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Abstract. A wide variety of multiscale methods have been proposed in the literature to reduce
runtime and provide better scaling for the solution of Poisson-type equations modeling flow in porous
media. We present a new multiscale restricted-smoothed basis (MsRSB) method that is designed
to be applicable to both rectilinear grids and unstructured grids. Like many other multiscale meth-
ods, MsRSB relies on a coarse partition of the underlying fine grid and a set of local prolongation
operators (multiscale basis functions) that map unknowns associated with the fine grid cells to un-
knowns associated with blocks in the coarse partition. These mappings are constructed by restricted
smoothing: Starting from a constant, a localized iterative scheme is applied directly to the fine-scale
discretization to compute prolongation operators that are consistent with the local properties of the
differential operators.

The resulting method has three main advantages: First of all, both the coarse and the fine grid can
have general polyhedral geometry and unstructured topology. This means that partitions and good
prolongation operators can easily be constructed for complex models involving high media contrasts
and unstructured cell connections introduced by faults, pinch-outs, erosion, local grid refinement, etc.
In particular, the coarse partition can be adapted to geological or flow-field properties represented
on cells or faces to improve accuracy. Secondly, the method is accurate and robust when compared
to existing multiscale methods and does not need expensive recomputation of local basis functions
to account for transient behavior: Dynamic mobility changes are incorporated by continuing to
iterate a few extra steps on existing basis functions. This way, the cost of updating the prolongation
operators becomes proportional to the amount of change in fluid mobility and one reduces the need
for expensive, tolerance-based updates. Finally, since the MsRSB method is formulated on top of
a cell-centered, conservative, finite-volume method, it is applicable to any flow model in which one
can isolate a pressure equation. Herein, we only discuss single and two-phase incompressible models.
Compressible flow, e.g., as modeled by the black-oil equations, is discussed in a separate paper.

1. Introduction

The general movement of fluids in a hydrocarbon reservoir is induced by global forces like gravity
and pressure differentials. The micro-scale displacement, however, is determined by small-scale flow
paths throughout highly heterogeneous porous rocks. Flow modeling therefore needs to take into
account processes taking place on a wide range of spatial and temporal scales. Resolving all these
scales using a single high-resolution grid is not computationally tractable. Instead, the traditional
approach is to use upscaling or homogenization techniques to develop effective parameters that
represent subscale behavior in an averaged sense on a coarser scale. Such methods have proved to
be very effective for problems with scale separation. However, porous rocks seldom exhibit clear
scale separation and upscaling techniques are therefore not as robust and accurate as one would
wish. Effective properties are generally process dependent, and because one needs to assume a
specific set of localization conditions to compute effective properties, upscaling techniques tend to
only produce reliable results for a limited range of flow scenarios.

In an attempt to overcome some of the limitations of upscaling methods, so-called multiscale
discretization methods have been proposed over the past two decades to solve second-order elliptic
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equations with strongly heterogeneous coefficients [15]. This includes methods such as the gener-
alized finite-element methods [9], finite-element methods [21], numerical-subgrid upscaling [6, 7],
multiscale mixed finite-element methods [13, 24], multiscale finite-volume methods [22], mortar
mixed finite-element methods [8], and multiscale mimetic methods [34], to name a few. The key
idea of all these methods is to construct a set of prolongation operators (or basis functions) that
map between unknowns associated with cells of the fine geo-cellular grid and unknowns on a coarser
grid used for dynamic simulation. The prolongation operators are computed numerically by solving
localized flow problems, much in the same way as for flow-based upscaling methods, but unlike
effective parameters, the multiscale basis functions have subscale resolution. The result is that local
fine-scale variations can be systematically and correctly accounted for when constructing a reduced
coarse-scale problem to study the macro-scale displacement driven by global forces. There is a
large body of literature that develops such multiscale methods and studies their mathematical and
numerical properties for idealized and simplified problems like the variable-coefficient Poisson equa-
tion formulated on Cartesian box geometry. However, to provide value for commercial applications,
these methods also need to be developed so that they can handle the complexity in flow physics
and geological description seen in real-life simulation models. Over the past decade, there have
primarily been two main developments in this direction, focusing on the multiscale finite-volume
(MsFV) method [22] and the multiscale mixed finite-element (MsMFE) method [1, 2, 13].

Research on the MsFV method has mainly focused on extending the method from incompressible
flow to realistic flow physics [18, 19, 30, 35, 37, 59] and on developing iterative approaches that
ensure that the method converges to the correct solution of the underlying fine-scale discretization
[39, 58–60]. However, with a few notable exceptions [26, 40, 42, 44, 51], the MsFV method has so
far only been studied on grids with a Cartesian topology. (An alternative finite-volume formulation
is also discussed in [50]). Such grids are highly desirable in terms of accuracy, efficiency, and ro-
bustness of the numerical discretizations and solvers, and modeling approaches used in industry are
therefore predominantly structured in a global sense. However, to accurately account for structural
features like faults, joints, and deformation bands and stratigraphic characteristics like channels,
lobes, clinoforms, and shale/mud drapes, unstructured connections are introduced locally and cell
geometries tend to be (highly) skewed or degenerate. Similarly, unstructured connections may be in-
troduced by local grid refinement, e.g., in the near-well zones. The challenge in extending the MsFV
method to realistic stratigraphic grids, or in the more general sense to grids with fully unstructured
topologies, lies in the underlying primal-dual coarse partition. The MsFV method computes basis
functions on a dual partition to define transmissibilities in a multi-point coarse-scale discretization.
Approximate solutions computed from these basis functions is then used to define boundary condi-
tions for another set of flow problems on the primal partition to reconstruct conservative fine-scale
fluxes. We have previously demonstrated that compatible primal-dual partitions can be generated
for grids with degenerate cells and unstructured topologies if these grids are not too irregular [44].
However, the coarsening process is difficult to automate in a robust manner, and so far our most
advanced algorithm is only able to provide semi-structured partitions for a limited range of coars-
ening factors. It is also well known that highly contrasted media and large anisotropy ratios may
introduce strong non-monotonicities that are hard to get rid of in the iterative stages of the method
[58].

For the MsMFE method, on the other hand, the main focus has been on making the method
as geometrically flexible as possible and developing coarsening strategies that semi-automatically
adapt to barriers, channels, faults, and wells in a way that ensures good accuracy for a chosen
level of coarsening. The resulting method can efficiently predict flow patterns that are qualitatively
correct for highly heterogeneous and geologically complex reservoir models under the assumption of
incompressible flow [4, 5, 47, 49]. The method has also been extended towards realistic compressible
flow physics [27, 28], but this has proved difficult to achieve in a fully robust manner because of
the inherent assumption of a pressure equation written on mixed form. In a recent work [43], we
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presented a fully algebraic finite-volume framework that combines the best features of the MsFV and
MsMFE methods and developed one specific method that mimics a coarse-scale two-point stencil by
using numerically generated partition-of-unity functions to glue together elementary flow solutions
associated with interfaces between coarse blocks. The resulting MsTPFA method generally produces
high-quality approximate solutions for complex industry-standard grids with high aspect ratios and
unstructured connections and can easily be extended to incorporate realistic flow physics. However,
the method admittedly requires some intricate details to define and compute the partition-of-unity
functions. Herein, we present a new and quite different multiscale formulation that offers the same
robustness and flexibility as MsTPFA, but is much simpler to implement and gives very accurate
interpolation.

The new method constructs mappings based on restricted smoothing: Starting from initial pro-
longation operators that are defined as the characteristic functions of each coarse block (i.e., equal
unity inside the block and zero outside), a localized iterative scheme is applied directly to the
fine-scale discretization to modify the prolongation operators so that they become increasingly con-
sistent with the local properties of the differential operators. The use of weighted Jacobi smoothing
on interpolation operators have been used with a large degree of success in the algebraic multigrid
(AMG) community where fast coarsening is combined with simple operators constructed via one or
two smoothing steps [12, 55–57] as an inexpensive alternative to the interpolation operators used
in standard AMG [53]. Many high performance multigrid solvers support smoothed aggregation as
a strategy for large, complex problems [10, 17] due to the inexpensive coarsening and interpolation
strategies. A series of numerical experiments show that the new MsRSB method gives highly accu-
rate prolongation operators for a wide variety of block shapes, e.g., including blocks that adapt to
complex geological features in real-world models. Moreover, whereas methods like MsFV, MsMFE,
and MsTPFA recompute the prolongation operator locally when faced with mobility changes in
the underlying grid, the new method just continues the iteration until the operators are sufficiently
smooth. This way, the cost of updating the prolongation operator becomes proportional to the
amount of change in fluid mobility, eschewing the typical tolerance based updates. The formulation
is algebraic and can be applied directly to linear systems, possibly in combination with existing
multiscale techniques such as local stages and iterative cycles [58]. Through a series of numeri-
cal experiments, which include the well-known SPE 10 data and grid and petrophysical properties
from two Norwegian oil fields, we validate our new MsRSB method and show that it is robust and
efficient for single-phase and multiphase incompressible flow models. In a companion paper [45]
we discuss how to extend the method to compressible flow problems and demonstrate that it pro-
vides one order-of-magnitude speedup compared to a fully-implicit simulator with the constrained
pressure residual (CPR) preconditioner and algebraic multiscale preconditioner for compressible
water-injection cases. Møyner [41] reports a comparison of the MsFV, MsTPFA, and MsRSB meth-
ods used as iterative solvers and shows that the MsRSB either performs equally well or clearly
outperforms the other two methods for the studied test cases.

2. Model Problems

Multiscale methods, as discussed herein, are designed to efficiently compute the approximate
action of second-order elliptic differential operators of the form∇·K(x)∇, where the coefficient K(x)
may exhibit orders of magnitude variations over short distances and contain short, intermediate,
and long-range correlations. This operator primarily determines the pressure distribution, but may
also govern temperature in thermal models.

2.1. Single-phase flow. To introduce the multiscale method and investigate its spatial approxi-
mation properties, it is sufficient to consider a incompressible single-phase flow in the absence of
gravity, which is modeled by the variable-coefficient Poisson equation,

(1) −∇ · (K(x)∇p(x)) = q(x), x ∈ Rd, K(x) ∈ Rd × Rd,
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where p is the fluid pressure, K is the permeability, and q denotes source terms. We discretize this
equation using a standard finite-volume scheme,

(2)
∑
j

vij = qi, vij = −Tij(pi − pj),

where the transmissibility Tij is associated with the interface between each pair of two cells i and
j and defines a two-point flux approximation to the flux across this interface. For a Cartesian grid
in 3D, (2) gives the standard seven-point finite-difference stencil. The resulting linear system

(3) Ap = q

is weakly diagonally dominant because each equation represents volume conservation over a single
cell.

2.2. Multiphase flow. The basic model for multiphase flow consists of conservation of mass and
Darcy’s law for each phase α,

(4) ∂t
(
φραSα

)
+∇

(
ρα~vα

)
= ραqα, ~vα = −λαK

(
∇pα − ραg∇z

)
Here, φ denotes porosity, g is the gravity constant, and z the coordinate in the vertical direction,
whereas Sα is the saturation (volume fraction) and λα = krα/µα the mobility of phase α, where
krα is the relative permeability and µα the viscosity of the phase. This model has more unknowns
than equations and we must therefore specify an additional closure relationship for the saturations,∑

α Sα = 1, as well as relationships for the phase pressures that express the individual capillary
pressures as know functions of fluid saturations.

In the following, we only consider incompressible two-phase flow. There are several ways one can
choose primary variables and reorganize the resulting system of equations to express it as an elliptic
equation for flow (pressure and fluxes) and a hyperbolic equation for fluid transport. Herein, we
use the pressure and saturation of the wetting phase as our primary unknowns, giving the pressure
equation

(5) −∇ ·
(
λK∇pw

)
= qn + qw −∇

[
λnK∇pcnw + K(λnρn + λwρw)g∇z

]
,

and the transport equation

(6) φ∂tSw +∇ ·
(
fw
[
~v + λnK(ρw − ρn)g∇z

])
−∇ ·

(
λnK∇pcnw

)
= qw,

where we have introduced the total Darcy velocity ~v = ~vw+~vn, the capillary pressure pcnw = pn−pw,
the total mobility λ = λw + λn, and the fractional flow function fw = λw/(λw + λn). The three
latter are known functions of Sw.

To solve the system (5)–(6), we use a sequential procedure, in which we first solve (5) to compute
pw and ~v and then hold these constant while advancing (6) one time step. For spatial discretization
of (5), we use the same two-point finite-volume scheme as for the single-phase equation, extended
with upstream weighting of all terms that depend on saturation. (Note, however, that we could
equally well have used a multipoint flux-approximation for the spatial discretization.) For (6), we
use potential ordering to determine the upstream weighting [11] for the mobilities on the faces
λα = krα/µα, which in most situations coincides with the upstream weighting used in the pressure
solver. To allow for longer time steps, we use an implicit temporal discretization, giving a nonlinear
discrete system that is solved with Newton’s method. If necessary, one can also iterate the pressure
and transport steps to ensure that the residual of the combined discrete system is below a prescribed
threshold. However, for the cases considered later in the paper, we have not found this necessary.
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3. Multiscale Formulation

As explained above, our definition of a multiscale method starts from a fine grid {Ωi}ni=1 and a
coarse partition that defines a coarse grid {Ω̄j}mj=1 so that each fine cell in Ω belongs to only one

coarse block in Ω̄. We then define a numerical prolongation operator, P : {Ω̄j} → {Ωi}, that maps
quantities associated with the coarse blocks to quantities associated with the fine cells. Likewise,
we define a restriction operator as the analogous map going the other way R : {Ωi} → {Ω̄j}. In
the implementation, these operators are represented as sparse matrices of size n ×m and m × n,
respectively. If we now let pc denote a pressure computed on the coarse grid, we can find a fine-scale
approximate pressure pf by the use of the prolongation operator,

(7) pf = Ppc.

In general, this will not solve (1) exactly no matter how accurate the coarse pressure is; all we can
hope for is to compute a good and accurate approximation more efficiently than solving (1) directly
on Ω.

3.1. Coarse system. To derive a linear system for pc on the coarse grid, we insert the fine-scale
approximation in (7) into (3) and apply the restriction operator,

(8) R (A (Ppc) ) = (RAP )pc = Acpc = Rq = qc.

The physical interpretation of this system depends on the restriction operator used. Two variants
are reported in the literature, either a control volume summation operator or a Galerkin operator,
i.e.,

(Rcv)ji =

{
1, if xi ∈ Ω̄j ,

0, otherwise,
or RG = P T .

Our focus is not on iterative performance, and hence it is natural to consider the control volume
operator Rcv used in the classical MsFV method [22], which corresponds to setting the connection
strength (Ac)ij from coarse block Ω̄i into coarse block Ω̄j as the sum of the fluxes induced by the
prolongation operator defined in block i across the interfaces of Ω̄j ,∫

∂Ω̄j

~vPi · ~n dS ≈
∑

(k,l)∈Fj

−Tkl(P li − P ki) = Aij

where we have defined ~vPi as the velocity of the basis function of block i, Fj as the set of fine
scale interfaces for Ω̄j , represented as tuples of neighboring cells (k, l) and approximated the flux
using(2).

The pressure obtained by prolongating the solution of (8) back to the fine scale is generally
not an exact solution of (3), but we can easily compute fluxes that are conservative on the coarse
grid since (8) imposes mass balance on this grid. To get fluxes that are conservative also on the
subscale, we need to solve an additional local problem with the conservative, coarse-scale fluxes
imposed as Neumann boundary conditions. Using these fluxes, it is possible to solve fine-scale
transport to a high accuracy without the exact pressure being known. The disadvantage is that
we risk producing negative coarse-scale transmissibilities, which may lead to unphysical solutions
having non-monotone pressure values that violate the maximum principle, see e.g., [44].

To define a specific multiscale method, we must also describe in detail how to construct the
prolongation operator P . As in most other multiscale methods, we construct P by piecing together
a set of localized functions. However, before we can describe these so-called basis functions, we
must provide more details about the coarse grid.
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3.2. Coarse grids and support regions. Multiscale finite-volume formulations rely on a combi-
nation of a primal coarse grid and an auxiliary spatial characterization to obtain localized functions
and assemble them together to form the prolongation operator. For the MsFV method, this ad-
ditional mechanism is a dual coarse grid, whereas for the MsTPFA method [43], the additional
mechanism is a set of localized partition-of-unity functions that are computed numerically over the
fine grid. Previous research has shown that the choice of the primal grid (and the auxiliary spatial
characterization) can have a pronounced impact on the solution quality. We therefore want a for-
mulation that is as flexible as possible and enables basis functions to be computed for fairly general
coarse grids. Even for problems posed on a Cartesian mesh without faults or pinched cells, the
solution can be greatly improved with coarse grids that adapt to local features in the permeability
field or in the flow patterns [41, 43, 44].

The primal coarse grid is defined through a partition vector that has a single unique indicator
value per fine cell, so that cells with the same indicator value are agglomerated into coarse blocks.
For structured grids, these indicators can simply be based on counting, forming logically hexahedral
blocks on the coarse scale, whereas a wide variety of graph-based partitioning algorithms can be
used in the unstructured case. Let F be the index set of fine cells and let Cj be the set of fine-scale
indices corresponding to coarse block number j,

Cj ⊆ F, Cj ∩ Ci = ∅ ∀ i 6= j, i, j ∈ [1,m], |F | = n.

Once we have defined a coarse grid, we must define the support regions that determine the support
of the basis functions. If we let Ij denote the set of all points contained in the support region for
coarse block Ω̄j and Pj the basis function of coarse block j, this implies that

Pj(x) > 0, x ∈ Ij Pj(x) = 0 otherwise.

Likewise, we define the support boundary Bj as the index set of cells that are topological neighbors
to the support region Ij , but are not themselves contained in it. We also define the center of a
coarse block Ω̄j as xcj . This is a single point, which in many cases may coincide with the centroid
of the coarse block. For convenience, we also define the global support boundary G as the index set
of all fine cells that are part of the support boundary of one or more coarse blocks,

G = B1 ∪B2 ∪ ... ∪Bm−1 ∪Bm.
Finally, for each fine cell that is member of the global support boundary, we define Hi to be the set
of indices of the support regions the cell belongs to,

Hi = {j | i ∈ Ij , i ∈ G}.
To make this notation easier to visualize, we refer to Figure 1, which shows a regular partition for
a uniform Cartesian grid and a semi-structured partition for a PEBI grid. The figure also shows
the construction of support regions, support boundaries, and basis functions.

Careful numerical experiments have shown that rather than setting the block centroid as the
block center, we should choose the block centroid as the fine cell whose centroid is closest to the
geometric median of the fine-scale faces that bound the block. For regular coarse grids, the two
choices coincide, but the geometric median gives basis functions of better quality for coarse partitions
with large variation in block sizes and shapes. Figure 2 shows an exaggerated example with a large
block neighboring ten small blocks that each consists of a single fine-scale cell. In Figure 2b the
block center is chosen as the block centroid. Because of the disparity in size between the block and
its neighbors to the west, the support regions are defined so that there is a relatively large region
inside the block where only the basis function associated with the block is the only one that has
supported. To ensure partition of unity, the basis function will therefore be constant and equal the
maximum value of one in this region. Using the geometric mean instead, as in Figure 2c, means
that the basis functions in the north, south, and east neighbors are supported in a larger portion of
the center block, which reduces the constant region and improves the approximation quality of the
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(a) Regular 3 × 3 partition with local
triangulation for block (2,2)

Ij

Bj

G ∩ Ij

(b) Support region, support boundary
and global boundary for block (2,2)

(c) Basis function for block (2,2)

(d) Semi-structured 4×3 partition and
local triangulation for block (3,2)

Ij

Bj

G ∩ Ij

(e) Support region, support boundary
and global boundary for block (3,2)

(f) Basis function for block (3,2)

Figure 1. Primal coarse grid and construction of a local support region with an
associated basis function for a uniform Cartesian grid in the top row and a perpen-
dicular bisector (PEBI) grid in the bottom row.

prolongation operator significantly, so that it, for instance, can better reproduce a linear pressure
drop.

To define the support region of block number i, we select all blocks that share a coarse node with
Ω̄i and create a local triangulation based on the block centers and the centroids of all coarse faces
that are shared by any two of these blocks, see Figures 1a and 1d. The support region is then defined
as all cells within the selected coarse blocks whose centroids lie within the triangulation, and the
support boundary is defined as all cells that share at least one face with cells in the support region.
Support regions are not allowed to include any center cells aside from their own. Because all these
relations can be produced using only topology information, block centers, and face centroids, the
implementation is the same regardless of whether we identify support regions in a two-dimensional
Cartesian grid or in a complex 3D unstructured grid. If needed, one can include a simple post-
processing to ensure that each support region only consists of cells that are connected in the graph
defined by the fine-cell faces.

3.3. Construction of basis functions. Most multiscale methods rely on numerical solution of
localized flow problems to produce the basis functions that form the prolongation operator. These
local problems are typically defined as some subset of the global problem with alternate boundary
conditions imposed to capture the local features. Herein, we deviate from this and instead construct
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(a) Coarse block with refined neighbors (b) Basis function using centroids (c) Basis function using geometric mean

Figure 2. The choice made for the definition of the center points affects the quality
of the prolongation operator. This example shows a coarse block where the neigh-
boring blocks to the west consist of a single cell, while the neighbors to the north,
south, and east are of the same size as the block itself. The prolongation operator
takes values in the interval [0, 1] and assumes a more correct, skewed hat shape when
the block center is defined as the geometric median of the face centroids rather than
as the block centroid.

the basis functions using an iterative process. A similar approach can be found in some multigrid
methods that employ a single step of a smoother applied directly to a simple prolongation operator
to reduced local error (Jacobi interpolation), see [55].

The basis functions are initiated as the characteristic function of each coarse block,

P 0
ij =

{
1 if i ∈ Cj
0 otherwise.

Nothing is preventing us from choosing some more intricate initial guess, but constant functions are
convenient because they are trivial to construct and automatically provide partition of unity. We
then define a local smoothing iteration,

(9) Pn+1
j = Pnj − ωD−1APnj ,

where D is a diagonal matrix that contains the diagonal entries of our (weakly) diagonally dominant
system matrix A, and ω∈ (0, 1] is a relaxation factor which we set to 2/3 for all cases considered in
this paper. The value 2/3 is the optimal choice for Jacobi’s method applied to Poisson’s equation
with constant coefficients. Better choices of ω will speed up convergence of the basis construction,
but are not necessarily obvious for general problems. By iterating on the prolongation operator, we
seek to make it algebraically smooth, i.e., reduce ‖AP‖1 as much as possible. This means that the
residual error in the prolongation operator should be relatively smooth. Figure 3 shows a simple
1D example of how the operator and the associated error change as more iterations are applied.
Because each iteration modifies cell values based on the topological neighbors, we can see that the
support of the basis functions will eventually grow to cover the entire domain. To avoid this, we
use our already defined support regions and support boundaries to localize the updates.

Roughly speaking, the above construction (9) determines an increment for each basis function
based on the local error and modifies this increment to limit the support to be within the support
regions. This update is also used to determine convergence of the basis construction procedure:

(1) Apply the smoother D to find the increment of the discrete basis function,

d̂j = −ωD−1APnj .
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(d) Final residual error |AP (x)|, with restriction

Figure 3. Illustration of how the iteration (9) and its restricted counterpart grad-
ually smooth a basis function until it has very low residual error.

(2) Modify the update to avoid stencil growth outside of the support region and preserve par-
tition of unity,

dij =


d̂ij − Pnij

∑
k∈Hi

d̂ik

1 +
∑

k∈Hi
d̂ik

, i ∈ Ij , i ∈ G,

d̂ij , i ∈ Ij , i 6∈ G,
0, i 6∈ Ij .

(3) Update basis functions

Pn+1
ij = Pnij + dij

(4) Define local error outside of boundary regions,

ej = max
i

(|d̂ij |), i 6∈ G

(5) If ‖e‖∞ > tol, go to Step 1, otherwise set P = Pn+1.

In practice, checking for convergence should only be done every tenth iterations or so, since a single
iteration has negligible cost. We note that Step 1 of this process is well suited to parallel processing.
As each value only depends on the fine neighbors, it can easily be computed using on streaming
processors such as GPUs. The modifications in Step 2 at the global boundary depend on the values
in several coarse blocks, so each basis function will depend on the previous value of the other basis
functions with support in the same cell. While this does make the basis functions use information
about each other, the dependence will only extend to the nearest neighbors during each step, and
only in a subset of the cells, analogous to the matching boundary conditions used on edges in the
classical MsFV.
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Because we have explicitly enforced partition of unity in cells belonging to the global boundary,

we must now show that the updates d̂ij preserve the same property in cells not on the boundary.
We assume that the row sum of the matrix used for the iterations is zero and that the initial
prolongation operator has partition of unity,∑

j

Aij = 0,
∑
j

P 0
ij = 1 ∀ i.

If needed, one can easily ensure that the iteration matrix has zero row sum by adjusting the diago-
nal elements. This requirement also applies to the classical MsFV method, so the same adjustment
is used if special basis functions for wells, boundary conditions, and compressibility are not con-
structed. We can then write out the explicit update for a single cell i, summed over all coarse
blocks, ∑

j

Pn+1
ij =

∑
j

Pnij −
ω

Aii

∑
j

∑
k

AikP
n
kj

=1− ω

Aii

∑
k

Aik

∑
j

Pnkj

 = 1− ω

Aii

∑
k

Aik = 1,

showing that the update always preserves partition of unity.
For completeness, we will also verify that the proposed updates for cells in G satisfy partition of

unity. If we recall that
∑

j∈Hi
Pnij = 1 by assumption and that Pnij is nonzero only in Hi, we can

explicitly write out the sum over basis functions for a cell i in G at step n+ 1,∑
j∈{1,...,m}

Pn+1
ij =

∑
j∈Hi

(
Pnij +

d̂ij − Pnij
∑

k∈Hi
d̂ik

1 +
∑

k∈Hi
d̂ik

)
= 1 +

∑
j∈Hi

d̂ij − Pnij
∑

k∈Hi
d̂ik

1 +
∑

k∈Hi
d̂ik

=1 +

∑
k∈Hi

d̂ik

1 +
∑

k∈Hi
d̂ik
−

∑
k∈Hi

d̂ik

1 +
∑

k∈Hi
d̂ik

∑
j∈Hi

Pnij = 1.

Figure 4 illustrates how the prolongation operator changes to adapt to structures in the underlying
medium. For comparison, we have also included plots of the corresponding prolongation operators
for the MsFV method [22]. Note that while the MsRSB method coincides with MsFV for the
case with homogeneous permeability and to a certain extent the lognormal Tarbert layers, there
are large differences for the problems with anisotropy and channelized permeability sampled from
Upper Ness.

To accurately represent Dirichlet boundary conditions, we use a similar approach as shown for
the center block in Figure 2c. That is, we move the block center to a fine cell that is adjacent to
the boundary; preferably to the cell that lies closes to the centroid of the block face. This way,
we ensure that the corresponding basis function decays smoothly out from the Dirichlet boundary.
Using this approach, we can reproduce a linear pressure drop in a homogeneous domain. No other
special treatment is required for no-flow boundaries.

3.4. Iterative multiscale formulation. Multiscale finite-volume methods have a link to multigrid
methods in the sense that they can be used as two-level methods in combination with a smoother
step that takes care of localized errors. This can be used for error control, to treat compressibility
and nonlinear behavior, or to systematically drive the fine-scale residual towards zero. In other
words, the MsRSB method can be used in three different ways: as a linear solver for the fine-
scale system (see [41]); as an approximate solver that only reduces the fine-scale residual below a
prescribed, relaxed tolerance and still guarantees a mass-conservative approximation, or as a one-
step approximate solver that is mass-conservative on the fine scale, but has no guarantee on the
size of the fine-scale residual.
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Figure 4. Matrix-dependent interpolation operators for a single coarse block with
different types of permeability types. The lognormal and the channelized permeabil-
ities in the lower row are both sampled from the SPE10 dataset [14]. The matrices
report the net fluxes into or out of the neighboring coarse blocks induced by a unit
pressure differential.

Let P be the converged prolongation operator for a given coefficient matrix A. To define an
iterative scheme, we let the solution at step k be denoted xk and introduce the defect

dk = b−Axk,

If we let yk = S(dk) denote the smoother applied to the defect with initial guess zero, we can
then write the next update as the previous solution with the smoothed update added in, along
with a coarse correction that ensures that the update does not remove the coarse-scale conservative
property of the solution,

xk+1 = xk + P
(
A−1
c R(dk −Ayk)

)
+ yk.

This iterative scheme relies on an inexpensive smoother for the updates. In the following, we use a
incomplete LU-factorization with zero fill in (ILU0) for systematic iteration tests and a few Jacobi
iterations for problems where we only want to reduce some local error. One pass of the smoother
plus the coarse correction is termed a multiscale cycle. For the problems considered herein, we will
let x0 = 0.

3.5. Flux reconstruction. The multiscale solution pc is mass conservative on the coarse scale
by construction. However, if we use the prolongated pressures to construct fine-scale fluxes from
Darcy’s law (see (2)),

(10) vmsij = −Tij
(
(Ppc)i − (Ppc)j

)
,

these fine-scale fluxes will not be mass-conservative since
∑

j v
ms
ij 6= qi. To get conservative fluxes

on the fine grid (and hence also on any grid of intermediate resolution), we need to compute a new
reconstructed pressure p̄ to reconcile errors in the pressure gradient with the flux field as formulated
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for the classical MsFV method in [22]. We define the reconstructed pressure p̄ by solving (1) locally
for each coarse block Ci with flux boundary conditions obtained from the multiscale pressure over
the coarse edges.

−∇ · (K∇p̄(x)) = q(x),x ∈ Ω̄i ∇p̄(x) · ~n = vms on ∂Ω̄i.

Once the reconstructed pressure is found, the velocity field inside each coarse block is found using
Darcy’s law. The fluxes over the coarse edges are the same as were used for boundary conditions.
For the unstructured implementation, we use the operator form for posing these problems, see
[38, 59].

3.6. Treatment of wells. Herein, we consider wells that are either controlled by rate or by bottom-
hole pressure. Wells perforated in a single fine cell are not much different from source terms or
boundary conditions. For wells with multiple completions, potentially in different coarse blocks, we
need to be a bit more careful. The standard way to treat a well is to use a set of source terms
resulting from the pressure drop along the bore, i.e., if pi is the bottom-hole pressure in the well
and pj the cell pressure, the well model gives us,

qij = λTj WI(pj − pi − ρ~g∇z).

where WI is the productivity/injectivity index and λT the total mobility in the cells. In addition to
this, a closure equation is defined per control:

∑
j qij = q̄i for rate controls and pi = p̄i for pressure

controls. In our multiscale framework we keep the control equations at the coarse scale to correctly
account for inter-block flow on the coarse scale. For the bottom-hole controls, we take the well
fluxes from the reconstructed pressure, as the pressure drop makes the reconstruction problems well
posed and consistent with the outgoing block fluxes. For rate controlled wells, we use the fluxes
defined by the prolongated pressure, as the well-to-cell flow is analogous to the flow between two
coarse blocks.

4. Numerical Experiments

The MsRSB method introduced above has been implemented using the Matlab Reservoir Sim-
ulation Toolbox (MRST), see [29, 31, 32, 46], and is released as a part of the 2015a release. In
the following we report the result of a series of numerical experiments we have run to validate
the multiscale formulation, verify our implementation, and demonstrate the utility of the resulting
solver. To this end, we consider a variety of test problems, from simple 2D Cartesian geometries to
geological models representing petroleum reservoirs on the Norwegian Continental Shelf.

4.1. Spatial accuracy. To assess the spatial accuracy of the MsRSB method, we consider the
single-phase model (1) applied to two different test cases: (i) the SPE 10 data set, which seem to
be a de facto benchmark for new multiscale methods, and (ii) a model that uses the grid geometry
and petrophysical properties from a simulation model of the Gullfaks field. For both models,
we investigate the discrepancy between the multiscale approximation and the fine-scale reference
solution measured by the scaled L∞ and L2 norms,

(11) ‖pfs − pms‖∞ =
maxi∈F |pfsi − pmsi |

maxi∈F |pfsi |
, ‖pfs − pms‖2 =

√√√√∑i∈F |p
fs
i − pmsi |2 |Ωi|∑

i∈F |p
fs
i |2 |Ωi|

,

where pfsi and pmsi denote the pressure values computed in cell Ωi by the fine-scale and the multiscale
methods, respectively. Discrepancies in reconstructed fluxes are defined analogously.
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4.1.1. SPE 10 data set. Model 2 from the 10th SPE Comparative Solution Project [14] was originally
designed as a challenging benchmark for upscaling methods. The model is described on a 60×220×85
Cartesian grid with cells of uniform size 20× 10× 2 ft3. The reservoir contains two sands sampled
from a Brent sequence with very different heterogeneity. In the Tarbert formation found in the top
35 layers, the permeability follows a lognormal distribution, giving smoothly varying heterogeneities
that are resolved quite well by most multiscale methods. The Upper Ness formation found in the
bottom 50 layers is fluvial and consists of an intertwined pattern of long and high-permeable sand
channels interbedded with low-permeable mudstone. The combination of very long correlation
lengths and many orders-of-magnitude difference in permeabilities between neighboring cells makes
Upper Ness very challenging to resolve accurately.
Horizontal layers. First, we consider flow in two horizontal 60× 220 slices with isotropic permeabil-
ities sampled from the top and bottom layers of the model, subject to fixed pressure of one hundred
bar on the left and zero bar on the right boundary. The domain is partitioned into coarse blocks
made up of 10× 20 fine cells so that the coarse grid blocks are square in the interior of the domain.
Near the edges of the domain, we add coarse blocks that are half as wide as the other blocks in the
x or y direction, respectively, see Figure 5. In each of these blocks, we move the block center to the
fine cell that lies closest to the face centroid of the block. This gives a total of 6× 11 coarse blocks,
which corresponds to an upscaling factor of 200 in the interior and 40 near the boundary.

(a) logKx (Layer 35) (b) Fine-scale solver (Layer 35) (c) MsRSB approximation (Layer 35)

(d) logKx (Layer 85) (e) Fine-scale solver (Layer 85) (f) MsRSB approximation (Layer 85)

Figure 5. Permeability and pressure solutions for the top and bottom layers of the
second SPE 10 dataset. Flow is driven by a difference in the fixed pressures specified
at the left and right boundaries.

Figure 5 shows the permeability for both layers and compares the pressure fields computed by the
fine-scale solver and by MsRSB using a single multiscale solve without subsequent iteration cycles.
Table 1 reports the corresponding discrepancies measured in the relative L2 and L∞ norms defined
in (11). For comparison, we also report discrepancies for the original MsFV method as implemented
in the msfvm module of MRST, see [44] for details. Whereas the solution quality is generally very
good for both solvers on the Tarbert subsample, MsRSB clearly outperforms MsFV on Upper Ness.
Figure 6 reports discrepancies for similar experiments performed on all horizontal layers in the
model. Several authors have independently shown that the MsFV method has issues with coarse-
scale stability in the presence of channelized, high-contrast formations and will suffer from strong
unphysical oscillations that may prevent iterative versions of the method from converging properly,
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Table 1. Discrepancy between the fine-scale solution and approximate solutions
computed by the MsFV and MsRSB methods for the 2D test problems shown in
Figure 5. Total flux is the flux over the outflow edge normalized by the corresponding
flux in the fine-scale reference solution.

Setup of simulation Pressure Flux
Formation layer solver L2 L∞ L2 L∞ Total

Tarbert 35 MsFV 0.0313 0.0910 0.1138 0.4151 0.9696
MsRSB 0.0204 0.0766 0.0880 0.4071 1.0121

Upper Ness 85 MsFV 0.2299 2.0725 0.4913 0.7124 0.8087
MsRSB 0.0232 0.0801 0.1658 0.3240 1.0936
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(b) Pressure discrepancy, L∞ norm

Figure 6. Discrepancy between the fine-scale solution and approximate solution
computed by the MsFV and MsRSB methods for all horizontal layers of the SPE 10
model.

see e.g., [44, 52, 58] and references therein. MsRSB is much more robust and does not suffer from
such problems and therefore has approximately the same level of accuracy for the smooth and the
channelized layers.
Full 3D model. The flow patterns in the 3D model are more complex, and the combination of strong
anisotropy and higher aspect ratios poses additional challenges for multiscale methods. To coarsen
the 1.1 million-cell fine-scale model, we use the same strategy as in the previous example with
10× 20× 5 fine cells per coarse block, giving coarse blocks of size 200× 200× 10 ft3 in the interior
of the domain. Fixed pressures of one hundred and zero bar are prescribed on the east and west
boundaries, respectively.

Pressure solutions and discrepancies are reported in Figure 7 and Table 2 and are in line with
what we observed in 2D: Whereas MsFV and MsRSB both perform reasonably well in the upper
part of the model, the original MsFV method becomes unstable in the lower channelized formation.
For MsRSB, it is difficult to distinguish qualitative differences from the reference solution in Fig-
ure 7, which is also confirmed by the quantitative comparison in Table 2. SPE 10 is a challenging
benchmark in terms of heterogeneity, and the good accuracy obtained with the MsRSB method
without any kind of grid adaption or smoothing iterations is quite remarkable.
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 100 200 300 400 500 600 700 800 900

(b) Fine-scale solver (c) MsRSB approximation (d) MsFV approximation

(e) logKx (coarse grid: solid lines) (f) logKz (coarse grid: solid lines) (g) Regions in which MsFV is out of
bounds (red=higher, blue=lower)

Figure 7. Comparison of pressure solutions computed by the fine-scale solver and
the MsFV and MsRSB methods on the full SPE 10 model using a 6× 11× 17 coarse
grid. Flow is driven by a difference in fixed pressures specified at the west and east
boundaries.

Table 2. Discrepancy between the fine-scale solution and approximate solutions
computed by the MsFV and the MsRSB methods on two different coarse grids for
the full SPE 10 model, see Figure 7. Total flux is the flux over the outflow face
normalized by the corresponding flux in the fine-scale reference solution.

Solver Grid Pressure Flux
L2 L∞ L2 L∞ Total

MsFV 6× 11× 17 3.580 128.461 2.288 11.957 0.9110
MsRSB 6× 11× 17 0.039 0.309 0.397 0.487 1.2214
MsFV P -adapted 0.054 0.259 1.418 1.397 1.8434
MsRSB P -adapted 0.036 0.209 0.426 0.453 1.2179

To mitigate the unstable behavior of the MsFV method, we can modify the coarse grid so that
the control volumes adapt to the local structures in the prolongation operator. The adapted grid
is defined by computing a new index set

(12) Ĉk = {i |k = argmaxj Pij}.
In other words, for each cell i we find the local prolongation operator that has the largest nonzero
cell value and assign cell i to the corresponding coarse block. This gives a nonuniform grid that
can be used as control volumes when formulating the coarse system. Table 2 shows that this gives
a significant reduction in the discrepancy for the MsFV method, in particular in the L∞ norm
since the approximate solution now is kept within the bounds of the boundary conditions. The
pressure discrepancy is also slightly reduced for MsRSB, but the reconstructed flux is significantly
less accurate because of the local irregularity of the coarse blocks.

4.1.2. Gullfaks field model. Gullfaks is an oil and gas field located in the Norwegian sector of the
North Sea that produces primarily from Brent sands, i.e., the same type of sedimentary environments
as seen in the SPE 10 model. Unlike SPE 10, the Gullfaks field has a very complex structure and
contains a large number of sloping faults, with angles varying from 30 to 80 degrees and throws
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(a) logKx (top) and logKz (bottom)
(b) Vertical permeability in SI units for a west-east

and a north-south crossection of the model

(c) Pressure computed by the fine-scale solver (d) MsRSB approximation (637 blocks, Metis)

Figure 8. Computation of incompressible, single-phase pressure distribution using
the grid geometry and the petrophysical data from a simulation model of the Gullfaks
field. Pressure is set to 500 bar in the two injectors and 250 bar in the two producers.

from zero and up to three hundred meters; see [16] for a discussion of the structural geology. The
simulation model is represented on a 80 × 100 × 52 corner-point grid in which 216 334 cells are
active. Almost 44% of the cells have non-neighboring connections, and when the corner-point grid
is turned into a matching polyhedral grid, the number of cell faces range from four to thirty-one. The
combination of strong heterogeneity, large anisotropy and aspect ratios, degenerate cell geometries,
and unstructured grid topology makes the Gullfaks model very challenging for any multiscale solver.
Rather than considering the wells pattern that has been drilled in the actual formation, we create a
significant pressure drop of 250 bar across the majority of the field using four wells, two producers
and two injectors, placed quite arbitrarily near the perimeter and perforated through all layers of
the model.

We consider three different partitions. The first is a coarse grid initially partitioned with 15 ×
15 × 20 fine cells per coarse block. The large coarsening factor in the vertical direction is chosen
because of the many inactive layers and cells. Any coarse block intersected by a fault or divided
into disconnected components by inactive cells is then split into two before coarse blocks with very
few cells are merged into their neighbors, resulting in a semi-structured coarse grid with 416 blocks.
The second coarse grid is constructed by the use of Metis [23] configured with the logarithm of the
transmissibilities of the fine-scale system as weights for the edge-cut minimization algorithm and a
target set to 416 blocks to match the number of blocks in the structured partition. We also consider
another set of finer partitions constructed by the same methodology with approximately twice as
many coarse blocks (1028 after processing) to demonstrate how the accuracy of the MsRSB method
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Table 3. Discrepancy between the fine-scale solution and approximate MsRSB so-
lutions computed for the Gullfaks model shown in Figure 8. Total flux is the net
flow out of the injectors normalized by the corresponding net flow from the fine-scale
reference solution.

Solver Iter. Coarse grid Pressure Flux
Block type DoF L2 L∞ L2 L∞ Total

MsRSB — 15× 15× 20 416 0.032 0.102 1.256 1.329 1.639
MsRSB 5 15× 15× 20 416 0.033 0.100 0.606 0.865 1.283
MsRSB — Metis 416 0.032 0.086 1.399 2.008 1.374
MsRSB 5 Metis 416 0.018 0.067 0.538 0.931 1.099
MsRSB — 10× 10× 10 1028 0.028 0.597 2.165 4.143 1.502
MsRSB 5 10× 10× 10 1028 0.024 0.089 0.545 0.430 1.202
MsRSB — Metis 1028 0.015 0.112 1.347 1.399 1.310
MsRSB 5 Metis 1028 0.011 0.027 0.476 0.675 1.085

can be improved by coarse mesh refinement. We emphasize that no manual effort was required to
create the three coarse partitions.

The approximate solution computed on the coarsest Metis-based grid can be seen in Figure 8,
while Table 3 reports the discrepancies from the fine-scale solution for all the three coarse grids. In
all cases the approximate pressure values stayed inside the global bounds, i.e., in the interval from
250 to 500 bar. We note that the multiscale approximations are quite accurate and that refining the
coarse partition improves the accuracy at the cost of a larger coarse system. The table also reports
discrepancies after applying five multiscale cycles of ten Jacobi iterations each, which confirms that
local errors are quickly removed by the inexpensive smoother. Altogether, the results are very
promising in view of the combined challenge posed by the partially degenerate cell geometries, very
complex grid topology, and the large permeability contrasts. Being able to handle models of this
level of structural and stratigraphic complexity in a robust and automated fashion is essential if the
goal is to bring multiscale methods closer to practical usage. The interested reader can also consult
[41] for a discussion of MsRSB used as an iterative linear solver for a case with seven injection and
eleven production wells.

4.2. Multiscale methods as iterative solvers. The examples presented so far have only used
multiscale methods as approximate solvers that are guaranteed to produce a conservative flux field
regardless of the accuracy of the approximation. However, as explained in Section 3.4, multiscale
methods can also be used as iterative solvers for the fine-scale system, e.g., in combination with
GMRES. To demonstrate this capability for the MsRSB method, and compare its performance to
that of the iterative MsFV method, we return to the SPE 10 test cases from Section 4.1.1. Figure 9
reports the convergence of the two multiscale methods used as iterative solvers for two horizontal
layer as well as on the full 3D model. On the smooth Tarbert layer, both methods are able to reduce
the fine-scale residual six orders of magnitude in approximately thirty iterations (27 iterations for
MsRSB and 32 for MsFV). On the channelized Upper Ness layer, both methods require more
iterations, but because of the improved stability of the MsRSB prolongation operator, the residual
for MsRSB is significantly lower than for MsFV and decays faster. For the full 3D model, the
MsFV prolongation operator tends to produce solutions that are outside of the bounds, as shown
in Figure 7. Reduction of the residual is therefore mainly left to GMRES, which explains the
slow convergence observed in Figure 9c. If the original mass-conservative control-volume restriction
operator Rcv is replaced by the Galerkin operator RG, as suggested e.g., by Wang et al. [58],
the MsFV method exhibits an acceptable convergence that is somewhat faster than MsRSB with
finite-volume restriction and slightly slower than MsRSB with Galerkin restriction.
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(a) Tarbert: Layer 35
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(b) Upper Ness: Layer 85
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Figure 9. Convergence history for GMRES-MS with the MsFV or MsRSB prolon-
gation operators on 2D subsets and the full SPE 10 model.

We also ran a set of tests on the Gullfaks model used in Section 4.1.2 where we varied the
number of coarse blocks to estimate the impact coarsening has on convergence for an essentially
unstructured model. We used Metis to produce coarse grids with 10, 200, 250, 500 and 1000 blocks.
The convergence is shown in Figure 10 where we see that adding more degrees of freedom appears to
increase the convergence rate. Rapid convergence with a larger coarse system is to be expected, as
more error modes will be in the null space of the coarse system. The choice of restriction operator
does not have a large impact on the convergence rate, as the MsRSB operator produces a stable
coarse system in either case.

Møyner [41] reports a more thorough assessment and comparison of the MsRSB, MsFV, and
MsTPFA [43] prolongation operators used as pure multiscale solvers or as part of a GMRES it-
erative solver. The results confirm what we observed above: The MsFV method gives accurate
multiscale solutions and converges rapidly on the smooth Tarbert formation irregardless of the re-
striction operator used. On Upper Ness, the method is accurate and efficient if one uses Galerkin
reconstruction. The MsTPFA method is more robust but less accurate and efficient than MsFV
on Cartesian partitions. However, if we use Metis to compute a coarse partition that adapts to
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Figure 10. Convergence history for GMRES-MS for the Gullfaks field model with
different coarsening ratios.

contrasts in the fine-scale transmissibilities, the MsTPFA method becomes as accurate and efficient
as MsFV (which generally cannot be applied to such adapted grids). In all tests, however, the
MsRSB method performs equally well or better than the other two methods and is less affected by
the choice of restriction operator and type of coarse partition.

4.3. Multiphase flow. So far, we have mainly investigated how accurate the multiscale method
is able to resolve the pressure in a given L-norm. In practical simulations, it is more important
that the multiscale method gives fluxes that transport saturations/compositions correctly. For in-
compressible flow simulation, in particular, the pressure does not appear explicitly in the transport
equation (6) and only influences the fluid displacement implicitly. Pressure fields are usually also
much smoother than the associated flux fields and hence primarily reflects large-scale heterogeneous
structures. To assess how well the multiscale methods resolve the influence of small-scale heteroge-
neous structures, we will investigate how the multiscale approximation affects the accuracy of the
transport equation (6), measured using a relative L1 norm

(13) ‖φSfs − φSms‖1 =

∑
i∈F φi|S

fs
i − Smsi | |Ωi|∑

i∈F φi|S
fs
i | |Ωi|

.

Weighting the error by pore volumes makes this the error in spatial mass distribution for incom-
pressible flow. To this end, we will, as in the previous sections, use a variety of test problems, from
simple slices of the SPE 10 data set to a real field model.

4.3.1. Sensitivity to aspect/anisotropy ratios. Grids used in field and sector models predominantly
have much larger cells in the horizontal than in the vertical direction, or likewise have much smaller
vertical than horizontal permeability. Hence, it is important that multiscale methods are robust
with regards to large aspect and anisotropy ratios. It is well known that the classical MsFV method
is sensitive to high anisotropy and large grid aspect ratios and may produce approximate solutions
having strong localized circulations in the reconstructed fine-scale flux field, see e.g., [25]. This will,
in turn, give smeared saturation fronts in which the subscale resolution is completely lost because
of the strong circulations. In [20], it is shown that deficiencies appear even for homogeneous cases
because of the bilinear nature of the basis functions. The problem can be mitigated to a certain
degree by a careful choice of boundary conditions for localization of basis functions [20, 36].
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Figure 11. Aspect ratio test for solutions computed by the MsRSB, MsFV, and
MsMFE methods on a uniform 4× 8 coarse grid covering a 60× 120 subset of Layer
85 of the SPE 10 data set that has been stretched a factor 1, 10, 100, and 1000 in
the y-direction.

For the coefficients in the discretized pressure equation, stretching the grid is equivalent to in-
creasing the anisotropy ratio. We consider a 60 × 120 subset of Layer 85 of the SPE 10 data set,
giving a square domain with Lx = Ly = 1200 ft in which water is injected from a well operating at
fixed rate near the south-east corner and fluid is produced from a well operating at constant pressure
near the north-east corner. We will compare the MsRSB, MsFV, and MsMFE multiscale methods
with the same uniform 4 × 8 coarse grid for all three methods. To assess how well the multiscale
methods resolve the transport properties of the flux field, we simulate the injection of one half pore
volume of water using linear relative permeabilities with unit mobility ratio (i.e., λw(S) = S and
λn(S) = 1− S), for which the equation system (5)–(6) becomes fully decoupled and can be solved
using a single pressure step.

Figure 11 reports saturation profiles and discrepancy from the fine-scale solution on four different
grids with Ly = nLx, for n = 1, 10, 100, and 1000. The MsFV method has significantly larger
errors than the other two methods and for aspect ratios 100 and 1000, all fine-scale details in the
saturation field are lost. MsRSB is slightly less accurate than MsMFE, but although both methods
become gradually less accurate in a pointwise sense as the aspect ratio increases, they manage to
maintain a reasonable prediction of the qualitative behavior of the flow pattern.

4.3.2. Temporal accuracy of multiscale approximation. There are two different ways of using a mul-
tiscale solver for time-dependent problems. The first approach is to keep the same basis functions
throughout the whole simulation, and either hope that the iterations can efficiently account for
mobility changes or accept the corresponding reduction in local accuracy if the multiscale method
is used without iterations. Alternatively, one can update the basis to account for dynamic changes
in mobility. The usual way to do this is to recompute basis functions locally whenever the total
mobility changes significantly. The key to get enhanced efficiency when using multiscale methods
is to perform as few subgrid computations as possible and only where it is necessary. Smoothed
basis functions are particularly efficient in this respect since they do not need to be completely
regenerated: Because the underlying iterative process can start from any function having partition
of unity, we can simply restart the iteration process with changed mobilities and continue until the
basis functions are sufficiently smooth again.
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The dynamic character of an incompressible two-phase flow system is often quantified by the
ratio of the end-point values of the total mobility, usually called the mobility ratio for brevity. To
discuss this, we consider a special choice of relative mobilities

(14) λw(S) = MS2, λn(S) = (1− S)2, 0 ≤ S ≤ 1.

In this case, the total mobility satisfies λ(0) = 1 and λ(1) = M , so that the end-point mobility ratio
is M . Different end-point mobility ratios give rise to very different flow scenarios. With M > 1, we
have an unstable displacement in which the injected fluid is more mobile than the resident fluid and
will therefore tend to develop viscous fingers that penetrate rapidly through the less viscous resident
fluid. For M < 1, on the other hand, the injected fluid is less viscous than the displaced fluid, giving
a stable displacement characterized by a strong, piston-like displacement front. To correctly predict
the speed of the displacement front, the multiscale method must accurately account for dynamic
changes in the mobility. As noted by Kippe et al. [25], resolving stable displacements is more
challenging than resolving unstable displacements, for which the changes in the mobility field will
be smooth and relatively small because of the weak displacement front. For a stable displacement,
the propagation of the strong displacement front will induce large and abrupt changes in the total
mobility field, so that it may deviate significantly from the mobility field used to compute the basis
functions that make up the multiscale prolongation operator.

To compare the two multiscale approaches, updating or not updating basis functions, we consider
the top layer of the SPE 10 model initially filled with oil and produced by a quarter five-spot well
pattern with water injected in one corner and fluid produced in the diagonally opposite corner. The
two wells are controlled by pressure, which gives a more challenging test than rate-based injection
because the inflow and outflow now depends directly on the pressure distribution. Figure 12 shows
the saturation of the injected fluid for M = 0.1 and M = 10 at three different times in the interval
[0, T ]. To improve the prediction of pressure, we adapted the coarse grid by applying a radial
refinement near the wells as shown in Figure 12g. For the weak displacement front there is good
agreement between the multiscale and the reference solutions, even if basis functions are not updated
throughout the simulation. For the sharp front, however, the multiscale method with static basis
functions overestimates the speed of the leading shock. This error accumulates during the simulation
and results in earlier breakthrough. A plot of the saturation error over time in Figure 13 shows
that the error is larger with static basis functions in both cases, but the difference in errors is more
pronounced for the piston-like displacement.

4.3.3. High-contrast media. Extensive numerical experiments have shown that contemporary mul-
tiscale methods provide approximate solutions of good quality for highly heterogeneous media.
However, cases with large permeability contrasts are generally challenging and it is not difficult to
construct pathological test cases on which a particular method fails to produce accurate solutions.
Diagonal channel. Kippe et al. [25] proposed a simple and illuminating example consisting of a
narrow high-permeable channel in a low-permeable background, where the channel is aligned with
the diagonal direction of the grid as shown in Figure 14a. For the simulation, we use linear relative
permeability, unit viscosity for both fluids, a single pressure step, and twenty time-steps in the
implicit transport solver.

It is well known that high permeability contrasts along the edges of the dual grid can give poor
localization for multiscale methods. If the channel intersects the faces of the primal coarse grid, the
pressure extrapolation used to localize basis functions will start in a low-permeable region at a dual
vertex, cross the high-permeable channel along the dual edge, before ending in a low-permeable
region at the dual vertex on the opposite side of the channel. The corresponding basis function will
overestimate flux between the high and low-permeable regions and cause a saturation front propa-
gating to the high-permeable channel to leak out into the surrounding low-permeable background,
as shown in Figure 14, or in the worst case, lead to non-monotone coarse-scale operators, e.g., as
discussed in [44]. The same type of problem occurs for the MsMFE method, which relies on degrees
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(a) Water front at t = 0.1T (b) Water front at t = 0.5T
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Figure 12. Saturation profiles for the two-dimensional waterflood example. The
reference saturation field is shown in graytones, with contour lines of the two mul-
tiscale solutions superimposed. The first and second rows correspond to weak and
piston-like displacement, respectively.
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Figure 13. Saturation error measured in the relative L1 norm (13) as function of
time step number for water injection in the top layer of the SPE 10 model.
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(a) Setup (b) Reference solution

(c) MsFV approximation (d) MsRSB approximation (e) MsRSB approximation

Figure 14. Pathological example of a high-contrast medium. In the setup, dark
color indicates the channel having 100 times higher permeability than the background
field, solid lines show the coarse blocks, and light colors show cells along the edges of
a dual coarse grid. The next four plots show saturation profiles after the injection of
0.25 pore volumes of water from a well placed at the center of the lower-left coarse
block.

of freedom associated with the faces of the coarse grid, if the channel is shifted slightly so that it
intersects the vertices of the coarse blocks.

The problem can be mitigated by adapting the restriction operator to the local structures in the
prolongation operator as discussed in Section 4.1; that is, by assigning cell i to block j if Pij ≥ Pik
for all k 6= j. Figure 14e shows that the saturation profile is significantly improved by using MsRSB
on the resulting grid. Results for MsFV are almost identical and are not reported. Because the
adaptive procedure relies on comparing floating point numbers, the grid is also perturbed away
from the channel. This numerical artifact has no effect on the accuracy for this particular case and
could easily have been removed if we had used a slightly more sophisticated implementation.
Multiple channels. Our next example considers a slightly more complex case with a network of
thin channels having one thousand times higher permeability than the surrounding rock. Figure 15
reports fine-scale solutions and multiscale approximations computed with the same computational
setup as for the diagonal channel, except for changes to the permeability field. Adapting the restric-
tion operator clearly improves the qualitative prediction of the flow patterns for both multiscale
methods. However, the approximation errors are quite large for both methods and if the purpose
is to accurately predict production profiles or the evolution of the saturation field, extra iterations
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Reference

Permeability

MsRSB MsFV

MsRSB MsFV

Figure 15. Flow in a network of thin channels having one thousand times higher
permeability than the surrounding rock. The plots show saturation profiles computed
by the MsRSB and MsFV method on a Cartesian coarse grid and a coarse grid
adapted to the basis functions.

will be necessary. Plots of production profiles and saturation errors are not included for brevity,
but show that MsRSB predicts well production much more accurately than MsFV and also gives
much lower L1 errors in the saturation fields. Interestingly, while adapting the restriction opera-
tor improves saturations errors significantly for MsRSB, the match in production profile becomes
slightly worse. For MsFV, adapting the restriction operator improves both production profiles and
the saturation field.

Our experience after having run a number of similar experiments of high-contrast media is that
adapting the restriction operator is a simple precaution strategy to improve solution quality near
high-permeable channels, at least when these channels are scattered relatively sparsely throughout
the domain. Once exception is dense systems of narrow, high-permeable channels as found in
fractured media, for which our experiments indicate that is better to describe the high-permeable
fractures as lower-dimensional objects in the multiscale method, see [54]. This will be discussed in
more detail in a forthcoming paper.
Multiple flow barriers. Previous experience with the MsMFE method has shown that barriers are
best represented in a multiscale solution if one adapts the coarse blocks to follow the barriers, see
[3, 33]. Figure 16 shows a case containing a network of narrow barriers, simulated with the same
setup as in the two previous examples, except that we now inject a total of two volumes. Adapting
the restriction operator has no effect on the solution quality up to water breakthrough and only a
minor positive effect afterwards. If we instead adapt the prolongation operator by fitting the coarse
grid to the low-permeable barriers, the accuracy is significantly improved at the expense of having
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Figure 16. Flow in a network of thin flow barriers having one thousand times lower
permeability than the surrounding rock. The plots show saturation profiles after 0.5
PVI computed by the MsRSB method on a Cartesian coarse grid, on the same grid
but with restriction operator adapted to the prolongation operator, and on a coarse
grid that adapts to the barriers.

to work with a much more complicated coarse partition. In principle, one could combine the two
approaches and adapt the prolongation operator a priori and the restriction operator a posteriori.
Our experience is that this is difficult in practice as the combination of the two methods tends to
produce control volumes that are highly convoluted and hence may cause singular or near-singular
coarse problems.

Although we have seen several barrier cases for which adapting the restriction operator gives
better results than adapting the prolongation operator, it is our general experience that barriers are
best treated by adapting the coarse partition that defines the prolongation operator. However, one
should be careful to not create overly complex and irregular grids that may introduce numerical
artifacts and instabilities that may impact the approximation properties of the otherwise relatively
robust MsRSB prolongation operator.

4.3.4. Unstructured grid adapted to faults and wells. The Gullfaks example showed how the struc-
tured corner-point format easily can result in unstructured topologies near faults and eroded or
inactive cells. However, fully unstructured grids can also be of interest in regions without complex
features, for instance to avoid consistency issues with the standard two-point discretization. In this
example, we consider a two-dimensional PEBI mesh as shown in Figure 17. The grid is adapted to
local features, here exemplified by two sealing faults and two wells. The cells near the faults are
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(a) Permeability (logKx) with sealing faults

(b) Coarse grid

(c) Local adaption to fault

(d) Local adaption to well

Figure 17. Unstructured test case: Fine-scale permeability field, adapted coarse
grid, and zoom of local refinements in the fine grid.

oriented to that the cell faces follow the fault and near the well we have introduced a radial grid
grid refinement to better approximate the radial flow in the near-well zone.

The fluid model is a simple incompressible fluid with Corey-type relative permeability curves with
quadratic exponents. The reservoir is initially filled with oil having a viscosity of 5 centi poise. Water
is injected from a well near the upper-left corner whereas fluids are produced at a constant rate from
a well near the bottom-right corner, with no-flow conditions at the boundary. Petrophysical data are
sampled from Layer 35 of the Tarbert formation from SPE 10 using nearest neighbor interpolation.
The resulting grid has 3265 cells. We have selected a slightly smaller grid than the base case to
make it easier to see the local refinements. This means that the petrophysical parameters may have
somewhat stronger contrasts (more abrupt jumps) than specified in the original SPE 10 data set.
The faults are considered to be completely sealing, i.e., the transmissibility over the interfaces is
zero.

For the multiscale solver, we create a simple partition using the centroids of the cells. The coarse
blocks are then split across faults and the coarse blocks in the radial subsgrids are partitioned using
distance from the wellbore. Once all the local features are accounted for, the coarse grid itself is
also unstructured and altogether this represents a challenging test case. The coarse grid has 146
blocks. Away from unstructured features the median number of cells in each block is 42.

The saturation profiles for the reference and multiscale simulations presented in Figure 18 show
that the multiscale approximation captures the flow pattern accurately. Especially, the local fluid
behavior near the faults is correctly represented; such local flow can easily be lost in a typical
upscaled model.
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(a) Reference front at 0.2 PVI (b) MsRSB approximation at 0.2 PVI (c) Error in approximation at 0.2 PVI

(d) Reference front at 0.5 PVI (e) MsRSB approximation at 0.5 PVI (f) Error in approximation at 0.5 PVI

(g) Reference front at 1.0 PVI (h) MsRSB approximation at 1.0 PVI (i) Error in approximation at 1.0 PVI

(j) ‖v‖ at first timestep (k) ‖v‖ at first timestep (MsRSB) (l) Error in ‖v‖

Figure 18. The water saturation at different timesteps for the unstructured testcase
with local refinement. The error colormap has a maximum of 0.5, which is higher
than the largest error seen.

4.3.5. Model with a large number of inactive cells. For many models there will be a large number
of cells with insignificant permeability and/or porosity. There are different ways to treat such cells.
One approach is to simply let the cells retain their small values and include them in the full system.
By including the cells, however, the computational effort will be just as large as if they were highly
permeable even though nothing will flow through them. The other option is to remove cells with
impermeable rock types, which is what we will consider here. Consider a 1×1 km domain comprised
of 150× 150 fine cells, with lognormal permeability as shown in Figure 19. We remove 43% of the
cells, place a quarter five-spot well pattern with injection in the lower-left corner and proceed to
inject one pore volume over ten years with unit mobility ratio. The multiscale solver uses a 15× 15
uniform coarse grid and gives an accurate reproduction of the injected fluid, with a flux error of
0.15 in the L2 norm.
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(a) Reference at 0.25 PVI (b) Reference at 0.75 PVI
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Figure 19. Saturation fronts for a model containing a large number of impermeable
zones throughout the domain modelled as inactive cells.

4.3.6. Norne field model. In our final example, we study a water-injection problem posed on a
geological model with grid geometry and petrophysical properties taken from the Norne benchmark
case [48]. Initially, the reservoir is completely filled with oil, and the fluid behavior is described using
an incompressible, two-phase model with the same fluid properties as in Section 4.3.4. The grid has
44 420 fine cells and layered permeability distribution. The model consists of two disconnected rock
formations that are separated by full layer of inactive cells, so that the wells are the primary means
of communication between the top three layers and the remaining parts of the model. Several faults
and partially eroded layers makes the model effectively unstructured.

The reservoir has seven wells, three producers and four injectors. Each well is completed in all
vertical layers, and will hence pass through multiple coarse blocks. The injectors operate at fixed
pressure of 500 bar, while the producers have a constant rate corresponding to the drainage of a
complete pore volume over the production period of 100 years.

The grid is partitioned into 250 coarse blocks using Metis with transmissibilities as edge weights.
Wells are resolved most accurately in a multiscale method if they are placed near the centers of
the coarse blocks. Making coarse grids that satisfy this property is straightforward if the grid has
a simple structure and each well only perforate a single cell or a small contiguous set of cells. For
complex grids with multiple perforations per well, however, it is generally not feasible to make such
grids. We therefore consider two different set-ups for the multiscale solver: In the first, we use
one pass of the multiscale solver to compute an approximate pressure. In the second, we use five
multiscale cycles that each consist of a multiscale solve followed by five Jacobi iterations to remove
local error and account for near-well information.

Figure 20 shows pressure and saturation profiles after the injection of one pore-volume of water,
as computed by the fine-scale solver and the two multiscale solver. We note that the multiscale
pressure approximation is in close agreement with the fine-scale solution, irregardless of whether we
use iterations or not. For the saturation field, the multiscale solvers exhibit some smearing near the



29

(a) Reference pressure after 1 PVI (b) Reference saturation at 1 PVI

(c) MsRSB pressure after 1 PVI (d) MsRSB saturation at 1 PVI

(e) MsRSB with 5 cycles pressure after 1 PVI (f) MsRSB saturation with 5 cycles at 1 PVI

Figure 20. Pressure and saturation profiles after the injection of one pore-volume
of water for the model derived from the Norne benchmark data. All plots of the
same type use the same color axes.

boundary of the domain, but otherwise reproduce the water distribution at the end of simulation
excellently. This is also confirmed by the well curves reported in Figure 21. Even without iterations,
the multiscale solver is able to correctly reproduce the qualitative behavior of the producer, with a
discrepancy of less than 5% in the bottom-hole pressure and fluid rates. By adding more iterations,
this discrepancy can be reduced to the point where one also has an excellent quantitative match.

5. Concluding Remarks

We have presented a novel multiscale formulation that relies on an iterative process to construct
basis functions. The iterative process is defined as standard matrix manipulations in combination
with simple grid indicators. These indicators can easily be obtained from general coarse partitions
without any stringent requirements on the underlying grid topology. Because the formulation
only requires knowledge of cell centroids and topological neighborship, the method is applicable
to unstructured polyhedral grids in general and stratigraphic grids in particular. The method is
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Figure 21. Well curves for the water-injection test case based on the Norne bench-
mark data.

flexible and very robust with respect to the shape of the coarse blocks, and it is therefore easy
to formulate automated strategies to coarsen complex grid models having cells with degenerate
geometry and unstructured topology caused by erosion, faults, inactive cells, local grid refinement,
and other types of non-neighboring connections. In particular, the coarse partition can be adapted
to geological features or to provide extra resolution, e.g., in near-well regions. This can be done
in two ways, either by fitting the coarse grid a priori to adapt the prolongation operator or by
modifying the control volumes a posteriori to adapt the restriction operator.

Extensive numerical tests on single-phase problems, some of which are reported herein and in [41],
show that the MsRSB method compares favorably with the classical MsFV in terms of accuracy,
and is generally much more robust and less affected by the choice of restriction operator and the
resolution and type of the coarse partition. Notably, the pressure field for the challenging SPE 10
benchmark is solved to within 5% accuracy without the need for additional iterations or coarse grid
adaption. Likewise, a high degree of accuracy is observed on models of the Norne field and the very
structurally complex Gullfaks field. For both models, a wide range of coarse partitions can easily be
generated using standard graph partitioning algorithms. This indicates that automated coarsening
is indeed possible for realistic models with high media contrasts, complex unstructured topology,
and cells with very high aspect ratios and degenerate geometries.
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Through a set of multiphase test cases we have also demonstrated that the method can easily
adapt to changing mobilities and provide prediction of well curves that are qualitatively correct, also
when wells crossing different geological layers are completed in multiple coarse blocks. By setting
tighter tolerances on the fine-scale residuals, excellent quantitative match can also be obtained at the
cost of a few additional iterations. In many aspects, the iterative version of the method resembles
an agglomeration-based multigrid method, but unlike these methods, MsRSB can be stopped at
any prescribed residual tolerance and still produce a mass-conservative approximation.
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