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Abstract Polymer injection is a widespread strategy in enhanced oil recovery.
Polymer increases the water viscosity and creates a more favorable mobility ra-
tio between the injected water and the displaced oil. The computational cost of
simulating polymer injection can be significantly reduced if one splits the gov-
erning system of two-phase equations into a pressure equation and a set of satu-
ration/component equations and use a Gauss–Seidel algorithm with optimal cell
ordering to solve the nonlinear systems arising from an implicit discretization of
the saturation/component equations. This approach relies on a robust single-cell
solver that computes the saturation and polymer concentration of a cell, given the
total flux and the saturation and polymer concentration of the neighboring cells.
In this paper, we consider a relatively comprehensive polymer model used in an
industry-standard simulator, and show that, in the case of a discretization using
a two-point flux approximation, the single-cell problem always admits a solution
that is also unique.

1 Introduction

In reservoirs with highly viscous oil, fingering effects lead to water penetrating
easily the most permeable parts of the reservoir. To avoid a situation in which
early water breakthrough leaves large fractions of the reservoir unswept, polymer
is used to increase the water viscosity and establish a more favorable mobility
ratio between the two phases. In this paper, we consider a two-phase flow problem
with a polymer component. Polymer is miscible in water, but in realistic reservoir
models the coarseness of the grid does not allow for a detailed computation of the
mixing zone. Instead, we have to resort to averaging models (see [1,6]) and consider
the Todd–Longstaff mixing model [12], which is commonly used in commercial
simulators. We also include the effects of permeability reduction and polymer
adsorption in the model.
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The governing equations are the mass-conservation equations for water, oil,
and polymer. Fully-implicit solvers are usually prefered for their robustness, but
are computationally expensive since one needs to solve a large, coupled system of
nonlinear equations. To reduce the computational cost, the equations can be split
into a pressure equation and two transport equations, one for water saturation
and the other for polymer concentration. The pressure and transport equations
are then solved sequentially. In the transport step, one can in certain cases re-
order the cells following the direction of the flow, so that the system of discrete
transport equations takes a triangular form and can be solved iteratively cell-by-
cell in a very efficient and robust manner; see [11] for the two-phase case without
polymer. In particular, in the absence of gravity and when using a two-point flux-
approximation scheme to discretize the pressure equation, such an ordering can
be obtained by sorting the cell pressures in descending order, from injection to
production wells. This property can also be utilized in the presence of gravity if
one splits the transport equation into a Darcy component, which can be ordered
into a triangular system, and a gravity component, in which cells are only coupled
in the vertical direction. Such a splitting is particularly attractive for heavy-oil
reservoirs, where the effect of gravity segregation is weak because of small density
differences between injected water and the heavy oil.

In the general case, the system of discrete transport equations can be permuted
to a block-triangular form, in which each block contains a set of cells that are made
interdependent by the orientation of the flux. When setting up such a permuta-
tion, we try to minimize the size of the blocks. In the case when the cells can be
completely reordered, each block will contain only one cell. Once the ordering of
blocks has been computed, we can use a nonlinear Gauss–Seidel algorithm to solve
the transport equations on each block, see [10] for a detailed description of the
algorithm in this context. In the case of a two-phase flow problem without poly-
mer, it is shown in [7] that a nonlinear Gauss–Seidel algorithm for the transport
equation is globally convergent, that is, converges from any given starting point.
They prove the convergence of the nonlinear Gauss–Seidel algorithm using mono-
tonicity arguments. Monotonicity arguments can do an excellent job for scalar
equations, but are usually difficult to adapt to systems, as we have herein with
two unknowns, the saturation and the polymer concentration. In this paper, we do
not formally prove convergence of the nonlinear Gauss–Seidel algorithm. Instead
we give a compelling argument for its utility by proving that each of the nonlinear
sub-problems that are required in the algorithm admits a unique solution. This,
to back up the numerical experiments in [10], which show the good scalability
properties and computational efficiency of this method.

The single-cell problem consists of computing the saturation and concentration
in a given cell, knowing the total flux in and out of neighboring cells as well as the
saturation and concentration values in these cells. The total flux is obtained by
solving the pressure equation in the pressure step. Mathematically, the single-cell
equations are a set of two nonlinear equations whose particular form depends on
the time step, the local cell geometry, the fluid and rock properties, the saturation
and concentration values of the neighboring cells, and the total flux across the cell
faces. The main achievement in this paper is to show that the single-cell problem
is always well-posed for any time-step length. By well-posed, we mean that there
exists a solution and that this solution is unique. For the Darcy component of the
transport equation, we extend the results obtained in [10] with equal fluid com-
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pressibilities to the case with different compressibilities, assuming that one of the
two phases is always more compressible than the other. This assumption is not too
restrictive as oil is typically always more compressible than water. Our result relies
on some properties of the pressure equation, which have to be chosen with care.
For the gravity component, we use a standard phase upstreaming for saturation,
whereas for the polymer concentration it turns out that phase upstreaming is not
appropriate and we present a numerical flux that guarantees well-posedness.

2 Mathematical Model for Polymer Flooding

Our starting point is the mass-conservation equations for oil, water, and polymer

∂

∂t
(ραφSα) +∇ · (ραvα) = 0, α ∈ {w, o}, (1)

∂

∂t
(ρwφSwc) +∇ · (cρwvwp) = 0. (2)

Here, ρα, vα, and Sα denote the density, flux, and saturation of the phase α.
The porosity is denoted by φ and is assumed to be a function φ(p) of pressure
only, c is the polymer concentration, and vwp is the velocity of water containing
diluted polymer. Fluid sources and sinks may be included in a manner equivalent to
boundary conditions, and are left out of the above equations. The capillary pressure
pc(S) = po − pw is a decreasing function of the water saturation S (subscript w
is dropped henceforth). To model the viscosity change of the mixture, we use the
Todd–Longstaff model [12]. This model introduces a mixing parameter ω ∈ [0, 1]
that takes into account the degree of mixing of polymer into water. The viscosity
µm of a fully mixed polymer solution is a given function of the concentration. The
effective polymer viscosity is defined as

µp,eff = µm(c)ωµ1−ω
p with µp = µm(cmax), (3)

where cmax is the polymer concentration of a saturated solution. The viscosity of
the partially mixed water is given in a similar way by

µw,e = µm(c)ωµ1−ω
w . (4)

The effective water viscosity µw,eff is defined by interpolating linearly between the
inverse of the effective polymer viscosity and the partially mixed water viscosity

1

µw,eff
=

1− c/cmax

µw,e
+
c/cmax

µp,eff
. (5)

For the polymer flux term vwp, the relative permeability is assumed to be equal to
the relative permeability of water, krw, and the viscosity is equal to µp,eff . Darcy’s
law, written in terms of the oil pressure p, then gives us

vw = − krw
µw,effRk(ca)

K(∇p−∇pc − ρwg∇z), (6)

vwp = − krw
µp,effRk(ca)

K(∇p−∇pc − ρwg∇z) = m(c)vw, (7)
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as we assume that the presence of polymer does not affect the pressure and the
density. The polymer mobility factor m(c) that enters (7) is defined as

m(c) =
µw,eff

µp,eff

and, after some simplifications, we get

m(c) =
[(

1− c

cmax

)( µp
µw

)1−ω
+

c

cmax

]−1

. (8)

Since we assume that the polymer viscosity is larger than the water viscosity,
i.e., µw ≤ µp, we have m ≤ 1 for all c ∈ [0, cmax]. The function Rk(ca) denotes the
actual resistance factor and is a non-decreasing function that models the reduction
of the permeability of the rock to the water phase due to the presence of adsorbed
polymer. The concentration of adsorbed polymer is denoted by ca. We introduce
the total flux as v = vw + vo. We have

v = −(λw + λo)K∇p+ λwK∇pc + g(λwρw + λoρo)K∇z

and after some computation, we obtain the following expression for the phase
velocities vα as functions of the total velocity v

vw = fwv + vcap + vg and vo = fov − vcap − vg (9)

with

fα =
λα

λw + λo
, vcap =

λwλo
λw + λo

K∇pc, (10)

and

vg =
λwλo
λw + λo

(ρw − ρo)gK∇z. (11)

Here, λα denotes the mobility of phase α, i.e.,

λw =
krw

µw,effRk(ca)
and λo =

kro
µo

.

The timescale of adsorption is much smaller than that of mass transport. Thus,
we assume that adsorption takes place instantaneously so that ca is a function of
c only. Let ρr,ref denote the reference rock density and φref the reference porosity.
The adsorption of polymer is then taken into account by replacing (2) by

∂

∂t
(ρwφSwc) +

∂

∂t

(
ρr,ref(1− φref)c

a)+∇ · (cρwvwp) = 0. (12)

It is natural to assume that ca is an increasing function of c. Finally the modeling
equations are

∂

∂t
(ραφSα) +∇ · (ραvα) = 0, α ∈ {w, o} (13a)

∂

∂t

(
ρwφSwc

)
+

∂

∂t

(
ρr,ref(1− φref)c

a)+∇ · (cρwvwp) = 0. (13b)

where vα and vwp are defined in (6) and (7) using (3), (4), and (5).
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3 Discretization and Splitting of the Equations

Simple PVT behavior is modeled through the formation-volume factors bα = bα(p),
defined by ρα = bαρ

S
α, where ρSα is the surface density of phase α ∈ {w, o}. Inserting

this into (13), the system can be simplified by dividing each equation with the
appropriate surface density ρSα,

∂

∂t
(bαφSα) +∇ · (bαvα) = 0, (14a)

∂

∂t
(bwφSwc) +

∂

∂t

(
(1− φref)ĉ

a)+∇ · (bwcvwp) = 0, (14b)

where we for convenience have introduced the short-hand ĉa = caρr,ref/ρ
S
w. To

discretize (14), we introduce a grid consisting of cells Ci with a bulk volume Vi,
integrate over each cell in space, and apply a standard implicit method for the
temporal derivative. This gives the following residual equations

0 =
(
bα,iφiSα,i

)n+1 −
(
bα,iφiSα,i

)n
+
∆t

Vi

∑
j

(
bα,ijvα,ij

)n+1
= Rα,i, (15a)

for α ∈ {w, o} and

0 =
(
bw,iφiSw,ici + (1− φref,i)ĉ

a
i

)n+1

−
(
bw,iφiSw,ici + (1− φref,i)ĉ

a
i

)n
+
∆t

Vi

∑
j

(
bw,ijcijvwp,ij

)n+1
= Rc,i. (15b)

Here, subscripts i denote quantities associated with the cell Ci and subscripts
ij denote quantities associated with the interface between the cells Ci and Cj .
Superscripts denote time steps. To derive a discrete pressure equation, we sum the
two phase equations (15a), using (9) and the condition Sw + So = 1 to obtain the
pressure residual equation

0 = φn+1
i − φni

∑
α∈{w,o}

( bnα,i
bn+1
α,i

Snα,i
)

+
∆t

Vi

∑
j

∑
α∈{w,o}

bn+1
α,ij

bn+1
α,i

(fnα,ijv
n+1
ij + gnα,ij + πnα,ij) = Rp,i. (16)

Here, vij is a discretization of the total flux. We use a two-point flux approximation
to obtain a relation of the form

vij = −Tij(pj − pi) + gij + πij . (17)

The transmissibility Tij depends on saturation and concentration, gij is a dis-
cretization of the gravity term

∫
Ci∩Cj g(λwρw + λoρo)K∇z · n dA, and πij is a

discretization of the capillary term
∫
Ci∩Cj λwK∇pc ·n dA. The exact forms of gij

and πij do not matter for the results that are presented here as long as gij = −gji
and πij = −πji to ensure mass conservation. Similarly, we require that Tij = Tji
for conservative reasons. The terms gw,ij and go,ij correspond to discretizations of
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∫
Ci∩Cj vg ·n dA and they therefore depend on saturation and polymer concentra-

tion. For conservation reasons, we require that gw,ij = −gw,ji. We also impose that
go,ij = −gw,ij , which is the only property that is required for gα,ij in Section 4. The
terms πw,ij and πo,ij correspond to discretizations of

∫
Ci∩Cj vcap ·n dA. Similarly,

we require πw,ij = −πw,ji and πo,ij = −πw,ji. When solving the pressure equation,
the terms Tij , fα,ij , gij , gα,ij , πij , and πα,ij are evaluated using the saturation
and concentration values of the previous step.

Our overall system consist of the pressure equation (16) and two transport
equations: Equation (15a) with α = w for the water saturation and equation (15b)
for the polymer concentration. To solve this coupled system, we use a standard
sequential procedure in which the pressure and transport equations are solved in
consecutive steps. We also split the transport equations (15) into a Darcy com-
ponent and a component for the segregation and capillary pressure effects. The
Darcy step consists of solving a discrete transport equation for the water phase

(
bw,iφiS

∗
w,i

)n+1 −
(
bw,iφiSw,i

)n
+
∆t

Vi

∑
j

(
bw,ijfwvij

)n+1
= 0, (18)

and a corresponding residual equation for the polymer (see (24)) to obtain satu-
ration and concentration values S∗,n+1

i and c∗,n+1
i . These intermediate values are

then used in the segregation/capillary pressure step given by the water equation

(
bw,iφi(Sw,i − S∗w,i)

)n+1
+
∆t

Vi

∑
j

(
bw,ij (gw,ij + πw,ij)

)n+1
= 0, (19)

and a similar residual equation for polymer (see (39)) to update Sn+1
w and cn+1.

Even though the terms gα,ij and πα,ij in (16) and (19) share the same notations,
they are not the same. In particular, gw,ij and πw,ij in (19) depend on saturations
and polymer concentrations at step n+1 so that (19) is indeed an implicit equation.
The notations should not be confused and the definitions of gw,ij and πw,ij for
equation (19) are given in Section 5, see (50), and (51). In the two following
sections, we show that the single-cell problems for the Darcy component (18) and
for the gravity/capillary component (19) are well-posed.

4 The Darcy Component

Henceforth, we will follow the convention that when a time superscript is omitted,
the corresponding term is evaluated at the time step n+ 1 (for example pi and φi
stand for pn+1

i and φ(pn+1
i ), respectively). Also, S without the phase subscript will

mean Sw, the water saturation. To decouple the pressure and transport equation,
all properties that depend on S and c in (16) are evaluated using saturation and
concentration taken at the previous time step n. With vij given by (17) and using
an upstream evaluation of the fractional flow fα, the pressure equation can be
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rewritten as

Rp,i =φi − φni
∑

α∈{w,o}

( bnα,i
bα,i

Snα,i
)

+
∆t

Vi

∑
α∈{w,o}

∑
{j|vij<0}

(
fα(Snj , c

n
j )
bα,ij
bα,i

vij

)
+
∆t

Vi

∑
α∈{w,o}

(
fα(Sni , c

n
i )

∑
{j|vij>0}

( bα,ij
bα,i

vij
))

+
∆t

Vi

∑
j

(go,ij + πo,ij)
n
( bo,ij
bo,i

−
bw,ij
bw,i

)
= 0. (20)

Here, the values of the surface volume factors have to be evaluated at the interface.
To do so, we could consider an approximation of the interface pressure, denoted
pij , and set bα,ij = bα(pij). However, to be able to prove uniform stability of the
Darcy component, we have to use a type of upwinding for the evaluation of bα,ij .
That is, for vij < 0 we set

bα,ij =

{
bα(pi), if

(
fo(S

n
i , c

n
i )vij + gno,ij + πno,ij

)
(pi − pj) ≤ 0,

bα(pj), if
(
fo(S

n
i , c

n
i )vij + gno,ij + πno,ij

)
(pi − pj) ≥ 0,

(21a)

and similarly for vij > 0

bα,ij =

{
bα(pi), if

(
fo(S

n
j , c

n
j )vij + gno,ij + πno,ij

)
(pi − pj) ≤ 0,

bα(pj), if
(
fo(S

n
j , c

n
j )vij + gno,ij + πno,ij

)
(pi − pj) ≥ 0.

(21b)

Because vij = −vji, gij = −gji, and πij = −πji, one can check that bα,ij =
bα,ji, a condition that is required for the scheme to be conservative. Note that
fovij + go,ij + πo,ij is an approximation of the oil flux vo · n so that, assuming
that oil is always the most compressible phase, condition (21) can be rephrased
as follows: If the flux of the most compressible phase is in the same direction as
the inverse pressure gradient and the total flux, then we evaluate the densities
by taking the pressure value downwind; otherwise, we use the upwind value. The
motivation for definition (21) will appear in the proof. The definition of vij has
been introduced (17) and is of the form

vij = −Tij(Sni , c
n
i , S

n
j , c

n
j )(pj − pi) + gij(S

n
i , c

n
i , S

n
j , c

n
j ) + πij(S

n
i , c

n
i , S

n
j , c

n
j ). (22)

The transmissibility coefficients Tij are computed using harmonic means of the
permeabilities weighted with the mobilities. Since the particular definition of Tij
is standard and has no incidence in the results that are presented, we do not
detail it here. For the same reasons, we do not give explicit expressions for the
discretization of the terms gij and πij . Once pi and vij are obtained by solving (20),
(21), and (22), we can proceed with the transport step. The Darcy component for
the water residual equation is

Rw,i(S, c) =
(
bw,iφiSi

)
−
(
bw,iφiSi

)n
+
∆t

Vi

∑
{j|vij<0}

(
fw(Sj , cj)bw,ijvij

)
+
∆t

Vi
fw(Si, ci)

∑
{j|vij>0}

(
bw,ijvij

)
= 0, (23)
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while, for the polymer residual equation, it is given by

Rc,i(S, c) =
[
bw,iφiSici + ĉa(ci)(1− φref,i)

]
−
[
bw,iφiSici + ĉa(ci)(1− φref,i)

]n
+
∆t

Vi

∑
{j|vij<0}

(
m(cj)cjfw(Sj , cj)bw,ijvij

)
+
(
m(ci)cifw(Si, ci)

)∆t
Vi

∑
{j|vij>0}

(
bw,ijvij

)
= 0. (24)

Note that the polymer concentrations are also evaluated upstream. The single-cell
problem for cell Ci now consists of solving

Rw,i(S, c) = 0 and Rc,i(S, c) = 0, (25)

where we by slightly abusing notation let (S, c) denote the unknown cell values
(Si, ci). The other values Sj , for j 6= i are assumed to be known. The main result
of this section is the following existence and uniqueness theorem.

Theorem 1 Assume that oil is more compressible that water. Then, given the solutions

pi and vij to the pressure equation (20), (21), and (22), the solution to the single-cell

problem (25) exists and is unique for any physical value of the other parameters and,

in particular, for any time step size ∆t.

Proof We decompose the proof into two steps:

– Step 1: We prove that, for any c ∈ [0, cmax], there exists a unique S, which we
denote S(c), such that Rw,i(S(c), c) = 0.

– Step 2: We prove that Rc,i(S(c), c) = 0 admits a unique solution c ∈ [0, cmax].

The conclusion of Step 2 is equivalent to the conclusion of the theorem and there-
fore also concludes the proof.

Proof of Step 1: Given c, let us compute the values of the water residual at
the endpoints, that is, for S = 0 and S = 1. For S = 0, we have

Rw,i(0, c) = −(bw,iφiSi)
n +

∆t

Vi

∑
{j|vij<0}

(fw(Sj , cj)bw,ijvij) ≤ 0. (26)

For S = 1, after using (20), we have

1

bw,i
Rw,i(1, c) =

1

bw,i
Rw,i(1, c)−Rp,i = A+B + C +D,

where

A =
(
φi −

bnw,i
bw,i

φni S
n
w,i

)
−
(
φiSw,i −

bnw,i
bw,i

φni S
n
w,i

)
−
(
φiSo,i −

bno,i
bo,i

φni S
n
o,i

)
,

B =
∆t

Vi

∑
{vij<0}

vij

(
fw(Sj , cj)

bw,ij
bw,i

− fw(Snj , c
n
j )
bw,ij
bw,i

− fo(Snj , c
n
j )
bo,ij
bo,i

)
,

C =
∆t

Vi

∑
{vij>0}

vij

(
fw(1, c)

bw,ij
bw,i

− fw(Sni , c
n
i )
bw,ij
bw,i

− fo(Sni , c
n
i )
bo,ij
bo,i

)
,
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and

D =
∆t

Vi

∑
j

(go,ij + πo,ij)
n
( bw,ij
bw,i

−
bo,ij
bo,i

)
.

These expressions simplify as follows. We have

A =
bno,i
bo,i

φni S
n
o,i,

so that A ≥ 0, and

B =
∆t

Vi

∑
{vij<0}

vij

(
fo(S

n
j , c

n
j )

(
bw,ij
bw,i

−
bo,ij
bo,i

)
−
bw,ij
bw,i

(
1− fw(Sj , cj)

))
,

C =
∆t

Vi

∑
{vij>0}

vijfo(S
n
i , c

n
i )

(
bw,ij
bw,i

−
bo,ij
bo,i

)
.

In the case where oil and water compressibilities are equal so that bo = bw, we
have C = D = 0 and B ≥ 0. In the general case, a sufficient condition to ensure
that Rw(1, c) ≥ 0 is that the quantity E, defined as

E =
∑
{vij>0}

(
fo(S

n
i , c

n
i )vij + gno,ij + πno,ij

)( bw,ij
bw,i

−
bo,ij
bo,i

)

+
∑
{vij<0}

(
fo(S

n
j , c

n
j )vij + gno,ij + πno,ij

)( bw,ij
bw,i

−
bo,ij
bo,i

)

is positive, because we have

B + C +D =
∆t

Vi
E +

∆t

Vi

∑
{vij<0}

∣∣vij∣∣ bw,ij
bw,i

(
1− fw(Sj , cj)

)
.

We assume that the water compressibility is smaller than the oil compressibility
in the pressure range we are interested in, that is,

cw(p) ≤ co(p) for all p ∈ [pmin, pmax]. (27)

Let us prove that, for any p1, p2 ∈ [pmin, pmax], if p1 ≤ p2, then

bo(p2)

bo(p1)
− bw(p2)

bw(p1)
≥ 0. (28)

By definition, we have 1
bα

dbα
dp = cα(p). Hence, d(ln(bo)) = co(p) dp. After integrating

and using that p1 < p2, we obtain

ln

(
bw(p2)

bw(p1)

)
=

∫ p2

p1

cw(p) dp ≤
∫ p2

p1

co(p) dp = ln

(
bo(p2)

bo(p1)

)
so that (28) holds. The definition (21) of bα,ij at the interface precisely guarantees
that E remains positive in all cases. To prove that Rw(S, c) admits a unique solution
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in S for a given c, it remains to prove that the function S 7→ Rw(S, c) is strictly
increasing. We simplify the notations and rewrite the residuals in cell Ci as

Rw(S, c) = σ1S + σ2fw(S, c)− σ3, (29a)

Rc(S, c) = σ1Sc+ σ4ĉ
a(c) + σ2m(c)cfw(S, c)− σ5, (29b)

where {σi}5i=1 are constants whose definition can be inferred from the definition of
the residuals. These constants depend only on the values of Sj and cj of previous
time steps or other cells than Ci. Moreover, all these constants are non-negative
and σ1 > 0. We have

∂Rw
∂S

= σ1 + σ2
∂fw
∂S

As expected, the fractional flow is an increasing function of saturation. Indeed, we
have

∂fw
∂S

=

(
∂λw
∂S

λo − λw
∂λo
∂S

)
(λw + λo)

−2 ≥ 0,

because ∂λw
∂S ≥ 0 and ∂λo

∂S ≤ 0. Since

Rw(0, c) ≤ 0, Rw(1, c) ≥ 0 and
∂Rw
∂S

> 0,

there exists a unique solution S(c) to Rw(S(c), c) = 0 for any given c ∈ [0, cmax].
This concludes the proof of Step 1.

Proof of Step 2: As in Step 1, we start by checking the endpoints, which in
this case are c = 0 and c = cmax. We have

Rc(S(0), 0) = −
(
biφiSici + ĉa(ci)(1− φref,i)

)n
+
∆t

Vi

∑
{j|vij<0}

(
m(cj)cjf(Sj , cj)bijvij

)
,

so that Rc(S(0), 0) ≤ 0. For c = cmax, using that Rw(S(cmax), cmax) = 0, we have

Rc(S(cmax), cmax) = Rc(S(cmax), cmax)− cmaxRw(S(cmax), cmax) = A+B + C,

where

A = (ĉa(cmax)− ĉa(cni ))(1− φref,i) + (cmax − cni )bnw,iφ
n
i S

n
i ≥ 0,

B =
∆t

Vi

∑
{j|vij<0}

(m(cj)cj − cmax)fw(Sj , cj)bijvij

C =
∆t

Vi
(m(cmax)cmax − cmax)fw(S(cmax), cmax)

∑
{j|vij>0}

bijvij .

Since m(cmax) = 1, we have C = 0. The function m(c) is non-decreasing because

d

dc

1

m
=

1

cmax

(
1−

(
µp
µw

)1−ω
)

(30)
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and µp > µw by assumption. Hence, m(cj)cj − cmax ≤ cj − cmax ≤ 0, so that B ≥ 0
and it follows that Rw(S(cmax), cmax) ≥ 0. Let us now prove that the function
c 7→ Rc(S(c), c) is a non-decreasing function. We have

dRc = σ1(c dS + S dc) + σ4 dĉ
a + σ2f d(m(c)c) + σ2m(c)c df. (31)

Since S(c) is solution of Rw(S(c), c) = 0, we have

σ1dS + σ2df = 0 (32)

from (29a). Plugging this result into (31), we get

dRc = σ1c(1−m(c)) dS + σ1S dc+ σ4 dĉ
a + σ2f d(m(c)c). (33)

From (32), we obtain that

(σ1 + σ2
∂f

∂S
) dS = −σ2

∂f

∂c
dc,

which yields, by (33),

(σ1 + σ2
∂f

∂S
)
dRc
dc

= σ2
1S + σ2

2
∂f

∂S
κfm2 + σ4(σ1 + σ2

∂f

∂S
)
dĉa

dc

+ σ1σ2

(
S
∂f

∂S
+ f

d

dc
(mc)− c(1−m)

∂f

∂c

)
. (34)

Let us prove that ∂f
∂c ≤ 0 so that (34) implies dRc

dc ≥ 0. Since λw = krw/µw,effRk,
we have

∂f

∂c
=
∂λw
∂c

λo
(λw + λo)2

= − ∂

∂c
(µw,effRk)

krw

µ2
w,effR

2
k

λo
(λw + λo)2

≤ 0. (35)

Indeed, by assumption, ∂Rk∂c ≥ 0 and we expect that
∂µw,eff
∂c ≥ 0 because the effect

of polymer is to increase the effective viscosity of water. Let us check this directly.
Because µw,eff = m(c)µp,eff and µp,eff = µm(c)ωµ1−ω

p , we have

d

dc
ln(µw,eff) =

d

dc
ln(m) + ω

d

dc
ln(µm).

Since m and, by assumption, µm are non-decreasing functions, we can conclude
that µw,eff is non-decreasing. Thus we have

Rc(S(0), 0) ≤ 0 and Rc(S(cmax), cmax) ≥ 0,

and there exists at least one solution c to Rc(S(c), c) = 0 in [0, cmax]. If, S(c) > 0 for
this solution, then dRc

dc > 0 because σ1 > 0 and the solution is unique. Otherwise,
if there exists a c0 such that S(c0) = 0 and Rc(S(c0), c0) = 0, then we have by (26)
that Sni = 0 and fw(Sj , cj) = 0 for all j such that vij < 0. The polymer residual
becomes

Rc(S, c) = ĉa(c)− ĉa(cni ).

In the absence of adsorption, this yields Rc(S, c) = 0 for all c ∈ [0, cmax]. Thus, the
solution is not unique. This property simply reflects the fact that concentration
is not a well-defined quantity in the absence of water. Note that adsorption will
have a stabilizing effect. Indeed, assuming that ĉa is a strictly increasing function,
we recover uniqueness. This concludes the proof of Step 2.
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5 The Segregation and Capillary-Pressure Component

To take the effects of gravity segregation and capillary pressure into account,
we have introduced an additional operator splitting for the transport equations
as described at the end of Section 3. This operator splitting method was first
introduced within streamline simulation [4,5,2], but can also offer certain benefits
for finite-volume methods, e.g., as discussed in [9]. In this section, we will first
discuss the monotonicity properties in the scalar and then use this insight to
formulate a suitable discretization and prove that this second segregation/capillary
step is well-posed in the sense that it admits a unique solution.

5.1 Residual equations

The discrete residual equations for the segregation of water and polymer are given
by

bw,iφi(Si − S∗i ) +
∆t

Vi

∑
j

bw,ij (gw,ij + πw,ij) = 0, (36a)

(
bwφc(S−S∗)+(1−φref)(c

a(c)− ca(c∗))
)
i
+
∆t

Vi

∑
j

bw,ij (gc,ij +πc,ij) = 0. (36b)

Here, the terms gw,ij , gc,ij , πw,ij , and πc,ij that correspond to the following ap-
proximations

gw,ij ≈
∫
Ci∩Cj

vg · n dA, gc,ij ≈
∫
Ci∩Cj

cm(c)vg · n dA,

πw,ij ≈
∫
Ci∩Cj

vcap · n dA, πc,ij ≈
∫
Ci∩Cj

cm(c)vcap · n dA,

respectively, remain to be defined precisely. We use a two-point flux-approximation
scheme to discretize the terms

∫
Ci∩Cj bw(ρw − ρo)gK∇z ·n dA and

∫
Ci∩Cj K∇pc ·

n dA. For a face Ci ∩ Cj , the flux of the gradient of a function ψ is approximated
by ∫

Ci∩Cj
K∇ψ · nij dA,≈ T̂ij(ψj − ψi),

where

T̂ij =

(
1

tij
+

1

tji

)−1

. (37)

Here, tij denotes the one-sided transmissibility coefficient of cell Ci with respect
to face Ci ∩ Cj , defined as

tij = nij ·Kcij/
∣∣cij∣∣2 ,

where cij denotes the vector from the cell centroid of Ci to the face centroid of
Ci ∩ Cj , see [8] for more details. Let us denote T gi,j as

T gi,j = gbw,ij(bw,ijρ
S
w − bo,ijρSw)T̂ij ,
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where T̂ij is defined by (37) and the face values of the formation-volume factors
bα,ij are given in (21). Similarly, we introduce

Tπi,j = bw,ij T̂ij .

We introduce the notation u = (S, c, z). The last variable z is included to make a
unified presentation of the various definitions and concepts, but it is never going
to be an unknown value as S or c. Then, we rewrite (36) as

bw,iφi(Si − S∗i ) +
∆t

Vi
T gij

∑
j

F g(ui,uj) +
∆t

Vi
Tπij
∑
j

Fπ(ui,uj) = 0 (38)

and

bw,iφi(Sici − S∗i c
∗
i ) + (1− φref)(c

a(ci)− ca(c∗i ))

+
∆t

Vi
T gij

∑
j

Gg(ui,uj) +
∆t

Vi
Tπij
∑
j

Gπ(ui,uj) = 0. (39)

The functions Fκ(ul,ur) and Gκ(ul,ur), for κ ∈ {g, π}, will be defined below,
after a short discussion of the scalar case. For the numerical flux F g, we will use
a phase-upwind mobility approximation,

F g(ul,ur) =
λw(Sl, cl)λo(1− Sr)
λw(Sl, cl) + λo(1− Sr)

(zr − zl). (40)

Note that the value of the polymer concentration in the mobility term λw is taken
from the same cell as the water saturation (with value (Sl, cl)); that is, we use up-
winding from the water phase. For the numerical flux Gg, a similar phase upwind-
ing argument would again lead us to take the value of the polymer concentration
from the same cell as the water saturation, because polymer belongs to the water
phase and we would consider the numerical flux

Gg(ul,ur) = m(cl)cl
λw(Sl, cl)λo(1− Sr)
λw(Sl, cl) + λo(1− Sr)

(zr − zl). (41)

Unfortunately, this choice does not guarantee a well-posed scheme.

5.2 Monotonicity properties in the scalar case

Let us investigate in a scalar setting what are the requirements on the numerical
flux function to obtain an unconditionally stable single-cell problem. We consider
the scalar conservation law

ut + f(u)z = 0,

which we discretize using an implicit Euler scheme. That is, we write

un+1
i − uni +

∆t

∆z

[
F g(un+1

i , un+1
i+1 )− F g(un+1

i−1 , u
n+1
i )

]
= 0,

where the function F g(ul, ur) is a discrete approximation of the flux between two
cells. For compatibility reason, we require

F g(u, u) = f(u).
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The single-cell problem consists of finding the solution of R(u) = 0, where

R(u) = u− uni +
∆t

∆z

[
F g(u, ui+1)− F g(ui−1, u)

]
and uni , ui−1, and ui+1 are known. Let us determine the conditions for which this
scalar equation admits a unique solution for any given uni , ui−1, ui+1 and ∆t. Since
uni is arbitrary, we must have that R is monotone. By taking ∆t small, we obtain
that if R is monotone, it can only be increasing. By taking ∆t very large, we see
that we must have d

du (F (u, ui+1) − F (ui−1, u)) positive. Since this must hold for
any ui+1 and ui−1, we end up with the following monotonicity conditions for F g,

∂F g

∂ul
≥ 0 and

∂F g

∂ur
≤ 0. (42)

The Engquist–Osher flux [3]

F g(ul, ur) =

∫ ul

0

max(0, f ′(u)) du+

∫ ur

0

min(0, f ′(u)) du+ f(0)

is an example of a flux function satisfying this condition. In the case of grav-
ity segregation, it is common to use a numerical flux with phase-wise mobility
upwinding,

F g(Sl, Sr) =
λw(Sl)λo(1− Sr)
λw(Sl) + λo(1− Sr)

.

Since λw and λo are non-decreasing functions, we can check that this discrete flux
satisfies the condition (42).

Let us now turn our attention to the capillary pressure term, which will change
the nature of the transport equation from hyperbolic to parabolic. We consider a
generic, nonlinear, scalar, parabolic equation of the form

ut = a(u)xx (43)

where a is an increasing function. For stability reasons, it is well known that
we have to use implicit schemes to discretize (43). A standard finite-difference
approximation gives us

Rπ(un+1
i ) := un+1

i − uni +
∆t

2∆x

[
2a(un+1

i )− a(un+1
i−1 )− a(un+1

i+1 )
]

= 0. (44)

Then, we observe that Rπ is an increasing function so that the solution to Rπ is
unique. Moreover, the discretization (44) implies the following maximum principle:
If un+1

i > uni for some index i that does not correspond to a boundary cell and
n, then we cannot have un+1

i = maxj u
n+1
j . Indeed, un+1

i = maxj u
n+1
j and the

monotonicity of a implies that 2a(un+1
i ) − a(un+1

i−1 ) − a(un+1
i+1 ) ≥ 0, which is not

compatible with (44) if un+1
i > uni . Thus, the scheme enjoys good robustness

properties. Our discretization of the capillary pressure term is closely related to
(44), which becomes clear when we rewrite (44) in the following finite-volume form

un+1
i − uni +

∆t

2∆x

∑
j

Fπ(u, uj) = 0

with Fπ(uu, ur) = a(uu)− a(ur) and the index j spans the values {i− 1, i+ 1}.



The Single-Cell Transport Problem for Two-Phase Flow with Polymer 15

5.3 Well-posedness of the single-cell problem

For the full polymer model, the residual Rw(u) and Rc(u) for water and polymer
in cell Ci are given

Rw(u) = bw,iφi(S − S∗i ) +
∆t

Vi
T gij

∑
j

F g(u,uj) +
∆t

Vi
Tπij
∑
j

Fπ(u,uj) (45)

and

Rc(u) = bw,iφi(Sc− S∗i c
∗
i ) + (1− φref)(c

a(c)− ca(c∗i ))

+
∆t

Vi
T gij

∑
j

Gg(u,uj) +
∆t

Vi
Tπij
∑
j

Gπ(u,uj) (46)

where the numerical fluxes are defined below. The single cell problem for the cell
Ci consists of finding u = (S, c, z) such that

Rw(u) = 0, Rc(u) = 0, z = zi.

For the numerical flux functions of the segregation term, we define, for zr > zl,

F g(ul,ur) =
λw(Sl, cl)λo(1− Sr)
λw(Sl, cl) + λo(1− Sr)

(zr − zl), (47a)

Gg(ul,ur) = m(cl)cl
λw(Sl, cr)λo(1− Sr)
λw(Sl, cr) + λo(1− Sr)

(zr − zl), (47b)

(47c)

For the capillary pressure term, we define, for Sl > Sr,

Fπ(ul,ur) =
λw(Sl, cl)λo(1− Sr)
λw(Sl, cl) + λo(1− Sr)

(
pc(Sr)− pc(Sl)

)
, (47d)

Gπ(ul,ur) = m(cl)cl
λw(Sl, cr)λo(1− Sr)
λw(Sl, cr) + λo(1− Sr)

(
pc(Sr)− pc(Sl)

)
. (47e)

and we extend the definitions of Fκ and Gκ to all values of ul and ur by requiring
that

Fκ(ur,ul) = −Fκ(ul,ur) and Gκ(ur,ul) = −Gκ(ul,ur), (48)

for all ul and ur, which is a necessary condition for the method to be conservative.
Note that Gκ for κ ∈ {g, π} depends on both cl and cr. These functions have been
chosen because they enjoy the following monotonicity properties

∂Fκ

∂Sl
≥ 0,

∂Fκ

∂cl
≤ 0,

∂Gκ

∂Sl
≥ 0,

∂Gκ

∂cl
≥ 0, (49a)

∂Fκ

∂Sr
≤ 0,

∂Fκ

∂cr
= 0 ≥ 0,

∂Gκ

∂Sr
≤ 0,

∂Gκ

∂cr
≤ 0 (49b)

when zr > zl for κ = g and when Sl > Sr for κ = π. The proofs of (49) follow

from the chain rule and the fact that d(mc)
dc ≥ 0 (as m is an increasing function,

see (30)), ∂pc∂S < 0 (by assumption), ∂λw∂c ≤ 0 (see (35)), and ∂λw
∂Sw

≥ 0 and ∂λo
∂So
≥ 0
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(by assumption). The notations that are necessary to define the terms gw,ij , gc,ij ,
πw,ij and πc,ij in (19) have now been introduced and we have

gw,ij =
T gij
bw,ij

F g(ui,uj), gc,ij =
T gij
bw,ij

Gg(ui,uj) (50)

and

πw,ij =
Tπij
bw,ij

Fπ(ui,uj), πc,ij =
Tπij
bw,ij

Gπ(ui,uj). (51)

Our main result on well-posedness for the gravity/capillary step reads as follows:

Theorem 2 For the numerical fluxes defined by (47) and (48), there exists a unique

solution (S, c) to the single-cell problem

Rw(S, c) = 0 and Rc(S, c) = 0,

for any value of the other parameters and, in particular, for any time-step size ∆t.

Proof To simplify the notation, we rewrite (45) and (46) as

Rw(u) = α(S − S∗i ) +
∑
j

βgj F
g(u,uj) +

∑
j

βπj F
π(u,uj) (52)

and

Rc(u) = α(Sc− S∗i c
∗
i ) + δ(ca(c)− ca(c∗i ))

+
∑
j

βgjG
g(u,uj) +

∑
j

βπj G
π(u,uj). (53)

The definitions of the constants α, βκj and δ follow from (45) and (46). All these
constants are positive and α > 0. We introduce the sets of indices Ig+ and Ig− of
the neighboring cells of Ci for which zj > zi and zi < zj , respectively. Similarly, Iπ+
and Iπ− denote the sets of indices of the neighboring cells of Ci for which Sj < Si
and Sj > Si, respectively. We can decompose the sums over neighboring cells in
(52) and (53) as follows∑

j

βκj F
κ(u,uj) =

∑
j∈Iκ+

βκj F
κ(u,uj)−

∑
j∈Iκ−

βκj F
κ(uj ,u),

and ∑
j

βκj G
κ(u,uj) =

∑
j∈Iκ+

βκj G
κ(u,uj)−

∑
j∈Iκ−

βκj G
κ(uj ,u),

These decompositions are convenient because, each of the Fκ and Gκ on the right-
hand side of these expressions, are only evaluated where they take positive values
and where the inequalities (49) hold. Again, we split the proof in two steps:

– Step 1: We prove that, for any c ∈ [0, cmax], there exists a unique S, which we
will denote S(c), such that Rcw(S(c), c) = 0.

– Step 2: We prove that Rc(S(c), c) admits a unique solution in c ∈ [0, cmax].
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Proof of Step 1: We differentiate these expressions and obtain

dRw =
[
α+

∑
κ={g,π}

(∑
j∈Iκ+

βκj
∂Fκ

∂Sl
−
∑
j∈Iκ−

βκj
∂Fκ

∂Sr

)]
dS

+
[ ∑
κ={g,π}

(∑
j∈Iκ+

βκj
∂Fκ

∂cl
−
∑
j∈Iκ−

βκj
∂Fκ

∂cr

)]
dc (54a)

and

dRc =
[
αc+

∑
κ={g,π}

(∑
j∈Iκ+

βκj
∂Gκ

∂Sl
−
∑
j∈Iκ−

βκj
∂Gκ

∂Sr

)]
dS

+
[
αS + δ

dca

dc
+

∑
κ={g,π}

(∑
j∈Iκ+

βκj
∂Gκ

∂cl
−
∑
j∈Iκ−

βκj
∂Gκ

∂cr

)]
dc. (54b)

To simplify the notation in the previous expressions, we do not write the values at
which the partial derivatives are evaluated and assume that they are evaluated at
(u,uj) if the expression occurs in a sum over Iκ+, and evaluated at (uj ,u) if in a
sum over Iκ−. We will follow this convention in the remainder of the section. Given
c ∈ [0, cmax], for u = (0, c), we have

Fκ(u,uj) = 0

so that

Rw(0, c) = −αS∗i −
∑
j∈Ig−

βgj F
g(uj ,u)−

∑
j∈Iπ−

βπj F
π(uj ,u) ≤ 0.

For u = (1, c), we have

Fκ(uj ,u) = 0

and it follows that

Rw(1, c) = α(1− S∗i ) +
∑
j∈Ig+

βgj F
g(u,uj) +

∑
j∈Iπ+

βπj F
π(u,uj) ≥ 0.

Moreover, we have

∂Rw
∂S

= α+
∑

κ={g,π}

∑
j∈Iκ+

βκj
∂Fκ

∂Sl
−

∑
κ={g,π}

∑
j∈Iκ−

βκj
∂Fκ

∂Sr
> 0

so that the function is S 7→ Rw(S, c) is strictly increasing for a given c. Therefore
there exists a unique solution S(c) in [0, 1] to the equation Rw(S, c) = 0. This
concludes the proof of Step 1.

Proof of Step 2: For c = 0, that is, u = (S(0), 0), we have Gκ(u,uj) = 0 for
all j so that

Rc(S(0), 0) = −αS∗i c
∗
i + δ(ca(0)− ca(c∗i ))−

∑
κ={g,π}

∑
j∈Iκ−

βκj G
κ(uj ,u) ≤ 0.
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Since Rw(umax) = 0, for umax = (S(cmax), cmax), we obtain from (53) that

Rc(umax) = Rc(umax)− cmaxRw(umax)

= αS∗i (cmax − c∗i ) + δ(ca(cmax)− ca(c∗i ))

+
∑

κ={g,π}

∑
j∈Iκ+

βκj
[
Gκ(umax,uj)− cmaxF

κ(umax,uj)
]

−
∑

κ={g,π}

∑
j∈Iκ−

βκj
[
Gκ(uj ,umax)− cmaxF

κ(uj ,umax)
]
.

We have

Gg(umax,uj)− cmaxF
g(umax,uj) =

cmax

( λw(S(cmax), cj)λo(1− Sj)
λw(S(cmax), cj) + λo(1− Sj)

−
λw(S(cmax), cmax)λo(1− Sj)
λw(S(cmax), cmax) + λo(1− Sj)

)
≥ 0

because the function

c 7→
λw(S(cmax), c)λo(1− Sj)
λw(S(cmax), c) + λo(1− Sj)

is non-increasing as ∂λw
∂c ≤ 0. Similarly,

Gg(uj ,umax)− cmaxF
g(uj ,umax)

= m(cj)cj
λw(Sj , cmax)λo(1− S(cmax))

λw(Sj , cmax) + λo(1− S(cmax))

− cmax
λw(Sj , cj)λo(1− S(cmax))

λw(Sj , cj) + λo(1− S(cmax))

= cmax

( λw(Sj , cmax)λo(1− S(cmax))

λw(Sj , cmax) + λo(1− S(cmax))

−
λw(Sj , cj)λo(1− S(cmax))

λw(Sj , cj) + λo(1− S(cmax))

)
+ (m(cj)cj − cmax)

λw(Sj , cmax)λo(1− S(cmax))

λw(Sj , cmax) + λo(1− S(cmax))
≤ 0,

because m(cj)cj − cmax ≤ m(cmax)cmax − cmax = 0. From the definitions, we can
check that

Gπ(umax,uj)− cmaxF
π(umax,uj)

=
(
Gg(umax,uj)− cmaxF

g(umax,uj)
)

(pc(Sj)− pc(S(cmax)))

which is positive when j ∈ Iπ+, that is S(cmax) > Sj , and

Gπ(uj ,umax)− cmaxF
π(uj ,umax)

=
(
Gg(uj ,umax)− cmaxF

g(uj ,umax)
)

(pc(S(cmax))− pc(Sj))
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which is negative when j ∈ Iπ−, that is S(cmax) < Sj . Hence, Rc(S(cmax), cmax) ≥ 0.
From (54a) and (49), we have that

dS

dc
≥ 0

so that, by (54b) and again (49), we get

d

dc
Rc(S(c), c) =

[
αc+

∑
κ={g,π}

∑
j∈Iκ+

βκj
∂Gκ

∂Sl
−

∑
κ={g,π}

∑
j∈Iκ−

βκj
∂Gκ

∂Sr

]
dS

dc

+

[
αS + δ

dca

dc
+

∑
κ={g,π}

∑
j∈Iκ+

βκj
∂Gκ

∂cl
−

∑
κ={g,π}

∑
j∈Iκ−

βκj
∂Gκ

∂cr

]
≥ 0. (55)

Therefore the function Rc(S(c), c) is non-decreasing and there exists a solution
c ∈ [0, cmax]. The solution (S, c) is unique if S > 0 because the function Rc(S(c), c)
is then strictly increasing at c. In the case where the equation has a solution (S, c)
such that S = 0, the conclusion is the same as at the end of the previous section,
that is, the solution is unique only if the adsorption function is strictly increasing.
This concludes the proof of Step 2.

6 The Unsplit Transport Equations

In the previous section, we have seen that the well-posedness of the discrete system
of transport equations for segregation and capillary pressure follows as a conse-
quence of the monotonicity conditions (49) on the numerical fluxes. If we apply the
same notations to the transport equations (23) and (24) for the Darcy component,
we obtain

0 =
(
bw,iφiS

)
−
(
bw,iφiSi

)n
+
∆t

Vi

[ ∑
{j|vij>0}

bw,ij
∣∣vij∣∣F d(u,uj) − ∑

{j|vij<0}

bw,ij
∣∣vij∣∣F d(uj ,u)

]
(56)

and

0 =
[
bw,iφiSc+ ĉa(c)(1− φref,i)

]
−
[
bw,iφiSici + ĉa(ci)(1− φref,i)

]n
+
∆t

Vi

[ ∑
{j|vij>0}

bw,ij
∣∣vij∣∣Gd(u,uj) − ∑

{j|vij<0}

bw,ij
∣∣vij∣∣Gd(uj ,u)

]
, (57)

where

F d(ul,ur) =
λw(Sl, cl)

λw(Sl, cl) + λo(1− Sl)
, (58a)

Gd(ul,ur) = clm(cl)
λw(Sl, cl)

λw(Sl, cl) + λo(1− Sl)
. (58b)

We observe that the conditions (49) are not fulfilled because ∂Gd

∂cl
and ∂Gd

∂cl
do not

in general have a given sign. In the case of the gravity segregation and capillary-
pressure terms, we have been able to formulate fluxes that satisfy the monotonicity
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conditions (49) by changing the dependence with respect to the concentration
values in Gg and Gπ. The same strategy can be used for the Darcy term and, after
replacing cl with cr in the mobility terms of Gd, we obtain

F d(ul,ur) =
λw(Sl, cl)

λw(Sl, cl) + λo(1− Sl)
, (59a)

Gd(ul,ur) = clm(cl)
λw(Sl, cr)

λw(Sl, cr) + λo(1− Sl)
, (59b)

which indeed satisfy the monotonicity properties (49). However, the expressions
in (59), as the ones in (47), depend on both ul and ur, which means in practice
that the evaluation of a numerical flux at a given interface requires the cell values
on both sides of the interface. This double dependence prohibits the use of any or-
dering scheme. In comparison, the expressions in (58) depend only on ul and, as a
result, ordering schemes can be used to significantly reduce the computation time.
These considerations show that one of the major achievements in Section 4 was
in fact to obtain well-posedness for numerical fluxes that do not fulfill the mono-
tonicity conditions (49). They also provide us with the following discretization for
the unsplit transport equations,

0 =
(
bw,iφiS

)
−
(
bw,iφiSi

)n
+

∑
κ={d,g,π}

∑
j∈Iκ+

βκj F
κ(u,uj) −

∑
κ={d,g,π}

∑
j∈Iκ−

βκj F
κ(uj ,u) (60a)

and

0 =
[
bw,iφiSc+ ĉa(c)(1− φref,i)

]
−
[
bw,iφiSici + ĉa(ci)(1− φref,i)

]n∑
κ={d,g,π}

∑
j∈Iκ+

βκj G
κ(u,uj) −

∑
κ={d,g,π}

∑
j∈Iκ−

βκj G
κ(uj ,u), (60b)

where F d and Gd are given by (58). From the analysis presented in the previous
sections, there are good reasons to believe that the single cell problem given by the
system of equations (60) is well posed. This question deserves further investigations
as the well posedness of the single cell problem is a strong indication of good
robustness properties of the corresponding discretization in term of choices of
numerical fluxes.

7 Concluding Remarks

A series of numerical experiments that demonstrate the efficiency and scalability
of the operator-splitting, Gauss–Seidel approach for polymer flooding are reported
in [10]. All experiments reported in [10] were run with the numerical flux (41), and
although this flux does not theoretically guarantee a well-posed scheme, we did
not encounter any convergence problems, even for quite large time steps. A topic
for future research would therefore be to conduct a thorough numerical study to
compare the stability and accuracy of the two fluxes, (41) and (47b).
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