
SPE 173317-MS

MRST-AD – an Open-Source Framework for Rapid Prototyping and
Evaluation of Reservoir Simulation Problems
Stein Krogstad, Knut–Andreas Lie, Olav Møyner, Halvor Møll Nilsen, Xavier Raynaud, Bård Skaflestad, SINTEF ICT.
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Abstract
We present MRST-AD, a free, open-source framework written as part of the Matlab Reservoir Simulation Toolbox and designed
to provide researchers with the means for rapid prototyping and experimentation for problems in reservoir simulation. The article
outlines the design principles and programming techniques used and explains in detail the implementation of a full-featured,
industry-standard black-oil model on unstructured grids. The resulting simulator has been thoroughly validated against a leading
commercial simulator on benchmarks from the SPE Comparative Solution Projects, as well as on a real-field model (Voador,
Brazil). We also show in detail how practitioners can easily extend the black-oil model with new constitutive relationships, or
additional features such as polymer flooding, thermal and reactive effects, and immediately benefit from existing functionality
such as constrained-pressure-residual (CPR) type preconditioning, sensitivities and adjoint-based gradients.

Technically, MRST-AD combines three key features: (i) a highly vectorized scripting language that enables the user to work
with high-level mathematical objects and continue to develop a program while it runs; (ii) a flexible grid structure that enables
simple construction of discrete differential operators; and (iii) automatic differentiation that ensures that no analytical derivatives
have to be programmed explicitly as long as the discrete flow equations and constitutive relationships are implemented as a
sequence of algebraic operations. We have implemented a modular, efficient framework for implementing and comparing different
physical models, discretizations, and solution strategies by combining imperative and object-oriented paradigms with functional
programming. The toolbox also offers additional features such as upscaling and grid coarsening, consistent discretizations,
multiscale solvers, flow diagnostics and interactive visualization.

Introduction
How can you reduce the time span from the moment you get a new idea to when you have demonstrated that it works well
for realistic reservoir engineering problems? This is the main question that will be discussed in this paper. Our premise is that
prototyping and validating new mathematical models and computational methods typically is painstakingly slow. There are many
reasons for this. The first is that there is often a disconnect between the mathematical abstractions used to express new ideas
and the constructs of the computer language used to realize the resulting computational algorithm. Typically, to achieve high
computational performance of your new algorithm you end up spending most of your time on a low level working with loops and
indices when working in a procedural language like FORTRAN or C. Languages like C++ offer powerful functionality that can
be used to make abstractions that are both flexible and computationally efficient and enable you to design your algorithms using
high-level mathematical constructs (e.g., like expression templates). However, in our experience these advanced features are
alien and unintuitive to researchers without extensive training in computer science. Even if you are familiar with such concepts
and have made a framework with sufficient flexibility, you still face the never-ending frustration caused by different versions of
compilers and (third-party) libraries that follow most compiled languages. All these problems are largely avoided by the use of a
multi-paradigm numerical environment and fourth-generation programming language like Matlab or Python. Moreover, scripting
languages enable the user to interactively analyse, change and extend data objects, include new features, while the program is
being run. This feature is essential in a debugging process, when one tries to understand why a given numerical method fails to
produce the results one excepts it to give. Altogether this enables a very versatile development process that is not easily matched
by any compiled language.

A second problem that may impede rapid prototyping of new ideas is that in many cases you need to include ideas and
algorithms developed by others to demonstrate the feasibility and validity of your own contribution. Unfortunately, there is often
a long leap from reading a paper presenting a new method to having it work as part of your own code. The focus of journal
papers is on novel scientific ideas rather than practical implementations. It is therefore quite common that authors unwittingly
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fail to report minor details, implementation choices, and parameter settings that are seemingly unimportant for the scientific idea
but turn out to be essential to get the method working in practice. As a result, you may end up spending endless hours trying to
reverse-engineering an algorithm, only to discover that you cannot use the results reported in the original paper to verify your
implementation because the numerical examples lack exact specification of parameters and underlying assumptions and therefore
only cannot be easily reproduced. This problem is currently addressed by the reproducible computational science, which tries to
bring out into the open the computer programs and the data that are required to reproduce the exact results discussed in a paper.

The third problem is that going from demonstrating the superiority of a new model or method on idealized, synthetic cases to
providing a proper validation on complex problems encountered in the daily work of reservoir engineers usually is a significant
undertaking. For real models, simulators include a large number of tests and branching, with adjustments which are necessary to
handle the variety and complexity of input data. If you want to validate your new ideas on realistic test cases and cannot (or will
not) use a commercial reservoir simulator, you typically end up spending a lot of time implementing functionality that has little
to do with your idea and often is not well described in the literature. Another problem is, of course, that it is usually quite difficult
for independent researchers to get access to good test problems that can be used to validate new ideas in realistic settings. Possible
solutions to these problems include creating open community codes that can be used to read and process industry-standard input
formats, as well as establishing repositories that provide open access to representative models and benchmark cases that cover a
wide range of physical settings.

Over the past decade, we have been consistently working on improving ways to speed up our development and validation cycle
for new models and algorithms. As a result of this, we have developed the Matlab Reservoir Simulation Toolbox (MRST 2014),
which is a toolbox for rapid prototyping of new models and computational methods written using the high-level Matlab scripting
language. To enable other researchers to leverage our work, MRST has been published as free open-source code since 2009 and
has been downloaded and used by hundreds of users worldwide. Obviously, the software does not solve all the problems outlined
above, but we think it is a good start. In the following we will therefore present some of the technical ideas that we believe may
be useful to others.

At a first glance, it may seem strange to use Matlab to develop simulation methods for complex 3D reservoir models. Our aim
with this paper is to hopefully convince the reader that this is not so. First of all, Matlab offers a vectorized syntax and a wide
range of mathematical functions that can be used to create very compact programs: In (Aarnes et al. 2007a) we demonstrated how
to write a two-phase, incompressible simulator on 3D, Cartesian grids in approximately fifty lines of code that mostly amounted
to setting model parameters and manipulating vectors and matrices using vectorized index operations. (See also (Alberty et al.
1999) for a similar demonstration for finite-element methods). Secondly, Matlab provides robust and efficient implementation of
a large number of numerical algorithms that are highly useful when developing new computational methods.

For small systems, an interpreted scripting language may introduce a significant computational overhead, but this is by far
out-weighted by the very flexible and efficient development process enabled by such a language. At any point in the execution
of a Matlab program, you can stop the program to inspect your data, modify their values, add or remove new fields in your
data structures1, introduce new data, execute any number of statements and function calls, and go back and reiterate parts of the
program, possibly with modified or additional data. Not only does this make debugging quite simple and efficient, but it also
enables you to dynamically develop your algorithm by modifying your code or adding new functionality as the algorithm is being
run. For large systems, most of the computational time should ideally be spent processing floating-point numbers and here Matlab
is surprisingly efficient and fully comparable with compiled languages. Using a single core on a standard workstation with 24
GiB of memory, we were, for instance, able to solve a single-phase pressure equation with slightly more than sixteen million grid
cells represented in a fully unstructured format within approximately one minute.

In this article we will outline and discuss how MRST can be used to simulate black-oil type models seen in industry-standard
reservoir simulation. Most commercial reservoir simulators are based on fully implicit formulations to ensure robustness over a
wide range of models and flow scenarios. We have implemented such formulations in our software using automatic differentiation
to compute the Jacobi matrices required for the nonlinear Newton-type solver. Combined with vectorization and suitable abstract
operators for spatial discretizations, this implies that models can be written in a compact form that is close to the corresponding
mathematical formulation. It is therefore simple to implement new models: you implement the model equations and then the
software generates the discretizations and linearizations needed to obtain a working simulator. The framework also includes
state-of-the-art methods for time-step control, preconditioning methods (CPR) and algebraic multigrid solvers for high numerical
efficiency, as well as support for reading and parsing industry-standard input decks describing the reservoir, the wells, and the
simulation schedule.

Quick Overview of the Software
The software consists of two parts, see Fig. 1. The relatively slim core module contains data structures and basic routines
necessary to set up, solve, and visualize incompressible single and two-phase models on structured and unstructured grids. Major
parts of the core module were first presented in (Lie et al. 2012), including data structures for representing grids, petrophysical
parameters, simple fluid models, wells, and boundary conditions along with a discussion of consistent discretizations on general
polyhedral grids. The same material is discussed more thoroughly by Lie (2014), who also explains how to use the functionality

1This is not possible in a compiled language unless you explicitly have told your program about the possible existence of such a data field upfront
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Fig. 1—Organization of the Matlab Reservoir Simulation Toolbox (MRST) into a core module that provides basic data
structures and simplified solvers, and a set of add-on modules offering more advanced models, solvers, viewers, and
workflow tools.

for automatic differentiation in MRST-core to implement nonlinear, single-phase pressure solvers and outlines various methods
for grid coarsening. Routines in MRST-core have been quite stable over many years and are generally well documented in a
format that follows the MATLAB standard.

The second part of the software consists of a set of add-on modules that extend, complement, and override existing features
from MRST-core, typically in the form of specialized or more advanced solvers like consistent discretizations (Lie et al. 2012;
Nilsen et al. 2012) or workflow tools like grid coarsening and standard methods for single and two-phase upscaling. Others
modules offer convenient functionality like reading and processing of industry-standard input decks, interactive visualization,
C-acceleration of selected routines from MRST-core, etc. These modules are robust, well-documented, and contain features
that are reasonably interoperable and will likely not change in future releases, and could therefore have been included in the core
module had we not decided to keep it as small as possible.

The remaining and workflow tools, on the other hand, are constantly changing to support ongoing research. This includes
methods for coarsening grids to adapt to geology and flow features (Aarnes et al. 2007b; Hauge and Aarnes 2009; Hauge et al.
2012; Lie et al. 2014a), upscaling methods (Raynaud et al. 2014; Hilden et al. 2014), and various multiscale methods including
mixed finite-elements (Aarnes et al. 2006, 2008; Alpak et al. 2012; Krogstad et al. 2012), finite-volume methods (Møyner and
Lie 2014a,b), and POD-based model reduction (Krogstad 2011). We also work on flow diagnostics methods (Møyner et al. 2014)
that can be used to establish connections and basic volume estimates and quickly provide a qualitative picture of the flow patterns
in the reservoir, methods for estimating trapping capacity and containment in geological CO2 storage (Andersen et al. 2014;
Lie et al. 2014b), and various adjoint formulations for production optimization (Krogstad et al. 2011; Raynaud et al. 2014). All
these modules are publicly available from the software’s webpage (MRST 2014). In addition, a few third-party modules have
also been developed, including a module for ensemble Kalman filter (EnKF) methods (Leeuwenburgh et al. 2011) and one for
discrete-fracture systems (Sandve et al. 2012).

MRST-core: Grids, Single-Phase Flow, and Vectorization
To understand the capability for rapid prototyping of fully-implicit simulators, we must first briefly explain the basic functionality
for grids and discretizations that is implemented in MRST-core. A much more thorough introduction can be found in (Lie 2014).

When working with grids that are more complex than simple box models–like the stratigraphic corner-point, PEBI, or cut-
cell formats seen in most contemporary field models–one needs to introduce some kind of data structure to represent the grid.
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In many simulators, the actual geometry grid is only seen by the preprocessor, which constructs a connection graph with cell
volumes and cell properties associated with the vertices and inter-cell transmissibilities and fluxes associated with the edges. In
our software, however, we have chosen to keep the grid and the petrophysical properties as fundamental and separate entities
that are present throughout the simulation. In particular, the grid object is passed as input to almost all solvers and visualization
routines. To ensure interoperability among a wide variety of different grid types and computational methods, we have chosen
to use a relatively rich format for the grid object. In this format, grids are assumed to consist of a set of matching polygonal
cells, which are represented using three fields: cells, faces, and nodes. Each of the nc cells corresponds to a subset of
the nf faces, and each face to a set of edges, which again are determined by the nodes. To define the topology of the grid,
we use two mappings. The first is given by F : {1, . . . , nc} → {0, 1}nf and maps a cell to the set of faces that delimit this
cell. In the grid structure G in MRST, this is represented as an array called G.cells.faces, in which the first column that
gives the cell numbers is not stored since it is redundant and instead must be computed by a call gridCellNo(G). The second
mapping brings you from a given face to the two neighboring cells, N1, N2 : {1, . . . , nf} → {0, . . . , nc}, where 0 has been
included to denote the exterior of the computational domain. In G, N1 is given by G.faces.neighbors(:,1) and N2

by G.faces.neighbors(:,2). The cell and face objects also contain geometrical properties like centroids, volumes,
areas, and normal vectors.

For many structured grid types, the grid object outlined above will obviously contain a lot of redundant information. However,
rather than simplifying the grid object in these cases by removing redundant information, we have chosen to extend the grid object
with extra information (like ijk or ik numbering) that can be exploited when present. Likewise, many algorithms involve the use
of grid coarsening. In MRST, all coarse grids are assumed to be partitions of an underlying fine grid, i.e., to be defined entirely
by a partition vector p whose element p(i) = j if fine cell i belongs to coarse block j. Coarse grids can be represented in the
same rich format as outlined above and used interchangeably with fine grids by most of the standard solvers in MRST. The grid
structure is discussed at length in (Lie 2014) along with detailed descriptions of how to construct such grids from an input file,
using one of the many grid-factory routines that come with the software, or by writing your own grid-generation script.

To implement computational algorithms on the grid, we use vectorized index operations in combination with the mappings
between cells and faces outline above. Conceptually, this may appear more complicated than writing for-loops based on explicit
counting in structured topographies. In our experience, however, the extra effort needed to understand these abstractions is by far
out-weighted by the advantage of being able to effortlessly switch between various grid formats. To be more specific, we consider
the following incompressible, single-phase flow problem

∇ · ~v = q, ~v = −K∇p, ~x ∈ Ω ⊂ R3, (1)

discretized by a standard two-point finite-volume approximation. Here, ~v is the Darcy velocity, K is the absolute permeability,
p is the fluid pressure, and q is a volumetric source. For brevity, we will not use a well model, assume that K is isotropic, and
only consider no-flow boundary conditions on ∂Ω. Fig. 2 highlights the essential parts of an implementation that is valid for 2D
polygonal and 3D polyhedral grids and shows the close correspondence between the mathematical description of the computa-
tional method and corresponding Matlab statements. Adding anisotropic effects and extending the pressure solver to multiple
phases is straightforward, but accounting for multipliers, wells, and general boundary conditions complicates the construction of
the discrete system. In MRST, the computation of one-sided transmissibilities and the assembly and solution of the discrete lin-
ear system are therefore implemented as two functions hT=computeTrans(G,rock) and state=incompTPFA(state,
G, hT, fluid), where state is a data object that contains the reservoir state (pressure, flux, saturation, etc) and fluid
is a data object that contains the fluid model (viscosity, density, relative permeability, etc). This type of imperative, vectorized
programming is used in all solvers that are part of the core module, as well as in all other incompressible solvers and simulators
that rely on a sequential splitting of flow and transport. In particular, our implementation of mimetic and MPFA discretizations
can be interfaced through similar functional calls.

Differential Operators and Automatic Differentiation
While the double-index notation Ti,k and Tik used above should be easy to comprehend, its usage becomes more involved when
we want to discretize more complex equations than the Poisson equation. We therefore introduce discrete operators div and
grad for the divergence and gradient operators, respectively, to enable us to write the discretized equations in almost the same
form as the continuous equations. The main advantage, however of introducing these operators is that they can be represented by
sparse matrices in Matlab and their action computed by efficient matrix-vector multiplications.

The div operator is a linear mapping from faces to cells. Let v ∈ Rnf denote a discrete flux and v[f ] its restriction onto face
f with orientation from N1(f) to N2(f). The divergence of the flux restricted to cell c is given as

div(v)[c] =
∑

f∈F (c)

v[f ]1{c=N1(f)} −
∑

f∈F (c)

v[f ]1{c=N2(f)}, (2)

where 1{expr} equals one when expr is true and zero otherwise. Likewise, the grad operator maps from cell pairs to faces and
restricted to face f it is defined as

grad(p)[f ] = p[N2(f)]− p[N1(f)], (3)
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Continuity + Darcy’s law:

∇ · ~v = q, ~v = −K∇p

written as a Poisson eq:

−∇ ·K∇p = q

Mathematical model

Ti,k = Ai,kKi
~ci,k · ~ni,k

|~ci,k|2

Tik = [T−1
i,k + T−1

k,i ]
−1

∑

k

Tik(pi − pk) = qi

Ki

Ai,k

Kk

~ni,k
~ci,k

Discretization

% Vectors c_{i,k}: cell centroid -> face centroid

hf = G.cells.faces(:,1);

hf2cn = gridCellNo(G);

C = G.faces.centroids(hf,:) - G.cells.centroids(hf2cn,:);

% Normal vectors n_{i,k}

sgn = 2*(hf2cn == G.faces.neighbors(hf, 1)) - 1;

N = bsxfun(@times, sgn, G.faces.normals(hf,:));

% One-sided transmissibilities, T_{i,k}

hT = ( C .* K(hf2cn) .* N ) ./ sum(C.*C,2);

% Transmissibilities, T_{ik}

Tr = 1 ./ accumarray(hf, 1 ./ hT, [G.faces.num, 1]);

% Diagonal of discretization matrix -

% compute sum(T_{i,k}) for k=interior faces

nc = G.cells.num;

N = G.faces.neighbors;

k = all(N~=,2);

N = N(k, :); Tr = Tr(k);

d = accumarray([N(:,1); N(:,2)],...

repmat(Tr, [2,1]), [nc,1]);

% Build sparse matrix and solve system

I = [N(:,1); N(:,2); (1:nc)'];

J = [N(:,2); N(:,1); (1:nc)'];

V = [-Tr; -Tr; d];

A = sparse(double(I), double(J), V, nc, nc);

p = mldivide(A, q);

MRST code

G =
cells [1x1 struct]

faces [1x1 struct]

nodes [1x1 struct]

griddim: 2

Grid

Fig. 2—Implementation of a two-point scheme for single-phase, incompressible flow using imperative programming. In
the grid, the faces Ai,k are referred to as half faces since they are associated with a particular grid cell Ki and a normal
vector ~ni,k. Because the grid is matching, each interior half face will have a twin half faceAk,i with identical area but oppo-
site normal vector ~nk,i = −~ni,k. The array G.cells.faces maps from cells to half faces, whereas G.faces.neighbors
maps each face to two unique cell indices (one of the two is zero for a boundary face). Finally, the Matlab function
accumarray(subs,val) is used in lieu of a for-loop and collects and sums all elements of val that correspond to
identical values of subs.

for any p ∈ Rnc . If we let T [f ] denote the transmissibility of face f , we can then write the discrete version of Eq. 1 as

div(v) = q, v = −Tgrad(p). (4)

To demonstrate the utility of this abstraction, we consider a compressible single-phase pressure equation

∂

∂t
(φρ) +∇ · (ρ~v) = q, ~v = −K

µ
(∇p− gρ∇z) . (5)

The primary unknown is the fluid pressure p and additional equations are supplied to provide relations between p and the other
quantities, e.g., by specifying the porosity φ = φ(p) as a function of p and an equation-of-state ρ = ρ(p) for the density of
the fluid. The fluid viscosity µ is assumed to be constant. Using the discrete operators introduced above, the basic implicit
discretization of Eq. 5 reads,

(φρ)n+1 − (φρ)n

∆tn
+ div(ρv)n+1 = qn+1,

vn+1 = −K
µ

[
grad(pn+1)− gρn+1grad(z)

]
.

(6)

Here, φ ∈ Rnc denotes the vector porosity values per cell, v the vector of fluxes per face, and so on, and the superscript refers
to discrete times at which one wishes to compute the unknown reservoir states and ∆t denotes the time between two consecutive
points in time.

When φ and ρ depend nonlinearly on p, we obtain a (highly) nonlinear system of equations that needs to be solved at each
time step

G(pn+1; pn) = 0. (7)

Nonlinear systems of discrete equations arising from the discretization of (partial) differential equations are typically solved by
Newton’s method, which reads

∂G(pi)

∂pi
δpi+1 = −G(pi), pi+1 ← pi + δpi+1. (8)

Here, J(pi) = ∂G(pi)/∂pi is the Jacobian matrix, while we refer to δpi+1 as the Newton update at iteration step number i+ 1.
The Newton process will under certain smoothness and differentiability requirements exhibit quadratic convergence, provided
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that one can obtain a sufficiently accurate Jacobian matrix. If G represents a set of complex equations, analytical derivation and
subsequent implementation of the Jacobian can be both time-consuming and highly error prone and is often a bottleneck when
implementing new mathematical models. Moreover, when you implement a new model or develop a new simulation algorithm,
you will often want to experiment with different linearizations, i.e., vary which quantities are evaluated at step n and which are
considered unknown at step n+ 1.

Automatic or algorithmic differentiation (Neidinger 2010) is a technique that exploits the fact that any computer code, re-
gardless of complexity, can be broken down to a limited set of arithmetic operations and evaluation of simple functions. The
key idea is to keep track of variables and their derivatives simultaneously; every time an operation is applied to a variable, the
appropriate differential operation is applied to its derivative. Consider a scalar primary variable x and a function f = f(x), whose
AD-representations are the pairs 〈x, 1〉 and 〈f, fx〉, where fx is the derivative of f with respect to x. We now define the action of
elementary operations and functions for all such pairs. As an example, addition and multiplication become

〈f, fx〉+ 〈g, gx〉 = 〈f + g, fx + gx〉 ,
〈f, fx〉 ∗ 〈g, gx〉 = 〈fg, fgx + fxg〉 .

In addition, one needs to use the chain rule to accumulate derivatives: if f(x) = g(h(x)), then fx(x) = dg
dhhx(x). To implement

AD in Matlab, we will use operator overloading. When Matlab encounters an expression of the form a+b, the software will
choose one out of several different addition functions depending on the data types of a and b. All we therefore have to do is to
introduce new addition functions for the various classes of data types that a and b may belong to. A nice introduction to how this
is done is given by Neidinger (2010).

The idea of using automatic differentiation to develop reservoir simulators is not new. This technique was introduced in an
early version of the commercial Intersect simulator (DeBaun et al. 2005), but has mainly been pioneered through a reimplemen-
tation of the GPRS research simulator (Cao 2002). The new simulator, called AD-GPRS is primarily based on fully implicit
formulations (Voskov et al. 2009; Zhou et al. 2011; Voskov and Tchelepi 2012) in which independent variables and residual
equations are AD structures implemented using ADETL, a library for forward-mode AD realized by expression templates in
C++ (Younis and Aziz 2007; Younis 2009). This way, the Jacobi matrices needed in the nonlinear Newton-type iterations can
be constructed from the derivatives that are implicitly computed from when evaluating the residual equations. In (Li and Zhang
2014), the authors discuss how to use the alternative backward-mode differentiation to improve computational efficiency.

Automatic differentiation in MRST is implemented using operator-overloading in user-defined classes and relies on a rela-
tively simple forward accumulation. The implementation differs from other libraries in a subtle, but important way. Instead of
working with a single Jacobian of the full discrete system as one matrix, we use a list of matrices that represent the derivatives
with respect to different variables that will constitute sub-blocks in the Jacobian of the full system. The reason for this is two-
fold: computational performance and user utility. A reservoir simulation model will in most cases consist of several equations
(continuum equations, Darcy’s law, equations of state, other constitutive relationships, control equations for wells, etc) that have
different characteristics and play different roles in the overall equation system. Although we are using fully implicit discretiza-
tions in which one seeks to solve for all state variables simultaneously, we may still want to manipulate parts of the full equation
system that e.g., represent specific sub-equations. This is not practical if the Jacobian of the system is represented as a single
matrix; manipulating subsets of large sparse matrices is currently not very efficient in MATLAB and keeping track of the neces-
sary index sets may also be quite cumbersome from a user’s point-of-view. Accordingly, the derivatives with respect to different
primary variables are represented as a list of matrices.

Automatic differentiation introduces a whole new set of function calls that are not executed if one only wants to evaluate a
mathematical expression and not find its derivatives. Moreover, user-defined classes are fairly new in MATLAB and there is still
some overhead in using class objects and accessing their properties compared to the built-in struct-class. The reason why AD
still pays off in most examples, is that the cost of generating derivatives is typically much smaller than the cost of the solution
algorithms they will be used in, in particular when working with equations systems consisting of large sparse matrices with more
than one row per cell in the computational grid. A word of caution at the end: while for-loops in many cases will be quite
efficient in Matlab (contrary to what is common belief), one should try to avoid loops that call AD for scalars and short arrays.
Our AD class has been designed to work on long vectors and lists of (sparse) Jacobian matrices and has not been optimized for
scalar variables. As a result, there is considerable overhead when working with small AD objects.

We now have all the necessary tools to implement a fully-implicit simulator for the nonlinear pressure equation Eq. 5. Fig. 3
highlights the key parts of the implementation: creation of discrete operators, specification of constitutive functions, specification
of discrete equations, and setup and solution of the linearized system inside the time loop. Wells are described using a standard
Peaceman type well model. Notice that the control on the bottom-hole pressure is imposed as a separate equation. A complete
example, including all code lines necessary to generate grid, petrophysical parameters, and well positions, is given in (Lie 2014).

The observant reader will notice that we tacitly have extended our programming model by using anonymous functions to
compute constitutive relationships and evaluate the residual form of the discrete equations. An anonymous function is a function
that is not stored in a program file, but is associated with a variable of type function handle. Anonymous functions can accept
inputs and return outputs, just as standard functions, but can contain only a single executable statement. Such functions are used
a lot in MRST, e.g., to define a new function h(x,w) if you have a function f(x, y, z, w, . . . ) and only x and w varies in your
algorithm.
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cr = 1e-6/barsa;

pr = 200*barsa;

pvr = poreVolume(G, rock);

pv = @(p) pvr .* exp( cr * (p - pr) );

:

rho = @(p) rhor .* exp( c * (p - pr) );

Constitutive laws

z = G.cells.centroids(:,3);

g = norm(gravity);

veq = ode23(@(z,p) g.*rho(p),[0, max(z)],pr);

pin = reshape(deval(veq, z), [], 1);

Initialization

n = size(N,1);

C = sparse([(1:n)'; (1:n)'], N, ...

ones(n,1)*[-1 1], n, G.cells.num);

grad = @(x) C*x;

div = @(x) -C'*x;

avg = @(x) 0.5*(x(N(:,1)) + x(N(:,2)));

Discrete operators

dz = grad(z);

v = @(p) -(Tr/mu).*(grad(p) - g*avg(rho(p)).*dz);

pEq = @(p,p0,dt) (1/dt)*(pv(p).*rho(p) - pv(p0).*rho(p0)) ...

+ div( avg(rho(p)).*v(p) );

Pressure equation

wc = W(1).cells; % connection grid cells

WI = W(1).WI; % well-indices

dz = W(1).dZ; % depth relative to bottom-hole

pcon = @(bhp) bhp + g*dz.*rho(bhp); %connection pressures

qcon = @(p,bhp) WI .* (rho(p(wc))/mu).*(pcon(bhp) - p(wc));

rEq = @(p, bhp, qS) qS - sum(qcon(p, bhp))/rhoS;

cEq = @(bhp) bhp - 100*barsa;

Well equations

[p, bhp, qS] = initVariablesADI(pin, pin(wc(1))),0);

[pIx, bIx, qIx] = deal(1:nc, nc+1, nc+2);

t = 0;

while t < totTime,

t = t + dt;

resNorm = 1e99;

p0 = double(p);

nit = 0;

while (resNorm > tol) && (nit <= maxits)

eq1 = pEq(p, p0, dt);

eq1(wc) = eq1(wc) - qcon(p, bhp);

eqs = {eq1, rEq(p, bhp, qS), cEq(bhp)};

eq = cat(eqs{:});

J = eq.jac{1};

upd = - (J \ eq.val);

p.val = p.val + upd(pIx);

bhp.val = bhp.val + upd(bIx);

qS.val = qS.val + upd(qIx);

resNorm = norm(eq.val);

nit = nit + 1;

end

end

Time loop

Fig. 3—Implementation of a two-point scheme to solve single-phase compressible flow using discrete differential opera-
tors, automatic differentiation, and a combination of imperative and functional programming. Refer to Fig. 2 for definition
of grid mappings, transmissibility calculation, etc.

mu = @(p) mu0*(1+c_mu*(p-pr));

v = @(p) -(T./mu(avg(p))).*(grad(p) - g*avg(rho(p)).*dz);

qcon = @(p,bhp) WI.*(rho(p(wc))./mu(p(wc))).*(pcon(bhp)-p(wc));

Arithmetic

hf2f = sparse( double(hf), (1:numel(hf2cn))', 1);

hf2if = hf2f(all(N~=0,2), :);

fmob = @(mu, p) 1./( hf2if*(mu(p(hf2cn))./hT) );

v = @(p) -fmob(mu,p).*(grad(p) - g*avg(rho(p)).*dz);

Harmonic

Fig. 4—Arithmetic and harmonic averaging of a pressure-dependent viscosity for a compressible, single-phase flow
equation. The minor extensions of the code shown in Fig. 3 are marked in red.

Rapid Prototyping
The main advantage of using abstract operators and automatic differentiation, as seen in the previous section, is that it localizes
the implementation of the discrete model equations and that one avoids having to compute the various components of the Jacobian
matrix by hand. This means that it is quite simple to extend the flow models with more physical effects, as we will see next.

Pressure-dependent viscosity. In the model discussed above, the viscosity was assumed to be constant, but it the general case
it will increase with pressure, which may induce significant effects inside the reservoir. As an example, we consider a linear
relationship, µ(p) = µ0[1 + cµ(p − pr)]. This requires changes in two parts of our discretization: the approximation of the
Darcy flux across cell faces and the flow rate through a well connection. For the latter, we simply evaluate the viscosity using the
pressure that was used to evaluate the density. For the Darcy flux, we have two choices: either use a simple arithmetic average,
or replace the quotient of the transmissibility and the face viscosity by the harmonic average of the mobility λ = K/µ in the
adjacent cells. Both choices will lead to changes in the structure of the discrete nonlinear system. However, because we are using
automatic differentiation, all we have to do is to reimplement the evaluation of the discrete equations as shown in Fig. 4. Here,
hf2if represents a map from half faces with which the one-sided transmissibilities are associated to faces that are shared by two
cells. Hence, premultiplying a vector of half-face quantities by hf2if amounts to summing the contributions from cells N1(f)
and N2(f) for each face f . And this is it! You do not need to think of deriving a new Jacobi matrix–this is taken care of by
automatic differentiation.

Thermal effects. As another example of rapid prototyping, we will extend the simple single-phase, compressible flow model
Eq. 5 introduced above to account for thermal effects. That is, we extend our model to also include conservation on energy,

∂

∂t

[
φρ(p, T )

]
+∇ ·

[
ρ(p, T )~v

]
= q, ~v = − K

µ(p, T )

[
∇p− gρ(p, T )∇z

]

∂

∂t

[
φρ(p, T )Ef (p, t) + (1− φ)Er(p, T )

]
+∇ ·

[
ρ(p, T )Hf (p, T )~v

]
−∇ ·

[
κ∇T

]
= qe

(9)

Here, the rock and the fluid are assumed to be in local thermal equilibrium, and T is temperature, Ef is the energy density per
mass of the fluid, Hf = Ef + p/ρ is the enthalpy density per mass, Er is the energy per volume of the rock, and κ is the heat
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pvr = poreVolume(G, rock);

pv = @(p) pvr .* exp( cr * (p - pr) );

spv = @(p) G.cells.volumes - pv(p);

:

rho = @(p,T) rhor.*(1+(cp*(p - pr))).*exp(-ct*(T-Tr));

mu = @(p,T) mu0*(1+cmup*(p-p_r)).*exp(-cmut*(T-T_r));

:

Hf = @(p,T) Cw*T + (1-Tr*ct).*(p-pr)./rho(p,T);

Ef = @(p,T) Hf(p,T) - p./rho(p,T);

Er = @(T) Cr*T;

:

upw = @(x,flag) x(N(:,1)).*double(flag) ...

+ x(N(:,2)).*double(~flag);

Constitutive laws and operators

v = @(p,T) -(Tr./mu(avg(p),avg(T))) ...

.*( grad(p) - g*avg(rho(p,T)).*dz );

pEq = @(p,T, p0, T0, dt) ...

(1/dt)*(pv(p).*rho(p,T) - pv(p0).*rho(p0,T0)) ...

+ div( avg(rho(p,T)).*v(p,T) );

hEq = @(p, T, p0, T0, dt) ...

(1/dt)*( pv(p).*rho(p,T).*Ef(p,T) + spv(p).*Er(T)

- pv(p0).*rho(p0,T0).*Ef(p0,T0) - spv(p0).*Er(T0)) ...

+ div( upw(Hf(p,T),v(p,T)>0).*avg(rho(p,T)).*v(p,T) )...

+ div( -Th.*grad(T));

Discrete equations

Fig. 5—Excerpts of the code necessary to extend the two-point simulator outlined in Fig. 3 to account for thermal ef-
fects. The transmissibility Th for the heat conductivity is computed in exact the same way as shown in Fig. 2 the rock
transmissibility Tr with the permeability K replaced by the heat conductivity coefficient κ.

conduction coefficient of the rock. The primary variables are the fluid pressure and the temperature. We do not discuss the details
of the new constitutive relationships except for noting that it is important that the thermal potentials Ef and Hf are consistent
with the equation-of-state ρ(p, T ) to get physically meaningful solutions.

To extend the simulator outlined in Fig. 3, we need to modify ρ, µ, and the existing discrete equations to include temperature
dependence and introduce Ef , Er, and Hf as anonymous functions and develop a discretization of the second conservation
equation in Eq. 9. The accumulation and the heat-conduction terms are discretized in the same was as for the first conservation
equation. For the second term, however, we need to introduce an upwind evaluation of the enthalpy density,

upw(Hf )[f ] =

{
Hf [N1(f)], if v[f ] > 0,

Hf [N2(f)], otherwise.
(10)

Fig. 5 shows key parts of the corresponding code. In addition, there are trivial changes to the iteration loop to declare the correct
variables as AD structures, evaluate the discrete equations and collect their residuals, and update the state variables. One must
also make sure that heat sources are evaluated correctly for injection and production wells. These details, however, have been left
out for brevity.

The observant reader will quickly realize that the code excerpts shown in Fig. 5 contains a number of redundant function
evaluations: In each nonlinear iteration we keep re-valuating quantities that depend on p0 and T0 even though these stay constant
for each time step. This can easily be avoided by moving the definition of the anonymous functions that evaluate the residual
equations inside the outer time loop, see Fig. 3. Because each residual equation is defined as an anonymous function, we also
observe that v(p,T) will be evaluated three times for each residual evaluation, once in pEq and twice in hEq, which means that
mu(avg(p),avg(T)) is evaluated three times and rho(p,T) is evaluated seven times, and so on. To cure this problem, we
can move the computations of residuals inside a function in which the constitutive relationships can be computed one by one and
stored in temporary variables, as discussed in the next section. The disadvantage is that we increase the complexity of the code
and move one step away from the mathematical formulas describing the method. This type of optimization should therefore only
be introduced after the code has been profiled and redundant function evaluations have proved to have a significant computational
cost.

Black-oil Type Models: Object-Orientation
The techniques outlined above are basically all you need to efficiently implement fully-implicit simulators. The most widely used
fluid model in reservoir simulation is the black-oil family, which contains three components and the three phases water, oil, and
gas. The black-oil equations can be written on the form

∂t(φboso) +∇ · (bo~vo)− boqo = 0,

∂t(φbwsw) +∇ · (bw~vw)− bwqw = 0,

∂t[φ(bgsg + borsso)] +∇ · (bg~vg + bors~vo)− (bgqg + borsqo) = 0,

~vα = −(krα/µα)K(∇pα − ραg∇z), α = o, w, g.

(11)

Here, sα denotes the saturation, pα the phase pressure, bα the inverse formation volume factor (ratio between volume at elevated
pressure and volume at surface conditions), krα is the relative permeability, and µα the viscosity of phase α. The gas is miscible
in oil and the gas-oil ratio rs for a saturated oil is a function of pressure. The formation volume factor and the viscosity of oil
depend on pressure and the gas-oil ratio.
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% N: interior faces -> adjacent cells

% Average at face

M = sparse((1:nf)'*[1 1],N,.5*ones(nf,2),nf,nc);

S.faceAvg = @(x) M*x;

% Div and grad

C = sparse([(1:nf)'; (1:nf)'], N, ...

ones(nf,1)*[1 -1], nf, G.cells.num);

S.Grad = @(x) -C*x;

S.Div = @(x) C'*x;

% Upstream weighting

S.faceUpstr = @(flag, x) faceUpstr(flag, x, N, [nf, nc]);

function xu = faceUpstr(flag, x, N, sz)

upCell = N(:,2);

upCell(flag) = N(flag,1);

xu = sparse((1:sz(1))', upCell, 1, sz(1), sz(2))*x;

Operators

function [eqs,..] = eqsfiOW(state0, state, ..)

p = state.pressure; sW = state.s(:,1); % unknowns

p0 = state0.pressure; sW0 = state0.s(:,1); % previous step

:

% water properties (evaluated using oil pressure)

[krW, krO, krG] = f.relPerm(sW);

bW = f.bW(p);

rhoW = bW .* f.rhoWS;

rhoWf= S.faceAvg(rhoW);

mobW = f.tranMultR(p) .* krW ./ f.muW(p);

% upstream weighting

gdz = S.Grad(G.cells.centroids)*grav';

dpW = S.Grad(p - f.pcOW(sW)) - rhoWf.*gdz;

upc = (double(dpW) <= 0);

bWvW = -S.faceUpstr(upc, bW.*mobW) .* S.T .* dpW;

% discrete equation

eq{2} = S.Div(bWvW) + (S.pv/dt) ...

.*(f.pvMultR(p).*bW.*sW - f.pvMult(p0).*f.bW(p0).*sW0 );

Discrete equations

Fig. 6—Discrete operators and discretization of the water equation for a black-oil model that uses oil pressure, water and
gas saturations as primary unknowns. For brevity, the implementation of well equations is not included and certain parts
of the code has been slightly modified for pedagogical purposes.

Discrete flow equations. For brevity, we only discretize the equation for the water phase; the oil and gas equations follow the
same pattern, except for the obvious modifications. Using the abstract operators introduced above and dropping subscripts for
simplicity, the discrete water equations read,

1

∆t

(
φ(p[c]) b(p[c]) s[c]

)n+1

− 1

∆t

(
φ(p[c]) b(p[c]) s[c]

)n
+ div(v)[c]n+1 − (bq)[c]

)n+1
= 0,

v[f ] = −upw(λ)[f ]T [f ]
(
grad(p− powc )[f ]− g avg(ρ)[f ]grad(z)[f ]

)
.

(12)

Here, λ = bkr/µ and powc = pw − po is the capillary pressure between the water and the oil phase, whereas avg(p)[f ] denotes
a face-valued pressure computed as the arithmetic average of the pressures in the two adjacent cells. Finally, upw is the phase-
upwind function,

upw(λ)[f ] =

{
λ[N1(f)], if grad(p− powc )[f ]− g avg(ρ)[f ]grad(z)[f ] > 0,

λ[N2(f)], otherwise.
(13)

Fig. 6 outlines how this discretization is implemented using MRST-AD. Here, the single-phase transmissibility and the definition
of operators for discrete derivatives, face and cell averages, and upstream weighting have all been collected in a special structure S
along with a few other quantities like the pore volume at reference pressure. Likewise, all functions that are used to evaluate fluid
properties like the phase densities, viscosities, formation-volume factors, and relative permeabilities have been collected in an
object f. This object is usually called the fluid object, but for convenience it may also contains other constitutive relationships like
the pressure-dependent transmissibility multiplier f.tranMultR and the multiplier f.pvMultR used to account for pressure
variations in the pore volume S.pv. MRST has several fluid models that are either hand-coded, based on analytic expressions,
or auto-generated from industry-standard input decks. These objects can be passed on to the black-oil code outlined above
and modified and extended if necessary without changing the discretized equations. However, if you change the functional
dependencies so that properties depend on new primary variables, these changes must obviously also be implemented in the
discrete equations in Fig. 6, e.g., as shown in the previous section. In either cases, any changes in the linearized equations will
be accounted for automatically by the AD-class which ensures that the correct Jacobian is computed as long as all constitutive
relationships are expressed by arithmetic operations. If not, you can still make your constitutive relationships AD-compatible by
making sure that they output the correct derivatives when called with AD-variables.

Nonlinear and linear solvers. In the single-phase simulator shown in Fig. 3, the nonlinear solver and the loop used to evolved
the solution in time were very simple. Industry-standard black-oil models require a much more complicated setup. First of all,
the input deck will in most cases describe a simulation schedule that be considered to consist of a sequence of well controls that
each are active for a certain time period. The simulator may sometimes be able to compute a control period in a single time step,
but in most cases the period needs to be subdivided into several local steps to ensure a stable and reasonably accurate solution.
This is typically done by reducing the time step if the Newton solver does not converge within a prescribed number of iterations.
The Newton step may also need some kind of regularization; we use a dampening factor when repeated steps do not decrease
the residuals. For small systems (a few thousand cells), the linearized system inside the Newton loop can be efficiently solved
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Fig. 7—Illustration of the structure of the linearized black-oil equations and all the different sub-Jacobians that make up
the overall linear system for a problem with two wells.

using direct sparse methods, while for larger systems an iterative approach is appropriate. In MRST, the current option is a CPR-
preconditioned GMRES method. Our block representation of Jacobians is well suited for efficient and compact implementation
of CPR-type preconditioners and for elimination of variables. To illustrate, in Fig. 7 we have plotted the sparsity pattern of the
Jacobian for a black-oil system containing two wells. In all, there are seven systems of equations; the three reservoir equations
(Eq. 11), three equations setting the well surface rates to the sum of the perforation contributions, and finally, the control equation
ensuring that each well operates under the prescribed control (bottom-hole pressure, surface rate, etc). Similarly, there are seven
primary vector-variables: reservoir oil pressure, water saturation, gas saturation or gas-oil ratio (depending on the state of the
grid-cell), surface rates for each of the three components, and finally the bottom-hole pressures in the wells. Accordingly, for
example the block at position (3, 2) is the partial derivative of the discretized gas-equation with respect to the water saturation
variables, i.e., ∂Eg/∂sw. When MRST encounters a linear system of this form, the solution procedure proceeds as follows:

1. Eliminate the well rate and bottom-hole pressure variables resulting in a system Jx = b, where J consists of 3× 3 blocks
J(m,n), m,n = 1, 2, 3, and x consists of the pressure and saturation variables. For standard well models only inversion
of diagonal matrices are needed in this process.

2. Set the first block-row in the system equal to the sum of the three block-rows, i.e., J(1,m) =
∑
n J(n,m). The purpose

of this is that J(1, 1) should resemble a pressure equation and become close to elliptic. In summing the equations we leave
out rows that may harm the desired diagonal dominance in J(1, 1). The logic used for this is adopted from Gries et al.
(2014).

3. Set up the two-stage preconditioner M−1
2 M−1

1 :

(a) The first preconditionerM−1
1 is set up to solve the near elliptic subsystem J(1, 1)δpi+1 = −rip to obtain the pressure

update δpi+1. For large systems an algebraic multigrid solver is preferable.

(b) The second preconditioner M−1
2 is based on an incomplete LU-decomposition LU ≈ J of the full system, and is set

up to perform a variable update δxi+1 on the full set of variables by solving LUδxi+1 = −rix.

4. Solve the full system with GMRES using M−1
2 M−1

1 as preconditioner.

5. Recover rate and bottom-hole pressure variables.

When using AMG for the pressure system, it is vital that this system indeed is close to elliptic. We have explored several CPR-
versions, but by far the most robust and simple in our experience is the one proposed by Gries et al. (2014). In addition, the above
approach is straight forward to generalize when additional variables (e.g., temperature, polymer) and equations are added to the
system.

Object-oriented AD simulators. Originally, the AD simulators in MRST were written explicitly for the purpose of production
optimization using field models with black-oil fluid properties (Raynaud et al. 2014). These were over time extended to a
wide variety of other physical models including EOR options like polymer and surfactant (Jørgensen 2013; Hilden et al. 2014),
geochemical effects, thermal effects, and vertical equilibrium models for geological CO2 storage (Nilsen et al. 2014b,a). In the
process, however, the code became unwieldy to work with and included a wide variety of options that only were applicable to
certain physical models. On the other hand, we also observed that a lot functionality is quite generic and can be reused from
one simulator to another with no or few modifications. We therefore decided to separate the implementation of physical models,
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[x, t ] = initializeSolution(deck)
while t < T

[∆T , ctrl]=getControl(t)
τ = 0
while τ < ∆T

do
[∆t, . . . ] = getTimeStep(. . . )
[ok, τ , . . . ] = solveMinistep(t+ τ , ∆t, . . . )

while ok=false
end

end

Main loop

[res, J, . . . ] = getEqs(t+ τ , . . . )
xit = x
while res < tol & it < itmax

lsys = assembleLinSys(res, J, . . . )
lsol = setupLinSolver(x, lsys, . . . )
upd = solveLinSys(x, lsys, lsol, . . . )
upd = stabilizeStep(x, upd, lsys, . . . )
xit = updateIterate(upd, . . . )
cleanupLinSolver(lsol)
[res, J ] = getEqs(t+ τ , . . . )

end
if it ≤ itmax

ok = true
[τ , x, . . . ] = updateSolution(xit)

else
ok = false

end

solveMinistep

Context:
physical model and reservoir state
nonlinear solver and time loop
linearization of discrete equations
linear solver

Fig. 8—The time-loop of a fully-implicit simulator organized into specific numerical contexts: physical model and updates
to reservoir state, nonlinear iteration, linearization of model equations, linear solver, etc.

Primary vars

[Res, Jac], info Assemble: Ax = b

δx

Update variables:
p← p + δp, s← s + δs, ...

Initial ministep:
∆t

Adjusted:
∆t̃

Write to storage

3D
visu

aliza
tio

n

Well curves

State(Ti), ∆Ti,
Controls(Ci)

State(Ti + ∆Ti)

Type color legend

Class

Struct

Function(s)

Initial state

Physical model

Schedule

Steps

Timestep and control numbers
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Solve simulation schedule com-
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simulateScheduleAD,

computeGradientAdjointAD,
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SimpleTimeStepSelector,
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Visualization
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plotCellData, plotToolbar,

plotWellSols, ...
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Primary variables: p, s, T, ...
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Well data: qW, qO, qG, bhp, ...

Physical model

Defines mathematical model: Residual
equations, Jacobians, limits on
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ThreePhaseOilWaterModel,
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Solve linearized prob-
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BackslashSolverAD, AGMGSolverAD,

CPRSolverAD, MultiscaleSolverAD, ...

Fig. 9—The different components that make up an AD simulator colorized by the type of the corresponding construct
(class, struct, or function). Notice, in particular, how the nonlinear solver uses multiple components to solve each mini-
step on behalf of the simulator function.

discrete operators, discretizations, nonlinear solver and time-stepping, and assembly and solution of the linear system, and only
expose the details that are needed within each of these contexts. As a result, the entire framework was rewritten from the ground
up using an object oriented model. During the design phase, we emphasized separating the nonlinear solution process from the
underlying physical models so that the advances in solver technology can immediately be put to use for novel physical models.

Fig. 8 summarizes how the time-loop of a fully-implicit simulator can be organized into numerical contexts that focus on
specific parts of the overall algorithm, whereas Fig. 9 gives more details how these are realized using components that represent
different constructs. For the AD-framework, there is a distinction between the main classes and the helper classes. The main
classes are the nonlinear solver class that implements the Newton solver, the physical model class that implements the discrete
model equations and rules for how to updated the physical state based on increments computed by the nonlinear solver, and the
linear solver class that solves the linearized discrete problems. The other classes serve to enhance the main classes in different
ways. For instance, by itself the nonlinear solver only cuts time steps when the nonlinear iteration count exceeds some threshold,
but if it is enhanced with a time-step controller, the time steps can also be dynamically adjusted to obtain the desired accuracy and
solution speed. In much the same way the reservoir-model class can use a well-model class to assemble complex well-control
equations for multi-segmented wells with for example both bottom-hole pressure and liquid-rate controls.

The advantage of this level of separation between components is that it enables researchers to focus on the part they are
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classdef OWModel < ReservoirModel

methods

function model = OWModel(G, rock, fluid)

model = model@ReservoirModel(G, rock, fluid);

model.oil = true;

model.gas = false;

model.water = true;

model.saturationVarNames = {'sw', 'so'};

model = model.setupOperators(G, rock);

end

function [problem, state] = getEquations(..)

[problem, state] = equationsOilWater(..);

end

function [fn, index] = getVariableField(model, name)

switch(lower(name))

case {'sw', 'so'}

index = model.satVarIndex(name);

fn = 's';

case {'s', 'saturation'}

index = 1:numel(model.saturationVarNames);

fn = 's';

case {'pressure', 'p'}

index = 1;

fn = 'pressure';

...

end

end

end

Oil water model classdef PolymerOWModel < OWModel

methods

...

function [problem, state] = getEquations(..)

[problem, state] = equationsOilWaterPolymer(..);

end

function [state, report] = updateState(..)

[state, report] = updateState@OWModel(..);

c = model.getProp(state, 'polymer');

c = min(c, model.fluid.cmax);

state = model.setProp(state, 'c', max(c, 0));

end

function [fn, index] = getVariableField(model, name)

switch(lower(name))

case 'c'

index = 1;

fn = 'c';

case 'cmax'

index = 1;

fn = 'cmax';

otherwise

[fn, index] = ...

getVariableField@OWModel(model, name);

end

end

function state = updateAfterConvergence(state, varargin)

% Hysteresis-like polymer effect

state = updateAfterConvergence@OWModel(state);

[c, cmax] = model.getProp(state, 'c', 'cmax');

state = model.setProp(state, 'cmax', max(cmax, c));

end

Modified model

% unknowns: p, sW, c

% previous step: p0, sW0, C0, cmax

% polymer viscosity modifier

cbar = c/f.cmax;

a = f.muWMult(f.cmax).^(1-mixpar);

b = 1./(1-cbar+cbar./a);

permRed = 1 + ((f.rrf-1)./f.adsMax).*effads(c, cmax, f);

muWmult = b.*permRed.*f.muWMult(c).^mixpar;

% water properties

[krW, krO, krG] = f.relPerm(sW);

:

muW = f.muW(p);

mobW = f.tranMultR(p) .* krW ./(muWmult*muW);

% polymer properties

mobP = (mobW.*c)./(a + (1-a)*cbar);

% upstream weighting

:

bWvW = -S.faceUpstr(upc, bW.*mobW) .* S.T .* dpW;

bWvp = -S.faceUpstr(upc, bW.*mobP) .* S.T .* dpW;

% discrete equation for aqua phase

eq{2} = S.Div(bWvP) + (S.pv/dt) ...

.*(f.pvMultR(p).*bW.*sW - f.pvMult(p0).*f.bW(p0).*sW0);

% discrete equation for polymer component

eq{3} = S.Div(bWvW) + (S.pv/dt) .* (...

f.pvMultR(p).*bW.*sW.*Cp - f.pvMult(p0).*f.bW(p0).*sW0.*Cp0 ...

+ f.rhoR.*((1-poro)./poro).* ...

( effads(c, cmax, f) - effads(c0, cmax0, f) ) );

Discrete equations

Fig. 10—The implementation of a simple polymer model by modifying the existing oil/water model, whose discrete oper-
ators and flow equations for the water phase were outlined in Fig. 6.

interested in. When prototyping a novel physical model, there is in many cases no need to reimplement features of the nonlinear
solver just because the model equations change. Likewise, anyone interested in prototyping advanced linear solvers can easily
test them on a wide variety of problems without any knowledge of how these models are implemented. To illustrate this process
of rapid prototyping, we will demonstrate how an existing two-phase, compressible model can be extended with a simple polymer
model.

A simple polymer model. The polymer model considered here is simplified from the implementation in MRST for pedagogical
reasons. The purpose here is to show a process in which an existing model is extended by an additional component conservation
equation that alters the properties of the water phase and introduces a hysteretic behavior. The polymer component will exist in
the water phase and is used to make the water more viscous and thus less mobile. Polymer diluted in water usually has so low
concentration that viscosity is the only water property affected. Here, we will use a standard mixing model (Todd and Longstaff
1972),

µp,eff = µm(c)ωµ1−ω
p , µp = µm(cm))

µw,eff =
[1− c̄
µw,e

+
c̄

µp,eff

]−1

, µw,e = µm(c)ωµ1−ω
w , c̄ = c/cm,

(14)

where c is the polymer concentration, cm is its maximal attainable value, and ω ∈ [0, 1] is a mixing parameter. By introducing
the multiplier m(c) = µm(c)/µw, we can write the second equation as µw,eff = µwm(c)ω/[1 − c̄ + c̄/m(cm)]. In our model,
we also account for polymer being adsorbed onto the rock, which is assumed to take place instantaneously so that the amount
of polymer adsorbed Cap is a function of c and the maximal attained value cmax. The adsorbed polymer will fill up and block
pores and hence reduce the effective permeability. The reduction in permeability will be modelled as a hysteresis effect, making
the permeability at a point a function of the largest polymer value seen at this point. That is, we introduce the reduction factor
Rk(c, cmax) = 1 + (γ − 1)Cap (c, cmax)/Camax, where γ is the ratio of the initial water mobility to the water solution mobility
after polymer flooding and Camax is the maximum possible absorbed polymer. We can then write out the conservation equations
for the water phase and the polymer components:

∂t(φbwsw) +∇ · (bw~vw)− bwqw = 0, ~vw = − krwK

µw,effRk(c, cmax)
(∇pw − ρwg∇z),

∂t
[
φbwswc+ (1− φref)C

a
p (c, cmax)

]
+∇ · (bw~vwpc)− bwqwc = 0, ~vwp = − krwK

µp,effRk(c, cmax)
(∇pw − ρwg∇z).

(15)

To show how the implementation will appear in the object-oriented framework, we refer to Fig. 10. First of all, we let the
polymer model inherit the properties and functions of the oil water model it is based on and extend the set of variables to include
c and cmax in the function getVariableField. In function updateState we impose that c ∈ [0, cm], whereas the function
updateAfterConvergence updates the maximal attained value, cmax(x, t) = maxτ<t c(x, τ), needed for the hysteretic
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modeling in Rk(c, cmax). The discrete equations are programmed by copying the corresponding code for the oil–water system
and introducing the modifications outlined in red in the box to the right in Fig. 10. Finally, one the physical properties of polymer
and the polymer-water mixture must be implemented in the fluid object. In our current implementation, this is done by parsing
industry-standard input decks, but could equally well have been hand-coded analytical formulas. The parsing is automated in the
sense that for each new keyword you want to interpret, you create a file called assign〈KEYWORD〉.m in the props directory
of the ad-fi module. In our case, this amounted to less than fifty extra lines of code to interpret the polymer keywords and set
up functions that interpolate the tabulated values in the input deck correctly. Apart from the changes outlined above, everything
else works automatically, including time-step control, (CPR-type) preconditioners, adjoint methods for computing gradients and
sensitivities, etc.

Numerical Experiments
An important aspect when presenting a new model or computational method is to compare it with existing models and methods
and possibly explain any differences. To support this, we have got to lengths to ensure that MRST-AD is able to reproduce the
results of a leading commercial simulator on standard benchmarks as well as on real-field models. In the following, we present
the results of three such validation studies. In addition, we also briefly illustrate use of the thermal simulator obtained by rapid
prototyping.

SPE 1. The first project comparing black-oil reservoir simulators was organized by Odeh (1981) and describes gas injection
in a small 10 × 10 × 3 reservoir with a producer and an injector placed in diagonally opposite corners. The porosity is uniform
and equal 0.3, while the permeability is isotropic with values 500, 50, and 200 mD in the three layers with thickness 20, 30,
and 50 ft. The reservoir is initially undersaturated with a pressure field that is constant in each layer, a uniform mixture of water
(Sw = 0.12) and oil (So = 0.88) with no initial free gas (Sg = 0.0) and a constant dissolved gas-oil ratio (Rs) throughout the
model. The original problem was posed to study ten years of production; herein, we only report results for the first 1216 days.
Fig. 11 compares the solutions computed by MRST-AD and Eclipse 100 using the same time steps. The solutions are qualitatively
similar, and after a careful investigation, we discovered that the minor discrepancies can be explained by subtle differences in
how the two simulators interpolate tabulated fluid data. Whereas Eclipse 100 interpolates 1/(µoBo) as a product, our software
first interpolates µo and Bo and then computes the product. By changing the interpolation, we obtained identical results.

SPE 9. The Ninth SPE Comparative Solution Project (Killough 1995) was introduced twenty years ago to compare contempo-
rary black-oil simulators and investigate “complications brought about by heterogeneity in a geostatistically-based permeability
field”. The reservoir is described by a 24 × 25 × 15 grid, having a 10 degree dipping-angle in the x-direction. By current stan-
dards, the model is quite small, but contains a few features that will still pose challenges for black-oil simulators. The well pattern
consists of twenty-five producers and one water injector: the producers initially operate at a maximum rate of 1500 STBO/D,
which is lowered to 100 STBO/D from day 300 to 360, and the raised up again to its initial value until the end of simulation at
900 days. The water injector was set to a maximum rate of 5000 STBW/D with a maximum bottom-hole pressure of 4000 psi at
reference depth. This setup will cause free gas to form after approximately one hundred days as the reservoir pressure is reduced
below the original saturation pressure and migrate to the top of the reservoir. During the simulation most of the wells convert
from rate control to pressure control. A second problem is a discontinuity in the water-oil capillary pressure curve, which may
cause difficulties in the Newton solver when saturations are changing significantly. Fig. 12 compares production curves computed
by our simulator and a commercial simulator using the same time steps. For MRST, we have also included the mini-steps that are
taken within the outer nonlinear loop. As is evident from the plots, there is good match between our simulator and the commercial
code.

Voador field model. The Voador field is located in the Campos Basin, approximately one hundred miles off the coast of Brazil.
It is a solution-gas-drive field in which the pressure has been depleted to below the bubble point, see (Hasan et al. 2013). The
field consists of two non-communicating reservoirs. The south wing started to produce in November 1992 and a multilateral
injector was drilled in 1999 to maintain reservoir pressure. The oil viscosity in the reservoir is particularly high with an oil-to-
water ratio varying from 8 (at 200 bar) to 40 (at 500 bar) for saturated oil. Initially, there was no free gas, and the oil and water
phases were fully separated by gravity (capillary effects are neglected). After peak production passed, additional wells were
drilled sequentially. As the field entered its mature stage, the total oil production became less than 800 Sm3/day and the water cut
exceeded 90% in some producers. The reservoir has also produced free gas after the pressure depleted below the bubble point. In
2011, the gas-oil ratio for every production well was approximately 80 Sm3/Sm3.

We have at our disposal a schedule based on historical data spanning a period of nineteen years, from 1992 to 2011, and
the corresponding output from a commercial simulator. Altogether, the south wing is equipped with eight wells: one injector
and seven producers. In the schedule, the injector is controlled by water rate, while the producers are controlled by oil rate. A
simplified two-phase version of this simulation model was used by Hasan et al. (2013) to study the combination of long-term and
short-term production optimization. Likewise, a shorter period of the three-phase, black-oil model was used by Raynaud et al.
(2014) to study upscaling and adjoint methods for production optimization. Herein, we will study the full history of the south
wing, for which the full model consists of 86 389 cells and constitutes five disconnected parts. We pick the largest one; after
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Fig. 11—Solutions computed by MRST-AD and Eclipse 100 for the SPE 1 benchmark case. The upper-left plot shows
the gas saturation after 1216 days computed by our software. The other plots compare production curves. The minor
discrepancies are caused by subtle differences in how tabulated fluid data are interpolated.

removal of cells with zero porosity, the model contains 26 911 active cells. The water-oil contact is specified at different depths
in two connected regions so that the initial state is not at equilibrium. The multilateral injector penetrates five disconnected sets
of cells, and following the commercial simulator, these cells were ordered based on centroid depths.

In Fig. 13, the controls corresponding to the historical schedule are shown. We recognize the periods of primary recovery
where only two producers are used and of secondary recovery after the injector has been started. In Fig. 14, we compare the results
obtained by our and a commercial simulator for the bottom-hole pressures and the water rates at the wells. There is a globally
a very good match between the two sets of results. Most of our efforts in producing these results have been concentrated on the
treatment of the wells, understanding the logic the commercial simulator follows and reproduce it in code. The first producer, for
which the differences in the water rate are the highest, has a complicated schedule. We believe that the discrepancies we observe
are caused by the fact that we were not able to fully reproduced the choices the commercial simulator makes in its treatment of
wells.

Thermal simulation. To demonstrate the thermal code from Figs. 3 – 5 we consider a simple 200 × 200 × 50 m box-shaped
reservoir realized on a 10×10×10 Cartesian grid. The reservoir has homogeneous permeability of 30 mD, constant porosity 0.3
at reference pressure 200 bar, and a rock compressibility of 10−6 bar−1. No-flow conditions are assumed along all boundaries.
For the fluid model, we use

ρ(p, T ) = ρr
[
1 + βT (p− pr)

]
e−α(T−Tr), µ(p, T ) = µ0

[
1 + cµ(p− pr)

]
e−cT (T−Tr), (16)

where ρr = 850 kg/m3 is the density and µ0 = 5 cP the viscosity of the fluid at reference pressure pr = 200 bar and temperature
Tr = 300 K. The constants are βT = 10−3 bar−1, α = 5× 10−3 K−1, cµ = 2× 10−3 bar−1, cT = 10−3 K−1 and cp = 4× 103

J/kg. The reservoir is initially at hydrostatic equilibrium and has constant temperature of 300 K. We use a simple linear relation
for the enthalpy, which is based on the thermodynamical relations that give

dH = cp dT +

(
1− αT
ρ

)
dp, α = −1

ρ

∂ρ

∂T

∣∣∣
p
. (17)
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Fig. 12—Solutions computed by MRST-AD and Eclipse 100 for the SPE 9 benchmark case.

The reservoir is drained from a single horizontal well that operates at a constant bottom-hole pressure of 100 bar and is
perforated in cells with indices i = 2, j = 2, . . . , 9, and k = 5. Fig. 15 shows snapshots of the pressure and temperature
evolution. The open well will create a pressure draw-down that gradually propagates into the reservoir and as more fluid is drawn
from the reservoir, the pressure decays towards a steady state with pressures in the interval [101.2,104.7] bar. The expansion and
flow of fluid will cause an instant cooling near the well-bore that gradually propagates into the reservoir and diffuses out towards
a temperature of approximately 295.5 K.

The change in temperature of an expanding fluid will not only depend on the initial and final pressure, but also on the manner
in which the expansion is carried out. In a free expansion, the internal energy is preserved and the fluid does no work. When the
fluid is an ideal gas the temperature is constant, but otherwise the temperature will either increase or decrease during the process
depending on the initial temperature and pressure. In a reversible process, the fluid is in thermodynamical equilibrium and does
positive work while the temperature decreases. The linearized function associated with this expansion reads

dE +
p

ρV
dV = dE + p d(

1

ρ
) = 0. (18)

In a Joule–Thompson process, the enthalpy remains constant while the fluid flows from higher to lower pressure under steady-
state conditions and without change in kinetic energy. Our case is a combination of these three processes, and to demonstrate
their interplay, we study six different cases in which we vary the value of α while keeping the compressibility βT constant. Some
of the values we choose have little physical relevance, but serve to illustrate different effects and the power of our framework.
Fig. 16 shows the minimum, average, and maximum temperature in the reservoir as a function of time for six different values of
α. We have also included horizontal lines that indicate the change in temperature that would result from the total pressure drop
that takes place if the adiabatic expansion was governed by one and only one of the three processes.

The change in behavior between the two first and the other plots is associated with the change of sign of ∂E/∂p,

dE =

(
cp −

αp

ρ

)
dT +

(
βT p− αT

ρ

)
dp, βT =

1

ρ

∂ρ

∂p

∣∣∣
T
. (19)
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Fig. 13—Representation of the south wing of the Voador reservoir (left) with the well locations and the permeability field.
Control variables for the historical schedule (right): Water injection rate for the injection well and oil production rates for
the production wells. Zero pressure values correspond to times where the well has been shut down.
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Fig. 14—Bottom-hole pressures (left) and water rates (right) at the wells. The results of MRST-AD and Eclipse 100 are in
red and blue, respectively.

For the two first plots αT < βT p so that ∂E/∂p > 0. The expansion and flow of fluid will cause an instant heating near the
well-bore, which is what we see in the initial temperature increase for the maximum value in these two plots. The Joule–Thomson
coefficient (αT − 1)/(cpρ) is negative for plot number one to four, which means that the fluid gets heated if it flows from high
pressure to low pressure in a steady-state flow. This is seen by observing the temperature in the well perforations. The fast
pressure drop in these cells causes an almost instant cooling effect, but soon after we see a transition in which these cells go from
having the lowest to having the highest temperature in the reservoir because of heating from the moving fluids. When we go to
systems with positive Joule–Thomson coefficient in the two last plots, we notice that the minimum temperature is observed at the
well for a longer time. Another interesting feature of the system is the kink in the minimum temperature curve, which appears
when the point of minimum temperature moves from being at the bottom of the front side to the far back of the model. The cell
with lowest temperature is where the fluid has done most work, neglecting heat conduction. In the beginning this is the cell near
the well since the pressure drop is largest there. Later it will be the cell furthest from the well since this is where the fluid can
expand most.
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Fig. 15—Evolution of the pressure (left) and temperature (right) computed by the single-phase, thermal simulator. For
clarity, the vertical dimension is scaled by a factor four.
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Fig. 16—Evolution of the minimum, maximum, and average temperature as well as the temperature in each of the well
perforations for different values of the thermal expansion factor α [K−1], all plotted as functions of time in unit days.

Computing linearized responses for the thermodynamical functions is particularly simple using automatic differentiation. As
an example, Fig. 17 shows how to linearize the primary enthalpy function and use the result to solve for the temperature resulting
after a Joule–Thomson expansion. Similarly, we can compute the temperature after a reversible expansion, which is not a total
differential. In this case we have to specify that p should be kept constant. This is done by replacing the AD variable p by
an ordinary variable double(p) in the code at the specific places where p appears in front of a differential, see Eq. 18. The
same kind of manipulation can be used to study alternative linearizations of systems of nonlinear equations and the influence of
neglecting some of the derivatives when forming Jacobians.

Polymer injection. Earlier in the paper on page 12 we discussed a simplified two-phase polymer model and showed in Fig. 10
how this could easily be implemented as a simple extension of a two-phase black-oil model. Here, we will consider a more
complex three-phase model that has oil, water, and wet gas. Fluid parameters for the three-phase model are taken from a public
model of the Norne field in the Norwegian Sea, see (Norne 2012; Package 2), whereas the polymer data are representative of a
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[p,T] = initVariablesADI(pref,Tref);

dp = p_final-pref;

hf = Hf(p,T);

dHdp = hf.jac{1};

dHdT = hf.jac{2};

Tjt = Tref - dHdp*dp/dHdT; % Joule Thomson temperature

Linearizing enthalpy

[p,T] = initVariablesADI(pref,Tref);

dp = p_final - pref;

hf = Ef(p,T) + double(p)./rho(p,T);

dHdp = hf.jac{1};

dHdT = hf.jac{2};

Tjt = Tref - dHdp*dp/dHdT; % Linearized adiabatic temperature

Linearizing adiabatic expansion

Fig. 17—Two examples of the computation of linearized responses of thermodynamical functions. The left box shows
how to calculate the proper linear differential of enthalpy density for a Joule–Thompson process, while the right box
shows how to calculate the incomplete differential in Eq. 19 associated with a reversible expansion process.
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Fig. 18—Water curves predicted by MRST-AD and Eclipse 100 for the simulation of a three-phase polymer injection sce-
nario. For clarity, the figure only shows every third point in the solution computed by the commercial simulator.

polymer injection scenario in another field. The reservoir geometry, however, is very simple and consists of a 4000×200×75 m3

box represented on a regular 20× 1× 3 Cartesian grid, with an injection well completed in the cells to the far west of the bottom
two layers and a production well completed in the upper layer to the far east. The petrophysical properties are homogeneous
with 0.1 porosity and [0.21,0.21,0.022] mD permeability. The bottom layer initially contains water, the middle layer contains a
mixture of 57.4% water and 42.6% water, and the upper layer a mixture of 93.4% gas and 6.6% oil. The reservoir is produced by
first injecting water for 150 days, then a polymer slug for 1110 days, followed by 8850 days of water injection. The injector has a
target rate of 1500 m3/day and is limited by a bottom-hole pressure of 450 bar, whereas the producer operates at a fixed pressure
of 200 bar. Fig. 18 shows a comparison between solutions computed by MRST-AD and Eclipse 100. What is remarkable about
this example is neither the case, which is very simple in terms of reservoir description, nor the match with the commercial solver,
but the fact that the implementation and match was obtained in less than one week by someone who was not very familiar with
the software.

Concluding Remarks
The software MRST-AD presented herein is the result of many years of research on computational methods for reservoir simula-
tion and CO2 sequestration. Our main motivation for developing and maintaining it has been to simplify our own research and
make the members of our research team more productive. For this reason, the software has been developed using a vectorized
scripting language, which in our experience has a lower user threshold and a much shorter development cycle than any compiled
language we so far have worked with. On one hand, the software offers a relatively rich grid structure to provide generality and
flexibility when developing new discretizations, and on the other hand, it provides a set of discrete differential operators com-
bined with automatic differentiation to increase productivity when developing new mathematical models, time-stepping methods,
and nonlinear solvers. To simplify the process of verifying and validating new models and methods on problems of real-life
complexity, the software also offers functionality to read and process industry-standard input decks. Functionality has also been
developed so that the software can be used as a black-box simulator that offers a reasonable subset of the features seen in com-
mercial simulators. Obviously, simulators developed in MRST-AD will not be as fast as a commercial simulator, but in many
cases a higher runtime (typically three to ten times) is compensated by the general ability to modify, replace, and extend any part
of the simulator. By releasing the software as open source, and by writing this paper, we hope that other researchers can benefit
from our work and be more productive. Use of open source is also an important pillar for the higher goal of reproducible science.
The current public release is mainly focused on fully-implicit, black-oil type simulators, but we also have prototype versions
of new modules supporting more advanced modeling options such as geochemistry, thermal and geomechanical effects that are
scheduled for release in our biannual schedule.
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