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Abstract
Streamline methods are gaining popularity in the industry by providing fast desktop simulation of large reservoir models or
multiple realizations. Traditionally, streamline simulation has been associated with simplified physics, but recent advances have
demonstrated its potential also for compressible three-phase or component flows. However, streamline simulation is still most
efficient for two-phase incompressible flow, for which one can utilize a particularly efficient front-tracking method to solve 1-D
transport equations along streamlines that is unconditionally stable and independent of the strongly irregular time-of-flight grid.
In a recent paper (Nilsen and Lie 2008), we presented, for the first time, front-tracking methods for simulating 1-D compressible
two-phase flow. We also developed two methods that were particularly efficient for solving compressible flow in which one
phase is incompressible, motivated by the simulation of CO2 injection. Here we apply these methods to streamline simulation
of 3-D models, including a real-life model of a North Sea formation, which is under consideration as a potential target for
CO2 deposition. Our numerical results demonstrate that streamlines and front tracking together give very efficient simulation of
compressible flow. Similar ideas can also be applied for dual-porosity models, but this is not investigated in great detail herein.

Introduction
Fast and robust methods are crucial for modeling and simulating of flow in porous media, in particular because many of the
physical and geological parameters are uncertain or unknown and one needs to simulate a large set of equiprobable realizations.
Streamline methods (Datta-Gupta and King 2007) are well established as an effcient alternative to traditional finite-volume
methods for simulation of (large) models with complex geology for which flow patterns are dictated by heterogeneity in rock
parameters and position and rates of wells. Whereas early streamline methods were only applicable to models with simple flow
physics, like incompressible two-phase flow without gravity or capillary forces, current streamline technology can include gravity
and capillary effects and be applied to compositional, compressible three-phase black-oil, and dual-porosity models. As a result,
streamline simulation is gaining (renewed) popularity in areas such as uncertainty quantification, upscaling, history matching,
closed-loop management, production optimization, risk assessment of CO2 deposition, etc.

The efficiency of streamline simulation can basically be attributed to two factors (Thiele 2005): memory efficiency and
computational efficiency. Streamline simulation is memory efficient because it uses a sequential splitting to separate the solution
of flow and transport so that only the flow equations (for pressure and velocities) need to be solved implicitly over the global grid.
This drastically reduces the size of the discrete (non)linear problem and the memory requirements of the corresponding linear
solver. The transport along streamlines are independent and can be computed in parallel or sequentially, keeping only a single
streamline in memory at a time. The computational efficiency comes from three factors: (i) the number of streamlines required to
achieve good accuracy typically scales linearly with the size of a vectical slice; (ii) in many applications, one can use relatively
long pressure steps and hence update the streamline distribution infrequently; and (iii) it is more efficient to solve (reduced) 1-D
transport problems along streamlines than solving the full 3-D transport problem. In this article, we will focus on two challenges
related to the last two points: namely, how to make an efficient 1-D solver for the highly irregular time-of-flight grids, and how
to develop an accurate operator splitting that is able to account for the coupling of pressure and saturation/compositions seen in
compressible flow.

Tracing of streamlines typically leads to a graded and highly irregular grid with (many) orders of magnitude in differences
between the smallest and the largest cells. To simulate transport, most streamline solvers use a finite-volume discretization, for
which is imperative to keep a reasonable ratio between the smallest and largest cells to maintain overall computational efficiency,
regardless of whether one uses a standard upwind or a higher-order scheme. It is therefore common to introduce a resampling on
a more regular grid, or alternatively to introduce an adaptive scheme that may retain most of the irregularity of the grid (and only
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merge the cells with the smallest volume). For incompressible, immiscible two-phase flow, however, one may entirely avoid the
difficulty of the irregular grid by using an unconditionally stable and grid-independent front-tracking method (Holden and Risebro
2002) that is highly efficient and has superior resolution of discontinuities compared with finite-volume schemes. In previous
work, it has been shown that the front-tracking approach can be extended to three-phase (Lie and Juanes 2005) and miscible
two-phase flow (Juanes and Lie 2008) under the assumption of incompressibility. Herein, we will assess the applicability and
efficiency of a new set of front-tracking and large–time-step methods (Nilsen and Lie 2008) for use in streamline simulation of
compressible two-phase flow.

Secondly, we will discuss splitting errors introduced when using a sequential solution procedure for the coupled system of
flow and transport equations and try to develop a method that reduces these errors. In an ordinary IMPES formulation, one first
discretizes the mass-balance equations before introducing the splitting of flow and transport, which means that one can achieve
complete conservation of mass and volumes even in the compressible case. In a streamline method, a sequential splitting of the
flow and transport equations is introduced before discretizing the equations, which means that it is not straightforward to achieve
conservation of both mass and volume. For incompressible flow, the 1-D conservation laws along each streamline do not depend
on the absolute pressure level. In other words, saturations or components can be evolved without knowledge of the pressure
level because their wave speeds are independent of the absolute pressure. For compressible systems, the 1-D transport equations
along each streamline describe conservation of volume and contain coefficients or source terms, depending on the formulation,
that depend on both saturation and pressure. A change in pressure without a corresponding change in saturation/components
will therefore introduce a violation of mass conservation, and vice versa. Similarly, in a formulation using source terms, it may
happen that the phase sources do not sum to zero, thereby resulting in a volume error. Minimizing mass and volume errors is
hence a particular challenge when developing compressible streamline methods, and may also impose restrictions on the size
of the pressure steps that diminishes the efficiency of streamline simulation over conventional finite-volume simulators. These
issues will be discussed in more detail below.

Theoretical Background
We start by outlining the formulation and solution methods used to set up our streamline method for compressible flow.

Mathematical Model. We consider immiscible, two-phase flow in the absence of capillary forces. To model this system, we
will use the so-called fractional formulation consisting of an equation for the pressure p (and the total Darcy velocity ~vt)

(
cr + φ(c1S1 + c2S2)

)∂p

∂t
+∇~vt − (c1f1 + c2f2)~vtg · (Kλt)−1~vt − (c1 − c2)(ρ1 − ρ2)

λ1λ2

λt
~vtg · ~g = q1 + q2, (1)

and a transport equation for the saturation Si of each phase, here written in non-conservative form,

φ
∂Si

∂t
+ ~vt · ∇fi(Si) +∇ ·

(
(ρi − ρj)

λiλj

λt
K~g

)
+ hi(S, p, ~x) = qi, i = 1, 2, (2)

where the source resulting from compressibility is

hi(S, p, ~x) = (crSi + φciSi)
∂p

∂t
+

1
ρi

fi(Si)∇ · (ρi~vt) +
(
(ρi − ρj)

λiλj

λt
K~g

)
· ∇ ln ρi. (3)

The parameters in Eq. 1–Eq. 3 have different dependence: the gravity vector ~g is a constant; the permeability K and the porosity
φ depend on the spatial coordinate ~x; the rock compressibility cr, the phase compressibilities ci, and the densities ρi depend on
pressure; and the phase mobilities λi, the total mobility λt = λ1 + λ2, and the fractional flows fi = λi/λt depend strongly on
the saturation and weakly on the pressure. Finally, ~vtg is shorthand for −λtK∇p.

Our study is partially motivated by injection and migration of CO2 in saline aquifers or depleted reservoirs, for which one of
the phases is incompressible. Assuming that phase 1 is incompressible, the corresponding transport equation reduces to

φ
∂S1

∂t
+ ~vt · ∇f1 +∇ ·

(
(ρ1 − ρ2)

λ1λ2

λt
K~g

)
+ f1∇ · ~vt = q1. (4)

This special case will be treated separately later in the article.

Sequential Splitting. In streamline simulation, one introduces a sequential splitting to solve the flow and transport in separate
steps. The flow equation Eq. 1 is solved implicitly in time on an Eulerian grid to obtain p and ~vt; here we will either use a standard
two-point or a mimetic (Aarnes et al. 2008) spatial discretisation. The pressure and velocity are then held fixed as the saturations
Si are advanced a time-step ∆t forward in time. To this end, we introduce a further operator splitting (Gmelig Meyling 1991;
Bratvedt et al. 1996) and solve the advective part

φ
∂Si

∂t
+ ~vt∇fi + hi(S, p, ~x) = qi (5)
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along streamlines and the gravity part

φ
∂Si

∂t
+∇ ·

(
(ρi − ρj)

λiλj

λt
K~g

)
= 0 (6)

along gravity lines. The streamlines are traced using Pollock’s method (Pollock 1988), noting that whereas all streamlines start
and end at wells (or aquifers) for incompressible flow, streamlines may start and end in any cell that acts as a source or sink in
the compressible case.

In the sequential splitting, one should take particular care of the fact that the pressure equation Eq. 1 represents conservation
of volume. Indeed, the pressure equation is what balances the source terms in the advection equation Eq. 5, and if this is not taken
into account when setting up the saturation step, one cannot guarantee that 0 ≤ Si ≤ 1. For instance, a naı̈ve splitting that keeps
∇·~vt constant for the case with one incompressible phase, may immediately give saturations outside the unit inverval because we
do not impose the physical restriction that the divergence of ~v is identically zero when only the incompressible phase is present.
To make sure that the transport equations always conserve volume, we can use the pressure equation Eq. 1 to eliminate ∇ · ~vt

from the source term Eq. 3, to get new source terms that sum to zero,

h̃i(S, p, ~x) = cr
∂p

∂t

(
Si − fi(Si)

)
+ φ

∂p

∂t

(
ciSi − [c1S1 + c2S2]fi(Si)

)
+

~vtgK
−1~vt

λ2
t

(
−ciλi + [c1λ1 + c2λ2]fi(Si)

)

+
~vtg~g

λt

[
(ci − cj)(ρi − ρj)

λiλj

λt
fi − ci(ρi − ρj)

λiλj

λt

]
.

(7)

In addition, these source terms have the property that h̃i(0, ~x) ≡ 0 and h̃i(1, ~x) ≡ 0. This, together with fi(0) ≡ 0, guarantees
that solutions of the transport equation fulfill the inequality 0 ≤ Si ≤ 1.

1-D Transport Equations. Streamlines are a family of curves that are everywhere tangential to the instantaneous flow field.
In the absence of gravity and capillarity forces, there is no mass transfer between individual streamlines, meaning that each
streamline can be viewed as an isolated flow system. By introducing the time-of-flight τ , given by ~vt · ∇τ = φ, and the operator
identity ~vt · ∇ = φ∂τ , one can reduce the multidimensional advection equations Eq. 5 to a family of 1-D transport equations
along streamlines. The equation reduces to1

∂S

∂t
+

∂f(S)
∂τ

+
hi(S, τ)

φ
= 0. (8)

Because ~vt is generally not divergence free, Eq. 8 cannot be written in conservative form, even in cases for which it should be
possible like in Eq. 4. It may therefore be convenient, at least in the case with one incompressible phase, to introduce a volume
factor σ to make a divergence-free field, that is, ∇ · (~vt/σ) = 0. If we define a new spatial coordinate η along each streamline by
(~vt/σ) · ∇ = φ∂η and apply this to Eq. 5, we get a form that is particularly well-suited for finite-volume discretisations,

∂S

∂t
+

∂

∂η

(
σf(S)

)
= 0. (9)

The above is the same idea as presented by Cheng et al. (2006) and Beraldo et al. (2008). If we instead use the standard time-of-
flight coordinate, the transport equation will not be explicitly conservative, but take the form

∂S

∂t
+

1
σ

∂

∂τ

(
σf(S)

)
= 0. (10)

Front-Tracking Methods for the 1-D Tranport Equations
Lagrangian methods have a long history and are based on approximating the solution following trajectories inherent in the system.
Front tracking (Holden and Risebro 2002) is one such method, which is based on approximating the solution of first-order
quasilinear conservation laws by a piecewise constant function and then evolving the solution by solving Riemann problems and
tracking discontinuities. For incompressible flow, this is simply done by approximating the fractional flow f(S) by a piecewise-
linear function and solving the corresponing approximate transport equation exactly. Recently we have developed a set of new
front-tracking and large–time-step methods for compressible flow (Nilsen and Lie 2008), following ideas introduced by Karlsen
et al. (2004) and Karlsen et al. (2008) for solving general conservation laws with discontinuous flux functions. For completeness,
we will explain the methods in some detail, starting with the special case of one incompressible phase.

1In streamline simulation, the fluid sources/sinks are modeled as inflow/outflow boundaries rather than source terms. Therefore qi ≡ 0 henceforth, and we
also drop the subscripts on S and f to simplify notation. Moreover, since p is assumed fixed during the transport step, we suppress the p-dependence in hi.
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Fig. 1—Constructing the solution to a discontinuous Riemann problem: the left plot shows the construction and the right
plot the resulting self-similar solution consisting of a standard Buckley–Leverett profile with left state SM and right state
Si+1 followed by a stationary discontinuity (Si, SM ).

One Incompressible Phase. For the special case of one incompressible and one compressible phase, we can develop a partic-
ularly simple front-tracking method by considering Eq. 9 or Eq. 10 rather than Eq. 8. Notice, however, that this means that the
second phase will generally not be mass conservative.

We start by considering Eq. 9 for the case when f is a piecewise linear function of S and σ and the initial data S0 are piecewise
constant functions of τ on the underlying time-of-flight grid. This Cauchy problem consists of a series of local Riemann problems

∂S

∂t
+

1
σ

∂

∂τ

(
σf(S)

)
= 0, S(τ, 0) =

{
Si, τ < τi,
Si+1, τ > τi,

σ(τ) =
{

σi, τ < τi,
σi+1, τ > τi.

(11)

Assume first that σi = σi+1, which corresponds to the incompressible case, and introduce a piecewise-linear local convexifica-
tion2 f c of f on the interval [Si, Si+1] (see Fig. 1), where {s0, . . . , sN} denotes the nodes of f c. Then the solution of Eq. 11 is a
similarity solution (Riemann fan) consisting of constant states

S(τ, t) =





s0 = Si, τ < r1(t),
sj , rj(t) < τ < rj+1(t), j = 1, . . . , N − 1.
sN = Si+1, τ > rN (t),

(12)

separated by discontinuities along straight space-time rays rj(t)

drj

dt
=

f c(sj+1)− f c(sj)
sj+1 − sj

, rj(0) = τi. (13)

To construct the global solution, we glue together the local Riemann fans and track the rays (henceforth called fronts) until they
collide. Each collision between two (or more) rays will give a new Riemann problem that can be solved by Eq. 12. Mathe-
matically, one can prove that there will only be a finite number of front collisions, and thus a solution to infinite time can be
constructed in a finite number of steps.

For compressible flow, we also need to solve Riemann problems and introduce fronts where σ is discontinuous. The solution
of the Riemann problem in the general case with σi 6= σi+1 consists of a stationary discontinuity with left state Si and right
state SM given by σif(Si) = σi+1f(SM ), followed by a Riemann fan Eq. 12 with left state SM (instead of Si) and right state
Si+1. Notice, however, that in setting up Eq. 10, we have incorrectly assumed that ∇ · v is constant in time within each cell. This
means that in some cases it may be impossible to find SM (e.g., if σif(Si)/σi+1 > 1). We then introduce a regularisation by
setting SM = 1, which corresponds to introducing a more general solution based on a modified entropy condition (Adimurthi
et al. 2007). We will come back to these operator splitting anomalies and errors in the numerical examples below.

The overall method will henceforth be referred to as FT1. Because Eq. 10 is in non-conservative form, FT1 will not conserve
volumes. On the other hand, this formulation is the one that is closest to the method we use for incompressible flow. Alternatively,
one may base the front-tracking method on Eq. 9, giving a method that follows the exact same construction, except that we now
need to scale the speed of the fronts Eq. 13 by σ. Notice that both methods require no regularisation if ∇ · ~vt is positive, which
will typically be the case for CO2 injection when the ∂tp-term does not dominate the pressure equation Eq. 1.

The accuracy of the FT1 is generally determined by three tolerances that control the resolution of the piecewise-linear ap-
proximation of f(S), the resolution of the piecewise-constant approximation to σ(τ) (i.e., the resolution of the flux as a function
of τ ), and the resolution of the piecewise-constant approximation of S(τ, 0). (In the next subsection, we will introduce two new
methods that in addition have a time step that decides resolution of the compressible source term as a function of time). However,
when FT1 is applied in streamline simulation, the last two tolerances are given implicitly by the time-of-flight grid. In standard

2The convexification can be visualised as cutting the upper edge of a cardboard to the shape of f and then stretching a rubber band above the cardboard from
Si to Si+1. If Si < Si+, we cut the lower edge to the shape of f and stretch the rubber band below the cardboard.
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finite-volum methods, the accuracy is decided by the grid and the CFL target that controls the time steps, but for applications
along streamlines, one must typically introduce a regridding step to ensure computational efficiency. For incompressible flow, the
propagation of information along the streamline is independent of the pressure, so the regularized grid can be generated with only
efficiency and spatial accuracy in mind. For compressible flow, on the other hand, pressure-dependent quantities from the under-
lying Eulerian grid must also be correctly represented on the regularized grid. This is done automatically in the front-tracking
approach by introducing static fronts that represent discontinuities in σ. Hence, in terms of parameters, it is therefore simpler to
control the accuracy of FT1 than controlling the accuracy of a finite-volume method.

To consider the number of operation needed to calculate a solution for the discontinuous front-tracking method it is illustrative
to consider a solution formed by parallel shock fonts propagating through a uniform and a nonuniform grid as shown in Fig. 2.
For the uniform case, the number of front collisions is determined by the CLF number and is exactly equal the number of function
evaluations needed for an explicit method with CFL number equal one. In terms of efficiency, this is a worst-case scenario in
which the front-tracking method will be more expensive than a standard explicit method. For each collision, the front-tracking
method must solve a discontinuous Riemann problem, which amounts to computing the intermediate state SM and solving a
regular Riemann problem. Both these operations consist of searching the linear segements of the flux function, and solving a
discontinuous Riemann problem is hence logaritmic in the number of linear segments. In a more realistic example (e.g., with a
Buckley–Leverett type profile), the number of fronts required to represent the solution will normally be much smaller than the
number of grid cells, and hence front tracking will have good performance even for uniform grids.

In the nonuniform case, the time step of an explicit finite-volume method would be limited by the time the fastest discontinuity
takes to propagate through the smallest grid cell, which means that the number of time steps will increase drastically. For front
tracking, on the other hand, it does not matter if the grid is regular or irregular, as this method has no global CFL restriction. The
local CFL number only shows up as small increments between front collisions but does not affect the total number of collisions.

Two Compressible Phases. Because the transport equation has a source term, we cannot use a pure front-tracking method, but
will instead use the large–time-step method by Karlsen et al. (2008), in which the front-tracking method is an essential ingredient.
To this end, we rewrite Eq. 5 using the streamline coordinate, introduce an internal time-step k, and evaluate the source term using
saturation values from the previous internal time-step,

∂Sn+1

∂t
+

∂f(Sn+1)
∂τ

= −h(Sn, τ)
φ

, t ∈ [`∆t + nk, `∆t + (n + 1)k). (14)

We define the function H(τ) =
∫ τ

0
h(r, Sn(r))/φ(r) dr and may rewrite the above equation as

∂t

(
S + H(τ)

)
+ ∂τ

(
f(S) + H(τ)

)
= 0. (15)

If H is now approximated by a picewise-constant function, we can apply a front-tracking scheme that is similar to FT1 within each
time-step. The only difference is that the stationary discontinuity (Si, SM ) now is determined from f(Si)+Hi = f(SM )+Hi+1.
If Hi > Hi+1, we may have to regularise the solution at the end-point S = 1 and similarly at S = 0 if Hi < Hi+1. The overall
scheme, consisting of front-tracking with a restart after each time step k, will be referred to as FT2. In the restart we can either
keep all discontiunities from one time step to the next, or introduce a projection back to the TOF-grid at the end of each time step.

Alternatively, we may use the source term Eq. 7 rather than Eq. 3, which means that also the effect of ∇ · ~vt on the source
term is updated at the end of each internal time-step. The resulting method will be referred to as FT3.

Test Cases in 1-D
To keep the presentation as simple as possible, we start by discussing injection scenarios on a uniform 1-D grid. Using a
uniform grid is not the most efficient way of utilizing the front-tracking methods. Ideally, the spacing in the picewise-constant
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Fig. 2—A conceptual illustration of the number of discontinuous Riemann problem that need to be solved for a uniform
and nonuniform grid. The blue lines are fronts, whereas the vertical red lines represent the time-of-flight grid (i.e.,
discontinuities in p and σ). Front collisions are indicated by small circles.
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TABLE 1—RUNTIME STATISTICS FOR CASE 1

FT1 FT2 FT3 FT2/ FT3 FV

Fronts 99 258 307 183 —
Collisions 26 66 84 51 —
Finding SM 54 143 137 65 —
Riemann problems 35 105 162 68 —
Internal steps — 10 10 1 19
CPU time (ms) 0.1 0.3 0.4 0.15 0.1

TABLE 2—RUNTIME STATISTICS FOR CASE 2

FT1 FT2 FT3 FT2/ FT3 FV

Fronts 184 645 806 71 —
Collisions 51 113 188 20 —
Finding SM 65 276 420 25 —
Riemann problems 68 277 372 40 —
Internal steps — 10 10 1 13
CPU time (ms) 0.1 0.5 0.5 0.08 0.1

approximation of S(τ, 0) and σ(τ) should instead depend on local accuracy requirements so that the spacing is small in regions
with large gradients and large in regions where S(τ, 0) and/or σ(τ) vary slowly. In comparing efficiency to a finite-volume
method, uniform grids will generally be least favourable for the front tracking because they do not allow the method to fully
focus computations only where most required. In other words, if a front-tracking method is as efficient as a finite-volume method
on a uniform grid, it will in general be much more efficient on a highly graded grid.

Unless stated otherwise, all front-tracking methods will use a linearization of the flux function with 40 segments of equal
length. For the flux function, we assume quadratic relative permeabilities with zero residual saturations.

Case 1: Injection of a Compressible Phase. We consider the injection of a compressible phase into a homogeneous 1-D
reservoir of five length units saturated by an incompressible phase that is ten times more viscous. This type of computational
setup is very important in the simulation of CO2 injection into deep saline aquifers. To compute the solution up to time t = 100,
we use only five pressure steps, which is too few to capture the coupling of flow and transport accurately, but will enable us to
highlight the qualitative differences in the various methods.

Initially, the pressure satisfies an incompressible equation, but as we start injecting the compressible fluid, the nonlinear
compressible term starts to dominate the pressure equation, Eq. 1. This will cause the total divergence to be positive, which, in
turn, implies that the solution of Eq. 8 will not go out of bounds, even if we do not introduce regularizations at the saturation
endpoints. FT1 is particularly suited to simulate this type of scenario because there is no need to approximate the source term in
time. The right panels of Fig. 3 show the fronts in (τ, t) space for FT1 and for FT3 with 10 internal time steps. The main difference
in the two solutions is that new static and new dynamic fronts appear during a pressure step for FT3. With many intervals in the
picewise-constant approximation of the initial saturation, this will increase the number of fronts significantly. Indeed, Table 1
shows that the number of fronts increases by a factor of 3. The left plot in Fig. 3 shows saturation profiles for FT1, FT2, FT3,
and the standard single-point upwind method compared with a fine-grid reference solution computed using a finer grid and more
pressure updates. For completeness, we also include a solution computed by the incompressible front-tracking method FTi (i.e.,
the method solving Eq. 10 for σ ≡ 1). We notice that FT3 is a bit nearer the reference solution than the other front-tracking
methods, but still has the same error in the front position caused by too few pressure steps.

Case 2: Injection of an Incompressible Phase. In the second test, we consider the same computational setup, except that we now
inject the incompressible phase into the compressible phase. In this case, the time derivative of the pressure in Eq. 1 dominates
the divergence, in particular in the beginning of the simulation. At later times, the situation is similar as in Case 1.

The computational results are shown in Fig. 4 and Table 2. Studying the fronts depicted in the right panels of Fig. 4, we
observe that FT3 has a much lower number of static fronts than FT1. This is caused by the different representation of the source
term in the two front-tracking methods. FT1 represents the medium by approximating σ, which is changing in the whole domain,
while FT3 approximates the source term, which is zero where there is only one fluid present. Even if FT1 has to represent more
static fronts in this case, we see no performance penalty because these extra fronts do not participate in collisions. Indeed, Table 2
shows that FT1 has fewer collisions than FT2 and FT3 with 10 internal time steps. If we use only one internal time step, then FT2
and FT3 are as fast as FT1 with approximately the same accuracy; however, because of too infrequent pressure updates, the error
in the front velocity is much larger compared with Case 1.
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Fig. 3—Injection of a compressible phase into a ten times less viscous incompressible phase. The left plot shows
saturation profiles for the front-tracking methods (FT1,FT2,FT3,FTi) and the finite-volume (FV) method. Both FT2 and FT3
used 10 internal timesteps. The upper-right plot shows the fronts of FT1, while the lower-right plot shows the same for
FT3. The pressure steps are indicated by black horisontal lines, and the fronts have been given a different color for each
pressure step to distinguish them.
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Fig. 4—Injection of an incompressible phase into a ten times less viscous compressible phase. The left plot shows
saturation profiles for the front-tracking methods (FT1,FT2,FT3,FTi) and the finite-volume (FV) method. Both FT2 and FT3
used 10 internal timesteps. The upper-right plot shows the fronts of FT1, while the lower-right plot shows the same for
FT3. The pressure steps are indicated by black horisontal lines.
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Examples of Streamline Simulations
Front-tracking has been shown to be particularly efficient for solving transport equations on irregular grids arising in streamline
simulations (Bratvedt et al. 1992). In this section, we will show a few simple examples that highlight the capabilities of our new
front-tracking methods.

Case 3: Injection Along a Streamline. In the first example, we will performe a simulation similar to Case 1, but now using a
highly irregular grid. To add some realism, we apply the same injection scenario to a real-life real-life geological model of the
Johansen formation from the North Sea and consider one transport step along a particular streamline. The Johansen formation
lies underneath the Troll field and is considered as a prime site for injection of CO2 into a deep saline aquifer. The model consists
of 27,032 active cells that cover an area of 50× 50 km and 1 km in the vertical direction. In this model, we have introduced two
synthetic wells and traced streamlines as shown in Fig. 5.

Fig. 5—The right plot shows the Johansen geomodel with three example streamlines. The left plot shows the correspond-
ing time-of-flight grid used for the simulation in 1-D.

To make the situation a bit more complicated than in Case 1, we consider a transport step after some CO2 has been injected
into the formation so that S(τ, 0) and σ(τ) are not constant along the 1-D grid. Moreover, to make a fair comparison with the
FV method, this method is run on a regularized grid in which the ratio between the smallest and the largest cell equals four. The
computational results are shown in Fig. 6 and Table 3. Because of the nonuniform initial state along the streamline, the front
structures of FT1 and FT3 shown in the right plots of Fig. 6 are slightly more complex than in Case 1 (Fig. 3). Comparing accuracy
and the performance of the method, we see that the front-tracking methods are approximately 5 times faster with better accuracy,
even if they operate on the original grid and the FV method uses the regularized grid with a lower number of cells. Table 3 also
shows that using FT3 together with 10 internal time steps for this case increases the number of collisions quite significantly but
does not give better results.

Case 4: One Injection Well and Hydrostatic Boundary. For injection of a CO2 plume into an aquifer it is often a good model
to consider hydrostatic boundary conditions. We therefore present a calculation in which we use our front-tracking method to
solve a problem with one well and Dirichlet boundary conditions. This will test how the method works on real cases for the
advection term of the transport equation. In the particular case shown in Fig. 7, we use a compressibility of 2.3 · 10−7 Pa−1 and
inject 10 Mtonn/year. To test the robustness of the front-tracking method, we use time step of 50 years. In our research simulator
(which unfortunately is not yet fully optimized), the runtime is dominated by the pressure solution: each pressure step required
approximately 20 seconds, whereas a typical transport step took approximately 0.5 (2) seconds with 2268 (3644) streamlines. In
future work, we will investigate the use of a multiscale pressure solver (Natvig et al. 2009) to increase performance.

Case 5: One Injection Well and One Production Well. Injection of an incompressible fluid into a compressible fluid is highly
relevant for enhanced oil and gas recovery. In our second 3-D test, we have therefore placed one injector and one producer in

TABLE 3—RUNTIME STATISTICS FOR THE 1-D STREAMLINE FROM THE JOHANSEN FORMATION

FT1 FT2 FT3 FT2/ FT3 FV

Fronts 497 488 1359 610 —
Collisions 241 190 542 289 —
Finding SM 231 261 777 277 —
Riemann problems 239 199 544 286 —
Internal steps — 10 10 1 253
CPU time (ms) 4 7 18 6 30
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Fig. 6—Solutions along a particular streamline in the simulation of CO2 injection into the Johansen formation. The left
plot shows saturation profiles for FT1, FT3 with 10 internal time step, and the FV method on a regularized grid. The
lines show the picewise-constant front-tracking solution, whereas the stars show the solution projected back onto the
time-of-flight grid. The upper-right plots shows the fronts for FT1, while the lower-right plot shows the same for FT3.

water saturation pressure

Fig. 7—The Johansen formation with one well and hydrostatic boundary conditions.
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water saturation pressure

Fig. 8—The Johansen formation with one injector and one producer.

the Johansen formation and assumed that the reservoir is efficiently sealed off with no-flow boundaries. For this simulation,
the pressure step required approximately 30 seconds, whereas a typical transport step took 0.4 (3) seconds with 1000 (2497)
streamlines. As in Case 4, we see that we can almost completely eliminate the computational cost of the transport equation
compared with the pressure solution, even without regridding along streamlines.

Case 6: Three Injectors and One Producer In a Syntetic Faulted Grid. Fig. 9 shows a synthetic test case with three pressure-
driven wells that inject a compressible fluid into a reservoir that is initially saturated by an incompressible fluid. Fluids are
allowed to escape through an open well in the middle of the domain. The left figure shows the saturation computed by an explicit
single-point upwind scheme compared with the saturation profile computed by our streamline method with FT1. The right subplot
shows some of the streamlines used for the streamline simulation. We observe that the streamline method gives much sharper
resolution of the displacement fronts than the explicit method. (in practice, one would have used an implicit method that would
have given even more diffusion). In this calculation we have used compressibility so that the density at the production well for
the compressible phase is 10 times less than at the injection well.

Conclusions

We have presented three front-tracking methods for compressible flow that can incorporate the effects of compressibility in two
different transport equations used in the framework of sequential splitting. We have shown that the methods are comparable to
a standard finite-volume method on idealized cases with uniform grids but become significantly faster when applied to the type
of highly irregular grids seen in realistic applications. As opposed to finite-volume schemes, the new methods do not require
regridding along the streamlines and will therefore be more true to the input data sampled from the underlying Eulerian grid that
is used by the pressure solver.

In the method (FT1) developed especially for the case of one incompressible phase, the accuracy is controlled by a single
parameter that specifies the number of segments in the approximation of the flux function. This parameter is easy to choose and
gives good control over the spatial accuracy of the method. In the methods for two compressible phases (FT2 and FT3), one must
also specify a local time step. The size of this time step may have a significant impact on both the accuracy and the computational
time and more research is required before we can provide a strategy for making an optimal choice automatically.

For the simple 3-D simulations reported herein, we see that streamline tracing together with one of our front-tracking methods
eliminiates the cost of the transport step almost completely compared with the pressure step without any regularization of the
time-of-flight grid.
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Fig. 9—A synthetic case with three injectors and one producer.

Nomenclature
cr = rock compressibility
ci = phase compressibility
fi = fractional flow of phase i
f c = convexification of flux function f
~g = gravity vector
hi = compressible source term of phase i
K = absolute permeability
k = step length of internal steps
` = step number in sequential splitting
n = internal step number
n = number of linear segments in f c

p = pressure
qi = volumetric rate of phase i
rj = space-time ray in Riemann problem

Si = saturation of phase i or in gridblock i
si = node point in piecewise linear f c

t = time
~vt = total Darcy velocity
~vtg = short-hand, ~vtg = −λtK∇p
~x = spatial coordinate
∆t = step length of sequential splitting
η = streamline parameter for divergence-free vector field
λi = mobility of phase i
λt = total mobility
ρi = density of phase i
σ = volume factor to make ~v/σ divergence free
τ = time-of-flight
φ = porosity
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