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SUMMARY

Subsurface reservoirs generally have a complex desariptiterms of both geometry and geology. This
poses a continuing challenge in modeling and simulatioretrfofeum reservoirs due to variations of static
and dynamic properties at different length scales. Mutsenethods constitute a promising approach that
enables efficient simulation of geological models whilaing a level of detail in heterogeneity that would
not be possible via conventional upscaling methods.

Multiscale methods developed to solve coupled flow equation reservoir simulation are based on a
hierarchical strategy in which the pressure equation igesbbn a coarsened grid and the transport equation
is solved on the fine grid, and the two equations are treatea dscoupled system. In particular, the
multiscale mixed finite-element (MSMFE) method attemptsapture sub-grid geological heterogeneity
directly into the coarse-scale equations via a set of nwakyi computed basis functions. These basis
functions are able to capture the predominant multiscéiernmation and are coupled through a global
formulation to provide good approximation of the subsugfflow solution.

In the literature, the general formulation of the MsMFE neethfor incompressible two-phase and
compressible three-phase flow has mainly addressed prshigtin idealized flow physics. In this paper,
we first outline a recent formulation that accounts for cagspibility, gravity, and spatially-dependent rock-
fluid parameters. Then, we validate the method by evalugsngpmputational efficiency and accuracy on
a series of representative benchmark tests that have a aggeealof realism with respect to flow physics,
heterogeneity in the petrophysical models, and geomefgibgy of the corner-point grids. In particular,
the MsMFE method is validated and compared against an indsttndard fine-scale solver. The fine-scale
flux, pressure, and saturation fields computed by the maléssimulation show a noteworthy improvement
in resolution and accuracy compared with coarse-scale isddepyright© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the past few years, there has been an increasing interasilitiscale methods for a wide
variety of engineering problems. The research in the aremufiscale methods is primarily
motivated by the complexity and inherent multiscale nanfreroblems across a wide range of
engineering disciplines, the rapid growth of computatigg@wver, and the need to solve highly
detailed multiscale problems accurately and efficiently.fRost engineering problems that involve
a wide span of scales, it is often sufficient to accuratelydiotethe macroscale behavior of
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2 M. PAL ET AL.

the system and it is not possible, or simply too expensivggeidorm simulations that provide
guantitative information about physical processes atelvant scales, even with modern day
computers. However, accounting for macroscopic effeclg may not give the accuracy required
because small-scale properties usually have a significapadt on the macroscale behavior. A
popular approach to resolve this problem, is to assume seglgration, which means that one can
define distinct characteristic scales for processestsftbat take place on the macroscopic scale
and can be resolved on a computational grid, and proceffeetgethat take place locally on the
subgrid scale. So-called multiscale methotls?] are designed to accurately and effectively solve
problems having multiple scales and offer a systematicdraonk for incorporating effects from an
unresolved scale into the global flow equations in a manrarishconsistent with the underlying
differential operators. To accurately account for finelsedfects in the macroscopic description,
most multiscale methods rely on fine-scale computationsdhly use information within local
regions to build effective parametrizations of the finelstehavior.

The flow of hydrocarbons in subsurface rock formations is>amngle of multiscale processes
that do not have apparent scale separation. In many aspactsproblems are more challenging
because nonlocal information is needed if one wants to coergftective properties that accurately
represent subgrid effects. As a result, most existing sudte methods rely on sophisticated
combinations of fine-scale and coarse-scale computatioresblve the most important fine-scale
information efficiently without having to compute directby the global fine-scale problem. For
petroleum reservoir simulation, in particular, multiscatethods are formulated so that fine-scale
petrophysical and geological effects are captured dyrantlthe coarse-scale simulation model
without the need for explicit computation of effective peofies.

Quite a number of such multiscale methods have been presierttee literature, including dual-
grid methods 3, 4, 5, 6], finite-element methods7], mixed finite-element§, 9, 10, 11], and
finite-volume methodsi12, 13, 14, 15, 16, 17]. Apart from algorithmic differences, all of these
methods share the same basic concept of incorporating dale-snformation into the coarse-
scale equations via some sort of numerically constructadtions. These functions, also known
as basis functions?], contain fine-scale information embedded in the solutind are coupled
through a global formulation to provide an accurate appnation of the flow solution. In a typical
multiscale method, the pressure is first solved on a coaligdeagd then propagated to a much
finer grid using the basis functions. These basis functiamsbe computed locally, globally, or by
using an adaptive-local global approadt][to fill in the details of the fluxes that are required to
subsequently compute the saturation change on the finetgthds two-grid approach, the pressure
and saturation equations are decoupled. The pressureauisaolved on a coarse grid and a mass-
conservative fine-scale flux field is recovered to solve thegport equation on the underlying fine
grid. Most of the multiscale methods presented to date amagturing sub-scale pressure solutions
with a predominantly elliptic nature.

Despite their obvious similarities, multiscale methodsigti not be confused with upscaling.
A comprehensive comparison of multiscale methods withesté&the-art upscaling methods for
elliptic problems in porous media is presentedlifi| The main objective of the multiscale method
is to efficiently obtain an accurate approximation to the-8nale solution, whereas the intent of
upscaling is to generate approximate coarse-scale safiffi6, 20]. Moreover, the natural coupling
of local and global scales in multiscale methods reducesnisistency and non-physical coarse-
scale properties that are often associated with many upgdakchniques.

To date, there are almost no papers that validate multisnabhods on cases containing the
complexity in geology and flow physics seen in real-life medgsed in industry. Herein, our
main purpose is to present the result of such a validatiodystu which the multiscale mixed
finite-element method is applied to simulate two-phasegrimaressible flow on challenging and
geologically realistic corner-point grids for cases imthg gravity and relative-permeability and
capillary functions that vary with rock type. As part of thalidation, the method is benchmarked
against an industry-standard simulator. We also presefitrpnary test results for an idealized case
of compressible two-phase flow described by the black-aib¢igns and discuss what we perceive
as the main challenges in extending the method to more carfiple physics.
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VALIDATION OF THE MSMFE METHOD 3

The multiscale formulations presented in this paper haes limplemented in the open-source
MATLAB Reservoir Simulation Toolbox (MRST)Z1] which can be downloaded and freely used
under the GNU General Public License (GPLv3). The numergsllts presented in this paper are
generated using functionality from tienf emmodule in MRST.

This paper is organized as follows: the mathematical egnatjoverning flow in porous medium
are briefly reviewed in Sectich Sectior3 presents the basics of the multiscale mixed finite-element
formulation and also outlines how to extend the method toriparate compressibility, capillary, and
gravity forces. Numerical results are presented in Seetidollowed by a summary and concluding
remarks in Sectiob.

2. MATHEMATICAL MODEL AND FINE-SCALE DISCRETIZATION

The partial differential equations governing two-phasmimpressible flow in a porous medium can
be derived from the continuity equation over an arbitrargnd (2, given for phase as follows:

08,
ot

and Darcy’s law describing relationship between the phaecity v; and phase pressupe,

o + VU = ¢, 1)

U = =KX (Vp; — gpiV2). 2

Here, » and K denote porosity and permeability, which are both both gmeed in terms of
constant values inside the cells of a space-filling, voluimefrid. Each phase is described by
a densityp;, a saturationS;, a fluid source/sink;;, and a phase mobility; = k,;/u;, wherep;
denotes the viscosity ang,; the relative permeability, i.e., the reduced permeabditgerved by
one fluid phase in the presence of the other phase. Figafiyhe gravity constant andthe vertical
coordinate. To obtain a solvable system, we need to define stoaure relations. Herein, we only
consider two phases, water (w) and oil (0), which are assuméd the pore volume so that,
+S., = 1. Moreover, the two fluid pressures are related by the capijmessurep. = p, — pw,
which is assumed to be given as a function of fluid saturation.

In an incompressible model, pressure signals propagate amitinfinite speed whereas fluids
are displaced by fronts that travel at a finite speed. To bedfgresent these different physical
characteristics, it is common to reformulate the model &gna as one equation for pressure and
one equation for transport. The pressure equation isielligtile the transport equation is generally
parabolic but has a strong hyperbolic character. To this eeddefine the flow rate = q, + q.,
and introduce the total mobility, = A\, + \,, the fractional flow functiory; = A; /), and the total
velocity v; = v,, + ¥,. Then we can derive the following equation for oil pressure #tal velocity,

V.= q, v =—KA\ [VPO - Q(Sw)Vz + h(Sw)vpc] 5 (3)

and an evolution equation for the water saturation

GSw N w
(//)W +V- fw(Sw) [U + K)‘O(S’w)((pw - Po)gvz + VP((SLU))] = z_ (4)
Here, §(Sw) = [fw(Sw)pw + fo(Sw)polg represents gravity effects and the form of the function
h(S,) depends upon the choice of primary pressure variable; iflvo®se oil pressuréy(S,,) =
fuw(Sw). For simplicity, we will henceforth drop the subscripts e primary variableg andsS.

2.1. Pressure equation

To solve the systenBj—(4) numerically, the computational domdinis partitioned into a set oWV
non-overlapping polyhedral cells. Each ag]lcan have an arbitrary numberof planar faces, and
each face matches the face of a neighboring cella;edenote the vector of outward fluxes from
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4 M. PAL ET AL.

cell C;, p; denote the pressure at the cell center, &nthe pressure at the cell faces. We then apply
a standard, locally conservative discretization of Daxdsgiv

u; =Tilep; —mi], e =(1,..,1)7, (5)

whereT'; is the matrix of one-sided transmissibilities. In the precseof gravity and capillary forces,
the discretization takes the form,

w; = Ti[eipi — mi — G(Si)Az; + h(S:) (eipe(Zi, Si) — Pes) |- (6)

Here, Az; denotes the vector of differences in theoordinate of the cell centet; and the face
centroids. The capillary pressupe; at the cell faces is discretized using a standard two-pairt fl
approximation (TPFA) method.

By augmenting®) with flux and pressure continuity across cell faces, we eaive the following
discrete linear system for the global flow problem,

B C D u —G(S)Az + H(S)Ap.
cCT 0 o —p | = q . (7)
DT 0 o T 0

Here, v denotes the outward face fluxes ordered cell wise (fluxes ioterior faces and faults
appear twice with opposite signg) denotes the cell pressure, amdhe face pressures.

To solve {7), we use a block-wise Gaussian elimination to give a pasitigfinite system (the
so-called Schur complement) for the face pressures

(D"B'D-F"L'F)n =F"L™'q, ®)

whereF = C"B~'D andL = CT B~ C. Once the face pressures have been computed, the cell
pressures and fluxes can be reconstructed by back-suilostjtut

Lp=gq+ F, Bu=Cp— D.

The disadvantage of using the hybrid formulatiof) {s that we get a linear system with
significantly more degrees-of-freedom than for a stramtérd cell-centered two-point scheme;
the advantage is that the general forf) ihcludes consistent discretizations like multipoint and
mimetic schemes, and as we shall see later, the multiscalednfinite-element method. In terms
of computational costs, we also notice that the Schur comghe only involvesB~' which can
be constructed algebraically for many numerical schenmaading, in particular, the standard two-
point method, mimetic method&1, 23, 24], and the MPFA-O methodp, 26, 27]. Moreover, the
matrix L is by construction diagonal and hence simple to invert.

2.2. Transport equation

The transport equatior) is solved on the fine-scale grid using a standard disctesizhased on
upstream-weighted mobilities. In the absence of gravity eapillary forces, the resulting scheme
reads
Sl — gn _ AtV 'UF(S™) — max(q,0) — £(S™) min(g, 0)). 9

Here,V is a diagonal matrix of pore volumes, whilgis a matrix with dimension equal the number
of cells times the number of faces giving the flux contribntfioom Darcy fluxes for each face.
Finally, F' denotes the upstream-weighted fractional flow evaluatedgoe andf the fractional
flow function evaluated per cell. The discretization may Xx@ieit (m = n) or implicit (m = n + 1)
and the numerical accuracy can (of course) be improved Ingusgher-order upwind schemes, like
the wave-oriented multi-dimensional schem23 P9].

Gravity effects are added by using upstream weighting ineéggitforward manner. Furthermore,
we use two-point differences to compute the contributioomfthe gradient of the capillary pressure
(Vp.) on a face between two neighboring ceillg.

KVpe(S) = K (pe(Si) — pe(S5)) /1851, (10)

whereg;; is the centroid difference between celland;j andK; denotes the harmonic average of
the cell permeabilities in the direction of the face normal.
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VALIDATION OF THE MSMFE METHOD 5

3. THE MULTISCALE MIXED FINITE-ELEMENT METHOD

The early concepts of mixed multiscale finite-element (M&YImethods for solving Poisson-type
elliptic equations,
V-v=f o==\z)Vp, inQ, (11)

were introduced ing] for Cartesian grids, modified to give conservative dideegions in P], and
later extended to general polyhedral grids in e.§0, [L1]. The basic idea of the MsMFE method
is to construct a special approximation space, consistire set of coarse-scale basis functions
with resolutionH that satisfy a flow equation locally and hence are consistéhtthe differential
operator at a finer resolutidn The basis functions are usually computed numericallyiwigach
element. Apart from that, the MsMFE method follows the samoe@dure as standard mixed finite-
element methods to solve for thé-scale variables. Once thié-scale solution has been found,
an approximate, but mass-conservative solution can bens&tmted on the: scale using the
local resolution inherent in each basis function. In pgtithe method is formulated using two
hierarchically nested grids as shown in Figlre fine-scale grid on which the rock and rock-fluid
properties are given, and a coarse simulation grid to whiehagsociate the degree-of-freedom
used to solve the global flow problem. In the following, welgib through the various parts of the
method in more detail.

Figure 1. lllustration of the two-level grid used to define MsMFE method. The coarse grid (thick lines) is

formed based on a partition of the fine grid (thin lines) sd #zch coarse block; consists of a connected

set of cells from the fine grid. Each block can, in principlayé arbitrary shape, but the best numerical

accuracy is obtained if the blocks are somewhat reguldgvidhe layered structures of stratigraphic grids
[10], and/or adapt to high-contrast featur&s,[31].

3.1. Multiscale approximation

To formally define the MsMFE method, we start by writing théusion to (7) as the sum of the
basis functions plus a fine-scale residual,

u = Yu, +u, p=®p. +p, m=Ir,+ 7. (12)

Here,u,. denotes the vector of outward fluxes over the coarse-bldekfatesp, denotes the vector
of coarse-block pressures, afidlenotes the vector of coarse-block face pressures. Likewj$p,

7 are reminder terms having variations on the fine grid. Theioes¥, ®, andII represent the
fine-scale reconstruction operators 9, andx. Each column in¥ corresponds to a multiscale
basis function for the flux associated with a unique coarggfgce and is represented ags ax 1
vector of fine-scale fluxes.

For compressible flow, we also need to define fine-scale i@mgtfor the pressure basis so
that each column ofp is a basis function associated with a unique block and ealthmeoof
IT corresponds to a basis function defined over a coarse facenémmpressible flow, on the
other hand, pressure is seldom used explicitly except terchéhe well-rates through the use of
appropriate well models. Hence, we define the pressure tmhstant within each coarse block
and replacep by a simple prolongation operatdrthat maps a constant value from each coarse
block onto the cells of the block. LikewisEl is replaced by a prolongation operatbthat maps a
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Figure 2. lllustration of the generation of a two-block Isafsinction for the associated with the coarse flux
across the interface;; between two coarse blocks andB;. Here, the blocks are rectangular, but the exact
same construction applies to general polygonal/polyHhéddoaks.

constant value from each coarse face onto the individulieass of the coarse face. Altogether, this
defines a reconstruction operaf@r= diag(®, I, J) that enables us to map the degrees-of-freedom
x. = [u., —p., 7] On the coarse-scale to the corresponding fine-scale geaatit [u, —p, 7].

3.2. Coarse system

To form a global system on the coarse grid, we need a compresgierator that will bring the
fine-scale systeni’] to the space spanned by our multiscale basis function®, REr is a natural
choice since the transposed of the prolongation operdtarsd J correspond to the sum over all
fine cells of a coarse block and all fine-cell faces that ar¢ @fathe faces of the coarse blocks,
respectively. Multiplying 7) from the left byR™, substitutinge = Rx., and rearranging terms, we
obtain

v'BY w'cr v'DJ U U (H(S)Ap, — G(S)Az)
ITCTw 0 0 -p. | = ITq . (13)
JTDT® 0 0 T 0

On the right-hand side, the fine-scale reminder terms wargrelted as followsp disappears if we
interpret the coarse-scale pressure asutiveeighted average of the true pressuyre= | B, Wp AT,
wherew is the source term used to define basis functions, see Sécfiofhe two other termsy
and, are simply neglected. The coarse systd®) (s on the same hybrid form as the fine-scale
system {) and can be solved using the Schur-complement reductiocngied in Sectiof. 1

3.3. Multiscale basis functions

The basis function associated with a flux between two codmsek® is constructed as illustrated
in Figure2. The resulting method is not convergent, but will typicailiye reasonable accuracy
on finite grids. The purpose of the weight functier, (¥) is to distributeV - ¢ over the coarse
block. To ensure a unit flow across the interfd¢e, the weight function should be chosen on
the formw;(x) = 6(x /fB x)dx. The functiond(z) can be defined in several way32[ 33].

For |ncompreSS|bIe flow, the S|mplest choice is to&at) = 1 or 6(&) = trace(K) away from the
possible wells and(Z) = ¢(%) in grid blocks penetrated by wells. This will reproduce tbeést-
order Raviart—-Thomas basis on rectangular blocks with lggmeous, isotropic permeability. For
incompressible flow, the pressure is immaterial apdcan be replaced by a constant inside each
block.

3.4. Capillary forces
To account for capillary forces, we introduce an additis®ilof basis functions defined as
W = —K(Ve5 — h(S)Vp(S)), V- =0, (14)

so that there are two flux bases associated with each coarseThe new basis functions are
included in the multiscale expansiofi2j and in the coarse-scale systefB)(by adding each
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VALIDATION OF THE MSMFE METHOD 7

discrete approximation tdff] as an extra column i, In other words,¥° denotes the basis
functions defined in SectioB.3 andw! the corresponding degrees of freedom, thgnr= [u.0 u?]
andu, = [u.0 u?].

Using an extra set of basis functions instead of adding leapikffects directly in the basis
functions @j has the advantage that we avoid the problem of having to dtalerelative
contributions of the physical capillary terms and the aitifi source termw;;. | also reduces the
saturation dependence in our set of basis functions.

3.5. Compressibility

The basic flow model3) can be extended to compressible flow as follows

. 0 . . .
V- i=q- cta—f + (v(S,p)T+ B(p)KgVz) - Vp, ¥=-AK(Vp—g(S)Vz),  (15)
wherec, denotes total compressibilities afi¢h) and~(.S, p) are known functions of pressure- and
saturation-dependent parameters. For simplicity, weameghpillary forces and write the linearized
discrete system on mixed form

[B” c ] [ vﬁﬁ] B { 1 epth) ] (16)
c' P(piiD)l |-pit g"(p",ppth)]
Here,v indicates iterations in a nonlinear solver and superseriptlicates functional dependence
on saturation/pressure from the previous time step; thisrseript will be dropped for brevity.
MsMFE methods for systems on the form6] have been discussed in detail 4] 33]. For
compressible flow, the pressure is no longer immaterial @pdshould thus include subscale
pressure variations. To ensure that pressure and flux baaks smilarly, we use a saturation-
dependent decomposition for pressyses Ip, + A®v. + p, where A = diag(A\)/\,) and A is
the mobility used to calculate basis functi@rThis gives the coarse-scale system

v'BY vCer|[ vt [e'f, 17)
I"(CT™v - P,A®) ITP,I| |-p:t] |ITg,]’

which needs to be solved iteratively to construct a multesegproximation. To get a fine-scale
approximation that converges to zero fine-scale residualnged to include an equation for the
residual terms that were neglected 17

(18)

cT P||-pt T g, — IT(CT® — P,A®)v, + ITP,Ip,

{B C] [ @”H] 7 { f.—®'BWy, + W' ClIp, ]
If the residuals have a localized structure, this equatiam loe solved efficiently by a standard
overlapping Schwarz method. Hence, the resulting itezatiethod, IMSMFE for short, consists of
an outer loop, in which we iterate ovelrf) and (L8) to reduce the fine-scale residual, and two inner
loops that are used to solved) and (L8), respectively.

4. NUMERICAL RESULTS

In this section, we will validate the MSMFE method on five difint test cases with realistic
reservoir geometries and petrophysical properties, asasebn models with spatially dependent
fluid properties. The aim of the first test case is to assessaimputational efficiency of the method
on a large-scale geological model with approximately 700 €ells. The second test case compares
the performance of the multiscale method with the Shellddesh simulator 35]. Case three and
four aim to validate the multiscale method for incomprelssitwo-phase flow with gravity and
spatially-dependent rock-fluid parameters. Case thregvies two regions with different relative
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8 M. PAL ET AL.

permeability and capillary curves, whereas the fourth caweesponds to a sector model with
multiple rock types, with a different relative permealyilénd capillary curve associated with each
rock type. The final test case demonstrates the use of MsMFEofmpressible two-phase flow

described by the black-oil equations.

To perform the numerical experiments, the MSMFE methodsrdesd above have been
implemented as software prototypes in Matlab, using thelddaReservoir Simulation Toolbox
(MRST) [36]; all examples except for the fifth were computed with fuons that are publicly
available in themsnf em module in MRST Release 2011R1] and later. The main purpose
of MRST is to simplify the prototyping and testing of new cautgtional methods on general
unstructured grids. This means that computational efftgidras been sacrificed in certain cases
for the sake of generality and flexibility of the toolbox. larficular, the data structure used to
represent basis functions in timsnf em module introduces significant computational overhead
when extracting basis functions to assemble coarse sysienget a more reliable assessment of
the computational efficiency of the MsSMFE method, we havestiped a C-accelerated version of
the incompressible method, in which all steps except follittear solver of the coarse system are
performed in C via a MEX interface to Matlab. Moreover, inlbtlhe C-accelerated and the pure
Matlab versions, the basis functions are, for the sake oéiggity, implemented using a mimetic
discretization with a two-point type inner-product (s&€]], which is a factor 3—10 less efficient
than using a standard cell-centered TPFA implementatibe.cbmputational performance of the
MsMFE method is therefore expected to be at least a factortiBrés better if the method is
implemented using a (tailor-made) cell-centered fineesdacretization.

All computational experiments reported in the followindereto simulations performed on a
computer with Intel Core2 Duo Processors (6M Cache, 2.80,3H86 MHz FSB) and 4 GiB
RAM.

4.1. Example 1: large geomodel

In the first test case, we evaluate the efficiency of the MsMélizes implemented in MRST and,
in particular, compare the C-accelerated version to it® pdatlab counterpart. To this end, we
consider a realistic large-scale geomodel shown in FiGufehe simulation grid is given as a as
a corner-point grid with253 x 258 x 38 cells. After cells with zero porosity or permeability are
set to be inactive, the total simulation model consist2if, 999 active cells. In addition, we have
introduced a lower permeability threshold ofiD. We consider a scenario in which water is injected
into a reservoir that is initially fully oil saturated. Thgssem is described by a standard two-phase
model with a mobility ratio ten between the two fluids. In oimihg experiments, we will focus
exclusively on the pressure equation and not considerdhsport solves that would normally have
been performed on the fine scale. Our simulation setup dsrigirst computing basis functions,
and then solving the global pressure equation one thougaed.t

For multiphase flow applications, the basis functions areegaly time-dependent and coupled to
the transport equation through the relative mobility texniror water-flooding scenarios, however,
this temporal dependence is typically quite weak and gooliisnale solutions can be computed
using infrequent updating of basis functions. Thinking oBackleyLeverett type displacement
profile, A(z,¢) will typically only vary modestly before and after the bloék swept by the
displacement front. Favorable displacements will typjcabntain strong displacement fronts, and
here individual basis functions need to be updated fredyisnadccount for large mobility variations
as the front passes through the interior of the correspgraocks. For unfavorable displacements,
as considered herein, it is often sufficient to only complugddasis functions initiallyl[8]. To mimic
a worst-case scenario of mobility effects arising from sattan updates, the pressure system is
reinitialized by assigning random relative permeabiligyues to all cells before each new pressure
solve. By updating the pressure one thousand times, we getwreof where the time is spent
during a dynamic simulation. For instance, given a presstae of ten days, our test will mimic a
simulation of 27 years of production.

First we compare time consumption on a subset of the full getai The results are displayed
in Tablel. The C-accelerated code gives a reduction in runtime of 8086 compared to the pure
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Figure 3. The geomodel. The plot in (a) shows thedall x 258 x 38 model with a15 x 15 x 7 coarse grid
imposed. The plot in (b) shows a subset of the full model.

MATLAB implementation even though the MEX interface is ngtional since data must be copied
between C and MATLAB. Solving the same system on the fine sedtethe AGMG multigrid
solver B7] takes 200 seconds, and hence the MSMFE solver gives a redwft86% in runtime
compared to the fine-scale solver for the pure Matlab solnd97 % for the C-accelerated solver.

The results for the C-accelerated code on the full geomaddl@own in Tablél. For large data
sets, as in this case, implementing the whole multiscalelsitor in a compiled language would be
much more efficient, since a significant computational osachis induced when using the MEX
interface to copy data between MATLAB and C in the C-accééat&RST code. In particular, for
the reconstruction of fine-scale fluxes, which is the moseagjve operation reported in Tablle
over 50% of the time is spent copying data. Moreover, an alsiadvantage of the MsMFE
solver is that it has a relatively low memory use compared &igh the AGMG solver, which
required more memory than the 4 GiB that were available onnoesiger test computer. Finally,
in the simulations reported above, the basis functions weraputed serially. Since each basis
function can be computed independently of the other, thisgfahe algorithm is straightforward
to parallelize and is expected to give an almost perfectdigeeParallelizing the reconstruction of
fine fluxes is a bit more complex, but should also give a siganificspeedup.

We expect that the results presented above extend readilgampressibldlack-oil models in
the absence of gravity and capillary forces: the key to efficy is to reuse basis functions from one
step to the next and exploit the natural parallelism in cotimgubasis functions and reconstructing
fine-scale fluxes.

4.2. Example 2: Carbonate sector model

The geometrical and physical properties used in this pdaticector model are based on a real-field
carbonate reservoir. The sector model coversca km? area and has a thickness of approximately
fifty meters. The fine-scale model h2® x 20 cells in the lateral direction and 93 cell layers in the
vertical direction, which we partition into a coarse gridtlwh x 5 x 11 blocks. For comparison,
we also generate a corresponding upscaled model basedamdat flow-based method. Figufe
shows the fine-scale porosity distribution, the coarseitimrtused by the multiscale method, as
well as the upscaled model. Here, we see that unlike the lipgeaethod, the multiscale partition
preserves the exact geometry of the fine-scale model.

The reservoir is produced using a five-spot injection pajteith one injector at each corner of
the model and one producer in the center. The fluid and thevaseata used for the simulations
are presented in Tablé . The model represents a scenario with 2000 days of productio

In the following, we will compare four different simulatiagtrategies: using standard sequential
solvers from MRST on the coarse and fine grids, using the MsiieEhod, and using Shell’s
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Table I. Runtimes in seconds for one thousand pressure epdat a20 x 20 x 12 subset of the full
geomodel with 8 x 3 x 3 coarse grid. Fine-scale solution with AGMG: 200.07 seconds

C-accelerated pure Matlab
Task time [sec] % of total| time [sec] % of total
Construct coarse grid (x1) 0.01 0.08 0.02 0.07
Compute basis functions (x1) 0.74 14.53 1.68 6.05
Assemble coarse system (x1000) 0.94 18.37 20.09 72.20
Solve coarse system (x1000) 1.81 35.14 1.92 6.90
Reconstruct fine flux (x1000) 1.64 31.86 411 14.76
| Total time | 5.14 100.00| 27.82 100.00]
| Reduction compared to AGMG | 97% | 86% |

Table 1. Time consumption in seconds for the 2813 x 258 x 38 geomodel with 1000 pressure steps, for
C-accelerated multiscale code without updating the basistions.

| | 10 x 10 x 5 | 15 %15 x 7 |
Task time [sec] % of total| time [sec] % of total
Construct coarse grid (x1) 0.09 0.01 0.01 0.01
Compute basis functions (x1) 323.42 40.48 224.24 31.33
Assemble coarse system (x1000) 46.46 5.82 54.69 7.64
Solve coarse system (x1000) 25.35 3.17 54.12 7.56
Reconstruct fine flux (x1000) 403.62 50.52 382.61 53.46
| Total time |  798.95 100.00] 715.76 100.00|
Porosity

0.2

Figure 4. Sector model of a carbonate reservoir. The leftgflows the porosity with white lines indicating
the5 x 5 x 11 coarse partition. The right plot shows the upscaled versidhe same model.

Table Ill. Fluid and reservoir data used for the sector model

| Property | Value | Unit |
Water viscosity 0.393 cP
Oil viscosity 1.1 cP
Water density 1138 | Kg/m3
Oil density 832 | Kg/m3

Connate water saturation 0.2 —

Irreducible oil saturation] 0.2 —

Initial reservoir pressurg 6000 psi
Well injection rate 10000 | bbl/day
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Figure 5. Water cut and oil production curves for the car®sactor model.

simulator MoReS35] on the fine grid. Figuré reports the resulting water-cut and oil-production
curves. The production curves predicted by MoReS and the MiR®-scale solver coincide more
or less. The MSMFE solver is in close agreement with the twe-§icale simulations, except for
a slightly higher water cut between days 500 and 700, whicdoimpensated by a slightly lower
water cut towards the end of the production period. The Updcsimulation gives a significant
overprediction of oil rate and underprediction of wateeratiring the first twelve hundred days.

Figure6 shows the corresponding saturation profiles computed ifotivedifferent simulations.
The coarse model predicts significantly different restigsitthe other three simulations, and would
not have been used for simulation in practice. On the othed hhe cost of updating the pressure
is almost the same for the upscaled and the multiscale siiomjand the coarse-scale saturation
profiles have been included to demonstrate what can be ghjnexploiting the subresolution that
is inherent in the multiscale basis functions to computarsséibns. However, the most interesting
comparison is between the fine-scale MoReS and the mubi$ica-scale MRST simulations.
Clearly, the standard sequential solver in MRST producemst identical results as MoReS on
the same grid. Moreover, the volumetric sweep predictechbyntultiscale simulation is in close
agreement with the two fine-scale simulations.

4.3. Example 3: Box model with two rock types

The previous example validated the fine-scale and muledd&ST solvers against Shell’s in-house
reservoir simulator for a sector model with realistic heggmeity and geometry, but with simplified
flow physics. In the next example, we will consider more aiflow physics that includes gravity
and spatially-dependent rock-fluid properties. To this eelwill use a simple 2D box that consists
of two different rock types (saturation regions) that haffecent relative-permeability and capillary
curves. The permeability of the medium is equal 100 millicgghroughout the whole domain, and
the porosity is homogeneous and equal 0.3. The reservaiitially fully saturated with oil and
is represented on a regular Cartesian grid ®&ithx 20 cells, which we have partitioned uniformly
into5 x 5 coarse blocks, see FigureWater is injected at the rate of 0.7 fday from the bottom of
the domain and oil is produced from the top. Gravity is acimthe z-direction. The transport loop
runs with a pressure step of 0.1 year. The initial fine-scateraultiscale pressure distributions are
shown in Figurer.

Figure 8 compares production curves and the evolution of the s@uaratrofiles computed by
the fine-scale and multiscale simulations. Because of tifiereint capillary curves, the saturation
profile of the injected water will be significantly differeintthe upper and lower parts of the domain.
Despite that there are some differences in the saturatitats figedicted by the multiscale and the
fine-scale solver, the multiscale solver is able to predietgroduction curve with high accuracy,
which in many workflows is the main purpose of using a flow siatioh.
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Fine-scale

Figure 6. Saturation profiles for the carbonate sector model
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Figure 7. The plot to the left shows two different linear diapy curves corresponding to the two different

rock types shown in the upper-middle plot. The lower-midglet shows the placement of the injection

and production wells and subdivision into coarse blocks plots to the right show the initial pressure
distribution computed by the fine-scale and the multiscalees.

4.4. Example 4: Sector model with nine rock types

We consider 21 x 21 x 13 sector model that covers an area3of 3 km? and has a thickness of
approximately 100 m. The model contains nine different riygles that each has its own relative
permeability and capillary curves, shown in Fig@ePetrophysical data and well placement are
presented in FigurgO. Initial reservoir pressure is 4728.23 psi and the resersg@roduced by two
wells that are located at diagonally opposite corners ofibdel in a quarter five-spot pattern. The
injection well operates at a rate constraint of 3000 STB jagr @he production well operates at a
bottom-hole pressure constraint of 100 psi.

Figure 11 shows the water saturation after twenty years and cleanyodstrates how the
variation in capillary and relative permeability curvesdiighout the reservoir gives rise to
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Saturation, top: finescsale, bottom: Ms
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Figure 8. The plots to the left show saturation profiles fer fime-scale and multiscale simulation for the
box model; capillary effects are clearly visible in the sation distribution. The graph to the far right shows
the water saturation in the production well as function wigicomputed by the fine-scale and the multiscale

simulations. The graph in the middle shows the discrepangyercent between the predicted saturation
fields as function of time.

—5— Finescale

E —# ~ Multiscale
0.65 06

L L L
0 5 10 15 20

Figure 9. Sector model with nine different rock types. Thie ot shows cells colored by the rock type
(saturation region number). The middle and left plots shioev ¢corresponding relative permeability and
capillary pressure curves, respectively.

Figure 10. Petrophysical data for the x 21 x 13 sector model. The left plot shows the permeability, which

spans the interval from 50 mD to 400 mD, and the middle plotxshthe porosity, which varies in the

interval [0.02, 0.12]. The right plot shows the well placement andl & 5 x 3 coarse grid, outlined on top of
the original geo-cellular model.

significant heterogeneity effects. Figut@ reports a more detailed analysis of the difference in
the solutions computed by the fine-scale solver and the MsBtter operating on 8 x 5 x 3
coarse grid. Overall, the multiscale solver is able to mrettie qualitative effects that gravity and
spatial variations in the rock-fluid parameters have on the-$icale flow patterns with reasonable
accuracy. On the other hand, there are large pointwisedfiaocies between the fine-scale and
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Figure 11. Water saturation distribution in the sector nhadier twenty years computed by the fine-scale
solver (left) and the multiscale solver (right).

-

Well Waterand 0il Cut

b @ e @m0 = 00 200 W0 A0 N0
Time [d]

Figure 12. The left plot shows the percentage discrepantyess the saturation fields computed by the
fine-scale and the multiscale simulations as a functionnoé tstep. The right plot shows the oil and water
cuts as function of time.

the multiscale simulations, both in the saturation field emithe prediction of water breakthrough.
Based on other experiments with the MSMFE method, we hav@reto believe that improved

accuracy can be observed if basis functions are updatedghout the simulation and the coarse
partition is adapted somewhat to the variations in rock type

4.5. Example 5: Compressible flow

In the last test, we consider a two-phase flow problem destriiy the compressible, black-oil
equations. There are several ways to formulate and digerétis type of models; common for
all successful approaches is that they rely on a meticulbage of variables, linearizations, and
averaging. A prerequisite for being able to formulate a esstul, iterative MsMFE methodology is
to have a robust numerical formulation for the fine-scald@m that solves the flow and transport
sequentially in separate steps and relies on a mixed (Hyfwichulation of the flow equation.
Several mixed methods are reported for the black-oil eqoatin the literatureds, 39, 40], but

to the best of our knowledge, it is not yet clear that therestexsuch a formulation that is fully
robust and efficient for black-oil models of industry-stardicomplexity. Herein, we will therefore
use a sequential method with a straightforward mixed foatih for the pressure equation and
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Figure 13. Well placement and permeability, plotted@n ,-scale, for the compressible test case.
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Figure 14. Oil production, gas production, and gas cut cdatphy the fine-scale and the multiscale solvers
for a 3D compressible test case.

an implicit transport solver with saturation as primaryiahle, and simply assume that this is a
reasonable solution strategy for the fine-scale equations.

We consider a sector of a reservoir in the shape @itax 500 x 15m rectangular box, realized
on a grid consisting of0 x 10 x 3 cells. The model is initially filled with oil at 200 bar. Gas is
injected from a well located in one of the corners of the mad®l operating at a fixed bottom-
hole pressure of 300 bar. Fluids are produced from a weltéota the opposite corner, operating
at a fixed bottom-hole pressure of 200 bar. Both fluids arenasduo be compressible, with a
compressibility of5-10~3 bar for the oil, and the gas following an ideal gas law. Thed8ui
have linear relative permeabilities and a viscosity of 1 aPtfie oil and 0.1 cP for the gas. The
heterogeneous permeability distribution and the wellgoatare shown in Figur&3.

Our primary interest for this example is to investigate hogllithe MsMFE method predicts the
global flow responses in this pressure-controlled systkat;is, how accurate the method predicts
oil and gas rates in the injector and producer, as well as &lsecgt in the producer. To this end,
we will compare a sequential, mixed-type, fine-scale sohidhr two different multiscale methods
derived from the same fine-scale discretization, and wgrkim a5 x 5 x 1 coarse grid. The first
multiscale method is a straightforward extension of thgindal MSMFE method that uses a set
of elliptic basis functions to compute the pressure. Theséanultiscale method is based on an
iterative setup as discussed in Sect®h Figure14 reports a comparison of oil production, gas
production, and gas cut predicted by the three differenhoud. In the simulation, we have used
equally spaced time steps, each of length 40 days, to readindl time of 600 days. The original
MsMFE method clearly underestimates the oil productionerehs the gas production and gas cut
are calculated quite accurately. By adding extra iterationthe iMsMFE method, the multiscale
method calculates a correct profile also for the oil produrcti
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5. CONCLUSIONS

In this paper we have reviewed a multiscale mixed finite-eletymethod for incompressible
two-phase flow and discussed how to extend the method todedtuore realistic flow physics
like gravity and spatially-dependent rock-fluid parametérhe method has been validated and
benchmarked on a large number of test cases that focus oagieadland petrophysical models
with a high degree of realism, or on realistic flow physics gntketic grid models designed to
exemplify certain behavior. Selected results from fourhwse test cases were presented above.
Altogether, these benchmark cases show that the MSsMFE mhetledficient, robust, and reasonably
accurate compared to the fine-scale simulation and henaedigsificant potential for accelerating
simulation of two-phase flow applications, particularly faocompressible flow. Compared with
coarse-scale models, the multiscale method gives a signifimprovement of the accuracy and
resolution of the flux, pressure, and saturation fields at@pavable computational cost. Combined
with a large degree of robustness, this emphasizes the farmer of the MSMFE method for its
ability to capture fine-scale heterogeneity.

The MsMFE method can also be extended to compressible flovhand certain potential both
for weakly and strongly compressible problems, includiteck-oil models. Here, however, the
formulation of an effective MsMFE method hinges on a crupiaiht: the fine-scale problem used
as a starting point must be formulated in terms of a sequesdlation procedure that contains
a pressure equation discretized on mixed (hybrid) formhdugh such discretizations can be
formulated and good results can be obtained in many speasalse see e.g4], 42, 43, 44, 45|,
there is a need for more research to formulate a sequengas@iale method that has the generality,
robustness, and efficiency that is required if this methao ise applied for practical simulation
of models of industry-standard complexity. If such a finalsdormulation becomes available, our
results along with results presented &3] indicate that it will not be difficult to build an efficient
MsMFE method on top of it.
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