second. Several examples of the visualiza-
tion can be found on YouTube: http://www.youtube.
com/user/babrodtk.

6 Summary

In this paper, we have presented how shallow-water waves,
as described by the Saint-Venant system, can be computed
efficiently on graphical processing units using three different
well-balanced, high-resolution schemes. By implementing
direct visualization on the GPU, including various photo-
realistic effects, we have developed a visual and interactive
simulator.

Current GPU hardware is much more efficient when us-
ing single rather than double-precision arithmetics. For sim-
ple computational setups with no transitions between wet
and shoal zones, round-off errors introduced by single-preci-
sion arithmetics cause lack of mass conservation and a sig-
nificant deviation from the corresponding double-precision
solution. However, for more complex cases that contain tran-
sitions between wet and shoal zones and/or between shoal
and dry zones, the effect of single-precision arithmetics is
masked by errors inherent in the schemes’ treatment of dry
zones. Hence, single-precision arithmetics can mostly likely
be used for the typical complex cases the schemes were
developed to handle. Preliminary experiments also indicate
that use of mixed-precision arithmetics can be a way out to
preserve both high accuracy and efficiency for single-zone
cases.

Of the three schemes considered, the Kurganov–Petrova
(KP07) scheme is our method of choice. This scheme has the

best resource utilization of current GPU architectures and is
hence more efficient, has a better treatment of dry states, and
can handle discontinuities in the bathymetry. On the other
hand, the treatment of dry states in KP07 only applies to bi-
linear reconstructions, and hence the scheme cannot be ex-
tended to higher spatial order, which may be important when
studying smooth effects like eddies and other smooth phe-
nomena.

Our implementations show relatively high utilization of
computational resources and memory transfer. Still, there is
room for further improvement. Increased memory through-
put can for example be achieved by using Morton order for
texture fetches. We also anticipate that increases in shared-
memory size and a new cache, as in the new Fermi archi-
tecture from NVIDIA, will give a significant performance
boost. Likewise, the performance of our visualization is likely
to benefit from new functionality in CUDA 3.0 Beta for
more efficient sharing of data between CUDA and OpenGL.

Our initial interest in simulating shallow-water waves
on GPUs was to use high-resolution schemes as an excel-
lent demonstrator of GPU capabilities and to provide a use
case of interactive visualization. Lately, however, our in-
terest has moved more towards full-featured shallow-water
simulation: realistic dambreak scenarios, storm surges, etc.
Verification, validation, and further algorithmic and imple-
mentational improvements are described in [5]. Moreover,
we have developed a multi-GPU cluster implementation that
shows (nearly) perfect scaling; further details will be pro-
vided in an upcoming paper.
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