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Abstract

A sequential splitting of the pressure and transport equations applied to a compressible two-phase
flow with polymer leads to a considerable speed-up of the simulation, see [1]. To avoid excessive
limitation on the size of the time step, the transport equations are solved implicitly. By using an
iterative transport solver, in which the transport equations are solved cell-by-cell from upstream we
can further decrease the computation time significantly. Such approach requires a robust single-
cell transport solver. The single-cell problem consists of computing the saturation and the polymer
concentration in a cell, given the total flux, the saturation, and the polymer concentration in the
neighbouring cells. We derive a splitting and a discretization of the mass-conservation equations
for which the single-cell problem is always well defined - for any time step size. We are now
able to handle the compressible case, which requires a careful choice of the pressure equation and
the segregation case, which requires to use a mixed upwind/downwind evaluation of the polymer
concentration in the computation of the numerical flux.

[1 ] Lie K.A, Nilsen H., Rasmussen A, Raynaud X. Fast simulation of polymer injection in
heavy-oil reservoirs based on topological sorting and sequential splitting SPE J., 2014. DOI:
10.2118/163599-PA.
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In reservoir with highly viscous oil, fingering effects lead to water penetrating easily the most permeable
parts of the oil region. In this case, early water breakthrough letting a large fraction of the reservoir
unswept implies a considerable loss in oil recovery. To avoid this situation, enhanced oil recovery
strategies have been developed and polymer injection is one of the most important. The polymer is
used to increase the water viscosity ratio and establish a more favorable mobility ratio between the two
phases. Polymer are miscible in water but, in realistic reservoir models, the coarseness of the grid does
not allow for a correct computation of the mixing zone. Instead, we have to resort to averaging models
(see Booth (2008); Koval (1963)) and the most popular is the Todd-Longstaff mixing model (Todd and
Longstaff, 1972), which is used in several commercial simulator, as Eclipse and CMG. In this paper, we
consider a two phase flow problem with polymer injection. In addition to the Todd-Longstaff mixing
model, we also include permeability reduction effects, polymer adsorption and dead pore space.

Introduction

Fully implicit solvers are usually prefered for their robustness but may, in some context, be computation-
ally too expensive. An alternative is to use splitting techniques (see e.g. Holden et al. (2010)). Here, we
split the governing equations consisting of the mass conservation equations for water, oil and polymer
into a pressure equation and two transport equations for water saturation and polymer concentration.
The pressure and transport equations are then solved sequentially. In (Lie et al., 2013), the authors
study an iterative implicit transport solver, where the nonlinear transport equations for saturation and
concentration are solved cell by cell. The optimal configuration for such solver is when all the cells can
be reordered following the direction of the flow, as the computations are done only once for each cell
(Natvig and Lie, 2008). When using a two point flux approximation and in the absence of gravity, the
pressure values in each cell directly provides us directly with an ordering of the cells so that, in this case,
total reordering is always guaranteed. This aspect makes attractive a further splitting of the transport
equation into a Darcy component and a gravity component. Moreover, from the physical point of view,
polymer is used in heavy oil reservoir so that the effect of gravity segregation are not so strong. When
the cells cannot be reordered, one can use a nonlinear Gauss-Seidel algorithm which iterates until con-
vergence over each block of cells that are made inter-dependent by the orientation of the flux. When the
cells can be reordered, the algorithm we use is still a nonlinear Gauss-Seidel algorithm, which converges
in one iteration. In the case of a two phase flow problem (without polymer), it is shown in (Kwok and
Tchelepi, 2008) that a non-linear Gauss-Seidel algorithm for the transport equation is globally conver-
gent, that is, converges from any given starting point. In (Lie et al., 2013), we show the good scalability
properties of this scheme and its computational efficiency.

The nonlinear Gauss-Seidel algorithm relies heavily on a robust solver for the single-cell problem. The
single-cell problem consists of computing the saturation and concentration in a given cell, knowing the
saturation and concentration in the neighboring cell and the total flux. The total flux is obtained in the
pressure step where the pressure equation is solved. Mathematically, the single-cell equations is a set
of two non-linear equations whose particular form depends on the time step, the geometry, the fluid
and rock properties, the saturation and concentration values of the neighboring cells and the total flux.
The main achievement in this paper is to show that the single cell problem is always well-posed and,
in particular, for any time step length. By well-posedness, we mean that there exists a solution and
that the solution is unique. In the case of the Darcy component, we extend the results obtained in (Lie
et al., 2013) for the case with equal fluid compressibilities to the case with different compressibilities,
assuming that one of the two phases is always more compressible than the other. This assumption is
not too restrictive as oil is typically always more compressible than water. The well-posedness result
relies on some properties of the pressure equation, which has to be chosen with care. For the gravity
component, we use a standard phase upstreaming for saturation but for the polymer concentration, the
problem is more delicate. At first, we consider the water upstream direction to evaluate the polymer
concentration on the faces but this choice does not lead to the well-posedness of the solution. We present
an alternative choice, mixing both upstream and downstream values, which guarantees well-posedness.
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Our starting point is the mass conservation equations for oil, water, and polymer

Polymer Model

d

E(p(x(])S(x)‘FV'(p(x\_;a) :Oa ac {W70}7 (1)
d
E(pwd)ch) + V- (cpwVwp) =0. ()

Here, pqy, Vo, and Sy denote density, velocity, and saturation of the phase «. The porosity is denoted
by ¢ and is assumed to be a function ¢ (p) of pressure only, ¢ is the polymer concentration, and ¥,,, the
velocity of water containing diluted polymer. Sources and sinks may be included in a manner equivalent
to boundary conditions, and are left out of the above equations.

To model the viscosity change of the mixture, we use the Todd-Longstaff model (Todd and Longstaff,
1972). This model introduces a mixing parameter @ € [0, 1] that takes into account the degree of mixing
of polymer into water. Assuming that the viscosity U, of a fully mixed polymer solution is a function
of the concentration, the effective polymer viscosity is defined as

1-o

Hp eff = .um(c)wﬂpi with  tp =ty (Cmax)- (3)
The viscosity of the partially mixed water is given in a similar way by
Have = i (€)1~ @)

The effective water viscosity U, ¢t is defined by interpolating linearly between the inverse of the effective
polymer viscosity and the partially mixed water viscosity

1 _ 1—C/Cmax+c/cmax

oy eff e .’»lp,eff

&)

To take the incomplete mixing into account, we introduce the velocity of water that contains polymer,
which we denote V,,,. For this part of the water phase, the relative permeability is assumed to be equal
to k., and the viscosity is equal to t, ¢r. We also consider the total water velocity, which we still denote
V,» and for which the viscosity is given by w,, .tr. Darcy’s law then gives us

krw
Vp=———2_K(Vp—puwgVz), 6
R () (Vp—pwgVz) (6)
k
Vp = —————K(Vp — ppgVz) = m(c)v, (7)
P ,up,efka(Ca) ( P—Pw ) ()

as we assume that the presence of polymer does not affect the pressure and the density. The polymer
mobility factor m(c) is defined as

Moy eff
mic) = -
(c) g

and, after some simplifications, we get

=[0G ) ®

The function Ry (c*) denotes the actual resistance factor and is a non-decreasing function which models
the reduction of the permeability of the rock to the water phase due to the presence of absorbed polymer.
The concentration of absorbed polymer is denoted by ¢*. We introduce the total flux as vV = ¥,, +V,. We
have

V= _(A’W + A())I(Vp +g<Awa + l{JP())I<VZ
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and, after some computation, we obtain the following expression of ¥, as a function of v

Vw:fw‘j'i“;é and ¥, :fov_‘% )
with i
y, = i —po)gKVz. 10
Vg A‘w"_)vo (pW Po)g Z ( )
Here, Ay denotes the mobility of phase a, i.e.,
k k
Jy= 2 and A=,
My iR (c?) Mo

and fy corresponds to the fractional flow, fo = Aq/(Ayw + 4,). The time scale of adsorption is much
larger than that of mass transport and we will assume that adsorption takes place instantaneously so
that ¢ is a function of ¢ only. The reference rock density is p,.r and the reference porosity @rr. The
adsorption of polymer is then taken into account by replacing (2) by

0 0
E(PW(])SWC) + ot (pr,ref(l - ¢ref)ca) +V- (pr‘_"wp> =0. (11)

It is natural to assume that ¢ is an increasing function of c¢. Polymer cannot reach the smallest pores
and, as a result, the effective pore volume for the polymer solution is smaller than the pore volume of
the rock. This effect can be modeled by replacing (11) with

0 0
E(PW‘P(l - Sde)SwC) + ot (Pr,ref(l — Pref)c”) + V- (cpw\_pr) =0. (12)

where Sqpy denotes the fraction of the pore volume which is not accessible to polymer. The introduction
of dead pore volume has the effect to increase the mobility of the polymer solution. However, the model
equation (12) yields to instabilities because it allows polymer to go faster than its solvent (water). In a
forthcoming article (!), it is shown that a consistent way to introduce dead pore volume is to replace the
definition of the effective water viscosity given by (5) by

1 1 —c¢/cmax ¢/ Cmax

= + . (13)
My eft Hwe ( 1— Sdpv ) .up,eff

In this case, the polymer mobility factor becomes

o M eff o B Cc & 1~ . c 11
m(C) B Up ett B |:(1 Cmax) <uw) (1 Sde) * Cmax] ‘ (14
Finally the modeling equations are
d -
57 (Pa®Sa) +V - (pava) = 0, (152)
for a € {w,0},
0 d R
E(PW‘PSWC) + 5 (Praet(1 = rer)c”) + V- (cpuiip) = 0. (15b)

where V¢, and v, are defined in (6) and (7) using (3), (4) and (13).
Discretization and Splitting of the equations

Simple PVT behaviour is modeled through the formation-volume factors by, = by (p), defined by py =
bapy, where p3 is the surface density of the phase & € {w,0}. Inserting this into (15), the system can
be simplified by dividing each equation with the appropriate surface density p3,

+ 881‘ (1= @ref)e”) + V- (bwc‘_;wp) =0, (16b)

d

E (bw¢swc)
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where, for convenience, we have introduced the short-hand ¢* = ¢?pj.rer/ p;z. To discretize (16), we
introduce a grid consisting of cells {C;} with a bulk volume V;, integrate over each cell in space, and
apply a standard implicit method for the temporal derivative. This gives the discrete transport equations

At

2!

Ro,i= (ba,i¢i5a,i)n+l — (b, i¥iSai)" + (ba,ijv(x,ij)n+l =0, (17a)

for a € {w,0} and

n

n+1
R.;= (bw.,i(PiSW,iCi +(1— ¢ref,i)5?> - (bw,id)iSw,iCi +(1— ¢ref,i)5?)

At .
+ VZ(bw,ijCiijp,ij) H_o. (17b)
Lj

Here, subscripts i denote quantities associated with cell C; and subscripts ij denote quantities associated
with the interface between cells C; and C;. Superscripts denote time steps. To derive a discrete pressure
equation, we sum the two phase equations, (17), using (9) and the condition S, +S, = 1 to obtain the
pressure residual equation

1
R _ an+l n bghi n At br(;;] n+1_0 18
pi=0""" =0 Y (anSa,i)Jrvz ) e (faijvij +8aij)" =0. (18)
ac{wo} “a, Vj ae{wo} Yai

Here, v;; is a discretisation of the total flux. We use a two point flux approximation and we obtain a
relation of the form

VijZ—Tij(Pj—Pi)+gij- (19)

The transmissibility 7;; depends on saturation and concentration and g;; is a discretization of the gravity
term fc,-mc,— 8(Awpw + Aopo)KVz-ndA. The exact form of g;; does not matter on the results which are
presented here. The terms g,,;; and g, ;; correspond to discretizations of fcmc,- Vg -ndA. Again, the exact
form of gq ;; does not matter here for the pressure equation (for the transport equation, we will handle
this term with care, see Section ) but we require that g,,;; = —g,;;. Our overall system will consist of
a pressure equation, (18), and two transport equations, (17a) with & = w for the water saturation and
(17b) for the polymer concentration. To solve this coupled system, we use a standard sequential solution
procedure that separates and solves the pressure and transport equations in consecutive steps. We also
split the transport equations (18) into a Darcy and gravitation component. The Darcy step consists of
solving

n n+l

" 1 At
(i iS;,;) S (bwi®iSw.i)" + v Y (buijfwvij)” =0, (20)
L
and the corresponding residual equation for polymer (see (24)) to obtain the intermediate saturation and
concentration values S and ¢! which are used in the segregation step given by

i i

%\ 1 At +1
(bui9i(Si —S7))" +72(bw,,‘jng,‘j)j; =0, (21)
L
and the corresponding residual equation for polymer (see (40b)) to update $"*! and ¢"*!. In the two
following sections, we show that under certain conditions this sequential splitting is unconditionally
stable in the sense that solutions to (20) and (21) exist and are unique without any restriction on the time
step At.
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We use an upstream evaluation of the fractional flow f,; and the pressure equation rewrites

Unconditional Stability: Darcy component.

n+1

n bn.- At Y b
Rpi ="' — ¢ Z ( no-c}ll Sei) + A Z Z <f“(S?’Cj) :ﬁ V7J'+1) (22)
ac{w,} ba,i ! {j\v:{;?1<0} oc{woo} b(x,i
1 n+1
At 1 1 +1 At bn7+ b Ve
+ v Z (fa(5?+ 7C?+ ) Z (bijVij)n ) + vzgo,ij(bflj_jl - b:f_ijl) =0,
L ae{wo} {j\vz;r1>o} L 0,i w,i

where v;; is given by (19) for values of saturation and concentration taken a the step n. The value of the
surface volume factors have to be evaluated at the interface. To do so, we consider an approximation of
the interface pressure, p;;, for example given by the average p;; = %(pi + pj), then it is natural to set
b’;’l} = by pflfl) but, in order to obtain uniform stability of the Darcy component, we will see we need
a different approximation, as detailed below. Once the coefficient b;; are defined, we can compute the
solution p"*! and vl’-‘;rl of the pressure equation (22) and proceed with the transport step. The Darcy

component for the water residual equation is

At n+1

Ryi(S™ et :(bi¢iSi)n+1 — (bigiS)" + - Y (fu(Sjicj)bijvij) (23)
L <0}
At n+1 n+1
+ vfw(ShCi) Z (bijvij)"" =0,
! {ilvy >0}

while, for the polymer residual equation, it is given by

Rc,i(Sn-H ,Cn+1) = [bi(PiSiCi + @u (C,’)(l — ¢ref7i)] ntl — [bi(PiSiCi + @a(ci)(l — ¢ref7l')j| "

=Y (mlepeifu(Siepbivi)" + (mle)eiful(Sie)) T Y (byvy)"T =0, @4
<0y {0}

Note that the polymer concentrations are also evaluated upstream. The single-cell problem for cell C;
consists of solving
Ryi(S,c)=0 and R.;(S,c)=0 (25)

where, slightly abusing notation, we denote by (S,c¢) the unknown (S;, ¢;). The other values S, for j # i
are assumed to be known. The pressure p"*! is the solution of (22). In the following, we will show that
the solution to (25) exists and is unique for all time steps Az. First, we start by proving that, for any
¢ € [0, cmax], there exists a unique S, which we will denote S(c), such that R,,;(S(c),c) = 0. Given c, let
us compute the values of the water residual at the endpoints, that is, for § =0 and S = 1. For S = 0, we

have
At
Ry,i(0,¢) = —(bwi9:iS:)" + v Y (fu(Sjici)buijvi)" ! <0. (26)

L iit<oy

For S = 1, after using (22), we have

1 1
—Rw,,‘(l,c) = 7RW71‘(1,C) _Rp,i =A +B+C+D,
bw,i bw,i
where
. e b .
A= (0= 0S0) — ($iSwi — 7 G'Shi) — (9iS0i — 7= 97'S5 1),
bw,i bw,i bo,i
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w,i bwz bo,i j
= L vy (Al5e) 3 - RS~ Sl ).

i {vi,j<0}

A Wit w,i byii
-3, ZVMOMwM"M,”n; fol ST Mj)

Vi {vi;>0}

)

and

At bw ij ba ij
D=—)g ( = — )
Vi ; o bw,i bo,i
In the expressions above, the superscript is omitted when it corresponds to n+ 1. We will follow this
convention in the rest of the article. These expressions simplify as follows. We have

b"
— ﬂq) i
so that A > 0 and
At b b by
B = v Z Vij (fo( " rJz) <bwtj bolj> . bw,z.J(l _fW(Sj,Cj))> ,
I {v; j<0} Wi 0,i Wi
A
wij  Po,ij
Z szfo i 1 <bwi b07[>

Vi {vij>0}

In the case where oil and water compressibilities are equal, that is, b, = b,,, we have C = D = 0 and
B > 0. In the general case, a sufficient condition to obtain that R(1,¢) > 0 is that the quantity E, defined
as

byij  boij - buii  boij
E = Z (fo( i ;)sz'i‘goz]) (l)vv,j_l)()lj)+ Z (fO(Sj?Cj)vi,j"i_gon)( ,]_J)

{vi,;>0} {vij<0} byi b,

is positive. We assume that the water compressibility is smaller than the oil compressibility in the
pressure range we are interested in, that is,

Cw(p) < Co(p) forall p € [pminapmax]7 (27)
then we can show that, for any p1, p2 € [Pmin, Pmax)» if P1 < p2, then

boij _bwij _ bo(p2) _ bw(p2)
bo,i bw7i bo(pl) bw(pl)

> 0. (28)

By definition, we have bidd@ = cq(p). Hence, d(In(b,)) = c,(p)dp. After integrating and using that

pi < pj, we obtain
(5eipy) =, = [ oo = (G75)

so that (28) holds. Now, we define the surface volume factor b;; at the interface in a way which guaran-
tees that £ remains positive in all cases. As mentionned earlier, an optimal choice in term of accuracy
would be to take by jj = bg( p:’;’l) where p”+1 is an approximation of the pressure at the interface. But
this choice does not guarantee negative Values for E. By defining bq ;; as

b Jbalp) i (fo(SE,f)viji+ 80s) (Pi = p))
o] — .
T balp) i (fo(SE i+ 8oif) (Pi— p))

IV IA

0
’ 2
0 (29)

I
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when v; ; > 0, the identity (28) implies that the coefficient E always remains positive. Note that f,v; ; +
8o,ij 1s an approximation of the oil flux V- n so that the condition (29) can be rephrased as follows: If
the flux of the most compressible phase is in the same direction as the inverse pressure gradient, then
we evaluate the densities by taking the pressure value downwind; otherwise, we use the upwind value .
To prove that R,,(S,¢) admits a unique solution in S for a given c, it remains to prove that the function
S+ R, (S,c) is strictly increasing. We simplify the notations and rewrite the residuals in the cell C; as

Ry(S,¢) = 1S+ 02 [ (S, ¢) + 03 (30a)
R.(S,c) = 01Sc+ 04¢“(c) + apm(c)cf(S, ) (30b)

where {0;}#_, are constants whose definition can be inferred from the definition of the residuals. These
constants depend only on the values of S; and c¢; of previous time steps or other cells than C;, they are

positive and o7 > 0. We have

Ry _ o Of
s O To25g

As expected, the fractional flow is an increasing function of saturation. Indeed, we have

of, 9, FYS

_ (I _ Yo -2

because % >0, ‘%” < 0. Since

JdR
R,(0,¢) <0, R,(1,c)>0 and TSW >0,
there exists a unique solution S(c) to R,,(S(c),c) = 0 for any given ¢ € [0, cmax]. Let us now prove that
R.(S(c),c) admits a unique solution in ¢ € [0, cimax]. As earlier, we start by checking the endpoints ¢ = 0

and ¢ = cpax. We have

Al n A n+1
RC(S(O),O) = — (b,'(P,'S,'Ci +c (Ci)(l — (Pref’l‘)) + o Z (m(cj)cjf(Sj,cj)bijvij) +
L {jvit<oy
so that R.(S(0),0) < 0. For ¢ = cmax, We have

R, (S(Cmax) y Cmax) = RC(S(Cmax) s Cmax) - Cmawa(S(cmax)ycmax) =A+B+ Ca

where
A= (éa(cmax) B éa(ci))(l - (Pref,i) + (Cmax —ci) &J HAYS
At
B = V Z (m(c}}‘f‘])c?‘i‘] _ Cmax)fW(S;+l’C;{-&-l)b?j—Hv?j—i—l
<o}
and

A

C
Vi

(m(cmax)cmax - Cmax)fw(S(Cmax)aCmax) Z b?ﬁlvﬁ—y
(v >0}

Since m(cmax) = 1, we have C = 0. To prove that B > 0, we are going to establish that m(c)c is non-
decreasing so that

sup m(c)c = M(Cmax)Cmax = Cmax- 31)
c€[0,cmax]

Let us denote

K= (%) 1760(1 — Sapv) >0,

and we rewrite (14) as
L _ K+ (1—x) ¢
m(c) Cmax

(32)

ECMOR XIV — 14™ European Conference on the Mathematics of Oil Recovery
Catania, Sicily, Italy, 8-11 September 2014



After some computation, we get that

d
S (n()e) = m(e) - L1,
which can be rewritten, using (32), as
d 2
%(m(c)c) = Km". (33)

Hence, m(c)c is non-decreasing. From (31) it follows that B > 0 and R, (S(¢max),¢max) > 0. Let us now
prove that the function ¢ — R.(S(c),¢) is a non-decreasing function. We have

dR. = o1(cdS+Sdc) + 04dé® + orf d(m(c)c) + oam(c)cd f (34)
Since S(c) is solution of R,,(S(c),c) = 0, we have
G1dS + ord f =0, (35)

from (30a). Plugging this result into (34), we get

dR. = o1c(1 —m(c))dS+ 01Sdc+ 04dé* + oo f d(m(c)c). (36)
From (35), we obtain that
(o140, g{;)dS = —ngfdc
which yields, by (36),
(61+023§)‘ZR oS+ o3 g{;xfm +G4(01+cza§)‘ifd
+6162(53§ +Kfm* —c(1 —m)gf). (37)

Since af > 0 and, as we will show, af < 0, we can conclude that 4R, > 0 if the condition that

3§+Kfm —c(l— m)gjcczo (38)
is fulfilled. In the appendix we explain why condition (38) is necessary if we want the system of equa-
tions given by (16a) (for oo = w) and (16b) to produce waves which both travel in the same direction of
the total flux. Otherwise, we can still assume that k¥ > 1, which directly implies that the polymer mobility
factor m(c) is a non-decreasing function of the concentration c. This assumption is physically reasonable
and easy to check. In this case, m(c) < m(cmax) = 1. Let us compute g—g. Since, Ay, = kpy/ Uy efiRi, We

have
8f 87L Ao d kpw Ao

ac ()vw+}t ) % (nuw,efka) HweffRz (7(, _f_a' )

<0. (39)

Indeed, by assumption, a—’ff‘ > 0 and we expect that % > 0 because the effect of polymer is to in-
crease the effective viscosity of water. Let us check that directly. As i, e = m(c) Upeff and W, eff =

Hm(c)®py~®, we have

d d
%ln(ﬂmeff) = %ln(m) + w%ln(um).
Since m and, by assumption, u,, are non-decreasing functions, we can conclude that (i, ¢ is non-
decreasing. Since

R(S(0),0) < 0 and Re(S(Cmax)s cmax) = 0,
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there exists at least one solution ¢ to R.(S(c),c) = 0 in [0,cmax]. If, for this solution, S(c) > 0, then
dfc" > 0 because o7 > 0 and the solution is unique. Otherwise, if there exists ¢o such that S(co) = 0 and
R:(S(co),co) = 0, then we have, by (26), that S” = 0 and f,,(Sj,c;) = O for all j such that v; ; < 0. The
polymer residual becomes

Re(S,¢) = &%(c) — ¢%(c).

In the absence of adsorption, it yields R.(S,c¢) = 0 for all ¢ € [0, ¢max]. Thus, the solution is not unique.
This property simply reflects the fact that concentration is not a well defined quantity in the absence of
water. Note that adsorption will have a stabilizing effect. Indeed, assuming that ¢¢ is a strictly increasing
function, we recover uniqueness.

Unconditional Stability: Segregation component.

To take into account the gravity segregation effects, we introduce an additional operator splitting for the
transport equations as described at the end of Section . This operator splitting method was first intro-
duced within streamline simulation (Gmelig Meyling, 1990, 1991; Bratvedt et al., 1996), but can also
offer certain benefits for finite-volume methods, e.g., as discussed in (Lie et al., 2012a). The segregation
residual equations for water and polymer are given by

ij

(bwo(S— S"))j’+1 + % Y (BwAof(S.c)(pw — po)gKVz)"H =0, (40a)
i

and

n+1

(Bu0e(S =5+ (1= grer) (c”(€) (")) )

+ %Z (Bum(c)cAof(S,¢) (P — Po)gKV2)" T = 0. (40b)
L

ij

i

We use a two point flux approximation to discretize the term fc,-mc,- by (pw — Po)gKVz-ndA. For a face
C;NCj, the flux of the gradient of a function y of the form

/ hKVl[/'ni,jdA,
CiﬂCj
for some given function 4, is approximated by

/ hKVy -n; jdA, =T j(y; — ;)
CiﬂCj

heo k!
we(202)
Lij 1

and 7; ; denotes the one sided transmissibility coefficient of the cell C; with respect to the face C; NC;,
defined as

where

1
lij= —Rij -Kc,',j,
|ci.j]

where ¢; ; denotes the vector joining the cell centroid of C; to the face centroid of C;NCj, see (Lie et al.,
2012b) for more details. For the gravitation segregation equation, we take

)
Po
.

w

v=z and h=b,—b,

In the case of a corner-point grid consisting of strictly vertical pillars, the gravitation flux vanishes
on all vertical faces of a cell. Let us consider a column which consists of vertically aligned cells C;
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(i=1,...,N) and denote by z; the vertical coordinate of the centroid of C;. The discretization of (40) in
a column yields, after denoting u = (S, ¢), the following residual equations

L ght
bw,i¢i(Si - S,‘ ) + gv

i

(F(un Wi 1) i1 (zie1 —zi) — F (w1, u:) T i(zi — ZFl)) =0
and

gAt
%

by,i9i(Sici —S;c;) + (1 — @rer) (¢ (ci) —c(c)) + (G(ui, wi )T i1 (zie1 —zi)

— G(ui—1,u;)Ti1i(zi —Zifl)) =0

where F(u,,u;) and G(u,,u;) denote approximations of the flux (For a given face, u, and u; are the
values u of the cell above and below the face). As earlier, we drop the superscript n+ 1 in the notation.
For the numerical flux F, we use a phase upwind mobility approximation,

Ao (S i) Ao (1= S))
e (Surca) + A (1—S))

Note that the value of the polymer concentration in the mobility term A,, is taken from the cell above,
that is, we use upwinding from the water phase. For the numerical flux G, it seems at first natural to take
the value of the polymer concentration from the cell above, because polymer is transported by the water
phase to which it belongs. Then, we obtain the following expression for the numerical flux

A (Suy cu) Ao (1 —Sy)

(41)

F(uy,u;) =

G(uy,u;) = . 42
(uu ul) m(CM)CMAW(Su’Cu)+AO(17Sl) ( )
But this choice does not lead to well-posedness and we have to consider instead
Aw(S, Ao(1=S8
Gty ur) = m(e)ey e Suc) ol = S1) 43)

A (Suscr) + Ao (1=8))

where the value of the polymer concentration in the mobility term A,, is taken from the cell below,
which corresponds to upwinding from the oil phase. In the rest of this section, we prove that the single
cell problem for the segregation problem is unconditionally stable. In the case of a column, the spatial
dimension is reduced to one and we start this section by introducing the general setting in one dimension
and investigate what are the requirements on the numerical flux function to obtain an unconditionally
stable single cell problem. Let us consider the scalar conservation law

Uy +f(”)z = 07
which we discretised using an implicit Euler scheme, that is,

At
A
Az

(F(u(l+1 un-i—l) _F(un-H un-l—l)) — O,

u i Uiy i—1U

where the function F (u,,u;) is a discrete approximation of the flux between two cells. For compatibility
reason, we require

F(u,u) = f(u).
The single cell problem consists of finding the solution of R(«) = 0, where
FRLY;
R(u)=u—ul+ &(F(u,u,-ﬂ) — F(uj—1,u))

and u?, u;—1, ui+1 are known. We want to find the conditions for which this scalar equation admits
a unique solution for any given u}, u;_1, u;+1 and At. Since u is arbitrary, we must have that R is
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monotone. By taking Af small, we obtain that, if R is monotone, it can only be increasing. By taking At
very large, we see that we must have L (F (u,u;41) — F (u;—1,u)) positive. Since this must hold for any
uiy1 and u;—1, we end up with the following monotonicity conditions for F,

JoF JoF
> — <0.
o, = 0 and o S 0 (44)

The Engquist-Osher flux (add reference)

Flu ) = /0 " max(0, f'(u)) du+ /0 " min(0, ' (u)) du + £(0)

satisfies this condition. In the case of gravity segregation, a phase upwind mobility numerical flux is
commonly used and we are going to check that it also satisfies the monotonicity condition (44). For the
case without polymer, the discretization of the segregation equation is given by

At
R(S) =t (spH — 87+ Vi(F(S,r-lHyS?fll)gniJrl(Zi —Zi-1)

—F(SM, S ey i(zi—zie1)) =0,

where F(S,,S;) is a discrete numerical flux which has to satisfy the compatibility condition

A’W(S ) A’o(l ) )
Aw(S)+ A, (1 =15)
In a segregation process where oil is lighter than water, the oil phase travels upwards and the water phase
downwards. Thus, an upstream mobility weighting for the flux is given by

Aw(Su) Ao (1—5))
)LW(SM) +Ao(1 _Sl) '

F(S,S) =

F(S,,S)) =

Since A,, and A, are non decreasing functions, we can check that this discrete flux satisfies the condition
(44) which is necessary for the solution of R(u) = 0 to exist for any Ar.

Let us now turn our attention to the segregation case in the presence of polymer. In this case we have to
solve a system of two equations. The water and polymer gravity residuals, R}, (#) and RS (u) in the cell
C; are given by

At
gv (F (u,ui1) T i1 (zig1 — 2) — F (i1, 0) Ty i(zi — zi1)) (45)

i

RS, (u) = by, i9i(S — S}) +
and

RE(u) = byii(Sc = Sici) + (1= @rer) (¢ (c) — ¢*(c7))

At
+ gV. (G(u,ui1)T; i1 (zir1 —2i) — G(ui—1,u)Ti—1(zi — zi—1)).  (46)
1

The discrete flux F and G have to satisfy the compability conditions

A’W(S7 C)A()(l _S)
Aw(S,¢) +A,(1—15)

F(u,u)= (47a)

and

X,W(S,C)lo(l _S)
A'w(&c) +Ao(1 _S) .

G(u,u) =m(c)c (47b)

We choose the numerical fluxes given by

)'W(Suacu)ko(l _Sl)

F(uy,u) = Ao (Suscu) + Ao (1 —8))

ECMOR XIV — 14™ European Conference on the Mathematics of Oil Recovery
Catania, Sicily, Italy, 8-11 September 2014



ECMOR XJV

lw(*guacl)lo(l _Sl)
ulw(*gu?cl) —|—A,0(1 _Sl)’

which satisfy (47) and enjoy the following monotonicity properties

and
G(uy,u;) = m(c,)c

OF OF OF OF
_— > — << — < —=0>
95,20 5o =0 5550 5, =020 (482)
and 9G G 9G 9G
_ > — < — < 0.
55, =0 96,20 3550 5 =Y (48)

The proofs of (48) follow from the chain rule and the fact that % > 0 (see (33)), % < 0 (see (39))

and ‘”’W >0, géﬂ > 0 (by assumption). Let us prove that for this choice of numerical flux, there exists a

umque Solution (S,c) of RS,(S,c) =0 and RZ(S,c) = 0 for any Ar. To simplify the notation, we rewrite
(45) and (46) as

RS, (u) =0 (S—S;)+ BF(u,uir1)— yF(ui—,u) (49)

and
Ré(u) = a(Sc—Sic;)+8(c"(c)—c(ci)) + BG(u,uiy1) — yG(ui—1,u). (50)

Note that o, 3,7, 0 are positive and a > 0. We differentiate these expressions and obtain

oF oF oF oF
g _
dRS, (oc+/3(9 S yas YdS+ (B=— e, }/8C1)dc (51a)
and G  JdG oG  9G
g
dRS = ( 35, yas )dS+ (aS+ 8f+[38% y—aq)dc. (51b)

We proceed as in the previous section. First, we prove that, for any given ¢ € [0, cmax], there exists a
unique S € [0, 1], which we denote S(c), such that R, (S(c),c) = 0. For u = [0, c|, we have F (u,u; 1) =0
so that R},(0,¢) = —aS* — yF (u;—1,u) < 0. For u = [1,c|, we have F(u;_1,u) =0 and R}},(0,c) =
o(1—S8})+ BF(u,uir1) > 0. Moreover, we have

Ry, 12k F 8F S
FE 98, 8Sl

so that the function is S — R3,(S,¢) is strictly increasing for a given c. Therefore there exists a unique
solution S(c) in [0, 1] to R},(S,¢) = 0. Let us now prove that the equation RS (S(c),c) = 0 admits a unique
solution. For ¢ = 0, that is, u = [S(0),0], we have G(u,u;;1) = 0 and RZ(S(0),0) = —aS;c; + 8(c“(0) —
c(cf)) — YG(ui—1,u) < 0. Since R}, (u) = 0, for Umax = [Cmax,S(Cmax )], We obtain from (50) that

Wl

Rg (umax) = Rg(umax) — CmaxR umax)
= S} (Cmax — ¢} ) + 6(c"(cmax) — ¢“(c)) + B(G(tmax; Uit1) — cF (Umax; Uit1))
- ’Y(G(ui—l 5 umax) - CF(ui—l s umax))-

We have

Ao (eman) i) Ao (1 = Sis1)
M(S(Cmax)vci-&-])"i_lo(l_Si-H)

_ M(S(Cmax)vcmax)xo(l_SH—I) )>O

M(S(Cmax)vcmax)‘}"ko(l_SH—I) n

G(umaX7ui+l) - cmaxF(umaX7ui+1) = Cmax(

because the function

A (S(Cmax);€)Ao(1 —Siv1)
A (S(Cmax ), ) + Ao (1= Sit1)

c—
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is non-increasing as aa’l“ < 0. Similarly,

G(uifl s umax) - CmaxF(uifl s umax)
)vw( i— lacmax)/l (1 S(Cmax)) —c )Lw(Si 1,Ci— 1))L (1 S(Cmax))
)vw( i— lacmax)+/’L( (Cmax)) maxM(Sl 1,Ci— ])‘i‘)v( (Cmax))
. ( A’W(Si lacmax)k (1 S(Cmax)) )Lw(Sz 1,Ci— 1)7L (1 S(Cmax)) )

o A’W(Sl I;Cmax)“‘k( (Cmax)) )Lw(Sz 1,Ci— l)‘i‘l( (Cmax))
Afw( i—1, Cmax)lo( (cmax))
M(Sz 1y Cmax)+ 0( (Cmax))

= m(ci—l)ci—l

+ (m<ci—1 )Ci—l - Cmax)
<0,
because of (31). Hence, R, (S(¢max); Cmax) = 0. From (51a) and (48), we have that

ds
— >0
dc

so that, by (51b) and again (48), we get

d G G G G
dCRc<s<c>,c>—( asuyas,> ( oo - yaq)zo.

Therefore the function R.(S(c), c¢) is non-decreasing and there exists a solution ¢ € [0, cmax|. The solution
(S,c¢) is unique if S > 0 because the function R.(S(c), ) is then strictly increasing at c. In the case where
the equation has a solution of (S,¢) such that § = 0, the conclusion is the same as at the end of the
previous section, that is, the solution is unique only if the adsorption function is strictly increasing.

Appendix

In section , we observe that the condition (38) naturally shows up when we want to show the well-
posedness of the single cell problem. Here, we show that this condition is necessary from a physical
perspective. We consider the transport equations (16a) (for ¢ = w) and (16b) in one space dimension.
To simplify the computation, we assume that b = 1 and the total flux v is constant and equal to one. The
equations can then be rewritten as

as
at + ax(f(S C)) _0
dSc¢c 0

T3 + a(m(c)cf(S,c)) =0.

We introduce the variable z = Sc so that the system can be rewritten as a system of conservation laws,
namely,

as d .
o+ 3 (F(s.2) =0,

% 2 (s, 9el5,2)7(5.)

0,

where
n"z(S,z):m(S,c), C_(S,Z):C and f_(sz):f(S7C)

The properties of the system are related to the eigenvalues of the linearized flux given by

9,
F= (n_15 g(mcf)> 42

We have an hyperbolic system if the eigenvalues of F' are real. We do not investigate this condition here
and assume it is fulfilled. Instead we consider the sign of the eigenvalues. Each eigenvalue A;, i = {1,2},

Q',‘ Q_,%“N
Ui~
Qj‘Ql':l
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corresponds to the speed of the wave of the corresponding Riemann problem. It is natural to require that
the wave travels in the same direction as the flux, from left to right, and thus we want to impose A; > 0
and A, > 0. These sign conditions are equivalent to

det(F) >0 and tr(F) > 0.

For a generic function g(S,z) = g(S,¢), the change of variables formulas are

Jdg _dg cdg . d§g_19g
s 9S Sac dz  Sdc’
Thus, we can compute det(F) and we get
_df d(mc)
det(F) = f==
et(F) = f55 3:
(2 _ 25 £otmo
~\7oas dc /) S dc
>0
because, as shown in Section , % >0 and % < 0. For the trace of F, we have
_df  d(mcf)
tr(F) = 875 + 7az

_df cdf 1d(mcf)

9 s8c+s dc
of

1/ odf 2
=3 (SaS+Km f+c(m—1)ac).

Hence, the condition (38) is fulfilled if and only if tr(F) > 0, that is, if and only if the speeds of both
waves are positive.
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