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Abstract

We propose two improvements to a recent streamline method by Wang and Kovscek
for inversion of production data. The key idea of the Wang–Kovseck method is to
associate increments in fractional flow-curves (water-cut) with breakthrough of in-
dividual streamlines and match breakthrough times of each streamline by adjusting
the effective streamline permeabilities. The perturbations in effective streamline per-
meabilities are given by a linear system, which can be solved in a decoupled fashion
under additional simplifying assumptions. Finally, the permeabilities perturbations
defined along streamlines are mapped onto the underlying simulation grid, typically
using a geostatistical algorithm to constrain the corresponding corrections to the
geological model to prior geological data.

Our first improvement is to model the flow in each streamline independently
using real time, instead of using Dykstra–Parsons’ algorithm for all streamlines
connected to a producer-injector pair. This way, there is no coupling between in-
dividual streamlines, and permeability modifications can be obtained directly. Our
approach uses less approximations, enables extension of the formulation to include
gravity, and enables history matching of porosity. Three synthetic test cases show
that this approach gives a better match and a faster convergence.

Our second point is to use a multiscale inversion process, where the reservoir
parameters are matched on a hierarchy of recursively coarsened grids. Two synthetic
test cases demonstrate that this approach captures the large-scale trends of the
reservoir parameters more accurately. The proposed approach has proven robust in
the sense that it is able to capture structures of the permeability field on the basis
of limited information.
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1 Introduction

Obtaining a reliable history match is an ill-posed and time-consuming ex-
ercise for reservoir engineers. In this paper we consider one component of
history matching, namely how to modify permeabilities (and/or porosities)
to match observed production data. The process for history matching perme-
abilities typically consists of two basic steps: (1) modification of grid-block
permeabilities, and (2) forward simulation of fluid responses to validate the
accuracy/correctness of a given permeability distribution. History matching
real-life reservoirs typically requires numerous flow simulations, which often
makes forward simulation the most time-consuming part of a history match.

Streamline simulation (Datta-Gupta and King, 1995; Thiele, 2005) is a com-
plementary technology for flow simulation in petroleum reservoirs. Compared
to traditional finite-difference simulators, streamline simulation offers unpar-
allelled computational efficiency for simulating reservoir responses for large
and complex geomodels and for flow scenarios dominated by wells, fluid mo-
bilities, and heterogeneity in the rock properties. Replacing a conventional
finite-difference solver by a much faster streamline solver may therefore dras-
tically reduce the computational time, thereby allowing more frequent model
updates and possibly also models with a larger number of gridblocks.

However, the most promising use of streamlines in history matching has come
from their ability to locate regions in the reservoir that may contain poten-
tial sources for mismatch in production data. Several authors have exploited
streamlines to develop efficient inversion methods using a sensitivity approach,
in which one needs to compute gradients of production characteristics with re-
spect to the geological parameters; see e.g., Gautier et al. (2001, 2004); Vasco
and Datta-Gupta (1999); Vasco et al. (1999); Wen et al. (2003).

As an alternative, novel inversion methods can be developed using two types
of data that are not offered in conventional simulators: flow paths (the stream-
lines) and time-of-flight. The streamlines give a natural way to delineating the
reservoir volume to be matched. Emanuel and Milliken (1998) and Milliken
et al. (2000) use streamlines to define subregions, in which subsequent changes
in grid properties can be performed manually (or semi-automatically) by the
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reservoir engineer to match production data.

Wang and Kovscek (2000) use streamlines as a natural parameterisation of the
reservoir and modify effective properties along streamlines to increase/decrease
breakthrough times (computed from the time-of-flights), thereby reducing the
mismatch between observed and calculated fractional flows, pressure drops,
and total flow rates. The modified effective properties would then be mapped
back to individual grid cells in the underlying geological grid model and a flow
simulation performed to check the match for the new permeability estimate.
This procedure is repeated until the history match is converged. Although this
approach is quite robust in the sense that a reasonable history match can be
obtained from a small data set, modifying grid properties directly along flow
paths may introduce artifacts and violate geological constraints. To improve
the predictive powers and impose geological consistency in every step of the
inversion, Caers and coworkers apply the modified effective streamline proper-
ties to constrain geostatistical algorithms; see Caers (2003); Caers et al. (2002,
2004); Gross et al. (2004). Moreover, as an alternative to perturbing effective
properties associated with a single streamline, streamlines and time-of-flight
can be used to perform corrections on all streamlines associated with a single
well, an injector-producer pair, or on all wells in a reservoir.

In this paper, we go back to the original method of Wang and Kovscek (2000)
and present two possible improvements. Our first point is that one can sim-
plify the calculation of modified streamline permeabilities. Rather than using
Dykstra–Parsons’ algorithm to model all streamlines connected to a well as
the relative motion of saturation fronts in a set of non-communicating layers,
resulting in a linear system for the perturbations in effective permeabilities,
we model each streamline independently using real time and obtain directly
a set of (simple) algebraic relations between the effective parameters of the
streamline and the mismatch in production data. This approach generally
gives a better match and faster convergence and uses less approximations and
assumptions on the mobility ratios than Wang and Kovscek in their inver-
sion method. Moreover, our new formulation is more flexible and can easily be
extended to include gravity (and possibly also more complex flow physics). Fi-
nally, since the new formulation only changes the way the modified streamline
permeabilities are calculated, the method can immediately be applied within
the geostatistical framework developed by Caers (2003); Caers et al. (2002,
2004); Gross et al. (2004).

Our second point is that the use of a multiscale inversion process may speed up
the convergence and improve the quality of the history match. We use a family
of hierarchically refined grids that are formed by coarsening an underlying
fine geogrid for the desired permeability. Starting with the coarsest grid, we
match production data using effective permeabilities and map the perturbed
streamline permeabilities back onto the coarse grid. Next, an interpolation of
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the coarse-grid permeabilities is used as initial value for a new match on the
next hierarchically refined grid, and so on until the finest grid is reached or
a sufficiently good match is obtained. There are several advantages to this
approach. First, the refinement level of the inverted permeability field will
correspond to the resolution of the production data, and one reduces spurious
effects due to over-parameterisation. Second, decomposing the inverse problem
by scale will generally improve the identification of large-scale heterogeneity
structures. Finally, since only a few parameters are matched on the coarser
grids, the inversion process will be much faster than using a direct fine-scale
streamline inversion. A similar approach has previously been introduced by
Yoon et al. (1999) to regularise and accelerate an inversion method using
analytical streamline sensitivities.

The outline of the paper is as follows: Section 2 presents a simplified model for
flow along streamlines underlying the original method of Wang and Kovscek
(2000), which is presented in Section 3, and our alternative method, which is
presented in Section 4. The two methods are compared in Section 5 using three
synthetic examples. Finally, in Section 6 we present the multiscale inversion
method and make a few comparisons.

2 Basic Flow Model

The original method of Wang and Kovscek (2000) and the alternative inversion
method we present in Section 4 are both derived from the same simplified flow
model for incompressible flow of two fluids (oil and water) in a single horizontal
rock layer. For simplicity we assume piston-like displacement with no capillary
forces, where the injected water displaces the in-situ oil instantaneously at
the water front. The front position is located at x and the total length of the
streamline is L. The pressure drops behind and ahead of the front are denoted
∆po and ∆pw, respectively. Finally, we assume (for the moment) that gravity
can be neglected.

The average Darcy velocities for oil and water are given by

uo = −kλo
∆po

L− x
, uw = −kλw

∆pw

x
, (1)

where k represents the effective permeability and λo and λw the oil- and water
end-point mobilities. The total pressure drop over the flow region is given by

∆p = ∆pw + ∆po. (2)
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For an incompressible system, the two velocities are equal, i.e.,

u = uo = uw.

The actual front velocity v, derived by mass conservation over the front, is
given by

v =
dx

dt
=

u

∆S · φ
, (3)

where ∆S = 1 − Sor − Swir is the difference in end-point saturation and φ is
the effective porosity.

Combining the above equations, we wind up with the following ordinary dif-
ferential equation for the front position

dx

dt
= − ∆p

φ∆S

k
x

λw
+ L−x

λo

= −λw∆p

φ∆S

k

ML + (1−M)x
, (4)

where M = λw/λo is the end-point mobility ratio.

The effective streamline permeabilities are calculated based on the permeabili-
ties of the underlying simulation grid. More precisely, the effective permeability
of a streamline is given by the harmonic average, weighted by the time-of-flight
through grid blocks,

k =

∑
j τj∑
j

τj

Kj

, j ∈ Nb.

Here Nb is the set of indices of the grid blocks the streamline intersects, Kj is
the permeability of grid block j, and τj is the associated increment in time-
of-flight.

Because we regard an incompressible system, each streamline can only origi-
nate from an injection well and terminate at a production well. In other words,
each streamline will connect an injector to a producer. If qi denotes the flow
rate of streamline i, the total flow rate of a well with N streamlines connected
is given by

q =
N∑

i=1

qi.

In the next section we will derive the Wang–Kovscek inversion method, assum-
ing that all streamlines connecting an injector and a producer can be modelled
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as a set of non-communicating (horizontal) layers, where the flow in each layer
is described as outlined above.

3 The Wang–Kovscek Method

Wang and Kovscek (2000) introduced an iterative method for modifying per-
meabilities defined on a grid to match calculated with observed production
data. The method is based upon two ideas: (i) the flow in an injector-producer
pair can be represented by a set of N streamlines, where each streamline con-
tributes a given amount (rate, pressure drop) to the production data; and (ii)
each increment in the fractional-flow curve of the producer can be associated
with the breakthrough of the injected fluid in a single streamline. By aligning
the streamlines according to breakthrough times, one can identify the stream-
line causing a certain increment in the production data. Assuming that the
streamlines in the estimated model is approximately the same as in the true
model, the effective properties (here permeability) of the streamline can then
be adjusted to match the corresponding increment in the observed fractional
flow.

Each iteration of the Wang–Kovscek method requires one flow simulation and
consists of two steps: First, modifications of the effective streamline perme-
abilities are identified in accordance with the mismatch in fractional-flow,
well pressures, and well rates. Second, the perturbed effective permeabilities
are propagated to the underlying grid in physical space and a flow simulation
is performed to check the match. Although we here only present the method
for a single injector-producer pair, the extension to multiple wells is straight-
forward.

Next we will outline how to obtain the permeability modifications for fractional
flow and for pressure drop and flow rate.

3.1 Match of Fractional-Flow

The fractional-flow at a producer is not matched directly, but is used to align
observed and calculated breakthrough times for the streamlines terminating at
the producer. By assuming that the order of breakthroughs is approximately
the same for the estimated and the true permeability fields, the mismatches
in breakthrough times for the streamlines are then applied to modify the
streamline permeability.

If we assume piston-like displacement and apply a streamline formulation with
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f cal
w

fw

time

Fig. 1. Observed and calculated fractional-flow curves are used to obtain break-
through times.

equal total flow-rate for all streamlines, each streamline will contribute equally
to the total fractional-flow curve at the producer. Observed and calculated
breakthrough times can therefore easily be obtained from the corresponding
fractional-flow curves, see Figure 1. The assumption of equal flow rate for
the streamlines is a simplifying assumption and is not crucial for the deriva-
tion of the method. However, if the streamlines have different flow rates, each
streamline will contribute differently to the fractional-flow curve when break-
ing through, and the order in which the streamlines break through may be
more important.

To derive an expression for the breakthrough times in each of the N individual
streamlines connecting an injector to a producer, Wang and Kovscek models
the flow along N streamlines as the flow in N non-communicating (horizontal)
layers. This means changing perspective from streamlines to streamtubes, such
that each “streamline” is assigned a certain flow volume. Suppose now that
each layer has length Li, average cross-sectional area Ai, average porosity φi

and permeability ki, and end-point saturation difference ∆Si = 1−Swir−Sor.
Expressed in terms of pore-volumes injected (PVI) for the injector-producer
pair, the breakthrough time T̃i of streamline i can now be written

T̃i =

∑N
j=1(AφL)jx̃

i
j∑N

j=1(AφL)j

. (5)

Here x̃i
j represents the relative front position along streamline j when stream-

line i breaks through, and is provided by Dykstra–Parsons’ method (Dykstra
and Parsons, 1950). The relative front position can be derived from the dif-
ferential equation (4) for the front position in a single layer. Dividing the
expressions for layers j and i, we obtain

dx̃j

dx̃i

= F i
j

Mi + (1−Mi)x̃i

Mj + (1−Mj)x̃j

, F i
j =

kj φi ∆ Si λwj L2
i

ki φj ∆Sj λwi L2
j

, x̃ =
x

L
.
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Integrating this differential equation over the streamlines and evaluating x̃j at
breakthrough for streamline i (x̃i = 1) gives x̃i

j.

The next step is to use this simplified flow model to relate the discrepancies
in breakthrough times to discrepancies in effective streamline permeabilities
ki. Because the sum in the numerator of (5) runs over all streamlines, the
breakthrough time T̃i is a function of the permeabilities of all streamlines.
Linear approximation therefore gives

∆T̃i =
∂T̃i

∂k1

∆k1 +
∂T̃i

∂k2

∆k2 +
∂T̃i

∂k3

∆k3 + . . . +
∂T̃i

∂kn

∆kn, (6)

where

∆ki = kobs
i − kcal

i and ∆T̃i = T̃ obs
i − T̃ cal

i .

This equation gives a relation between the mismatch in breakthrough times
for streamline i and the permeability modifications for all streamlines. The
derivatives aij = ∂T̃i/∂kj are obtained by differentiating (5). Applying the
same linear approximation for all streamlines results in the following system



a11 a12 · · · a1N

a21 a22 · · · a2N

...
...

. . .
...

aN1 aN2 · · · aNN





∆k1

∆k2

...

∆kN


=



∆T̃1

∆T̃2

...

∆T̃N


. (7)

The system is simplified by defining relative or normal parameters (Wang and
Kovscek, 2000). For unit mobility ratios, the system is strongly diagonally
dominant and approximately decouples so that

∆kt
i

kcal
i

≈ T̃ cal
i − T̃ obs

i

T̃ obs
i

. (8)

The superscript t indicates that the modification is due to mismatch in break-
through time. As explained by Wang and Kovscek (2000), the approximation
(8) becomes better the more streamlines are involved, because off-diagonal
elements scale like 1/N . The approximation (8) is used for practical applica-
tions (even for nonunit mobility ratios) to obtain the modifications; see Wang
and Kovscek (2000); Caers et al. (2002); Caers (2003).
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3.2 Match of Pressure Drop and Rate

The description in Wang and Kovscek (2000) is a bit ambiguous as to how the
modifications due to pressure drop and rate are calculated. In this section we
describe how we understood the derivation of pressure and rate modifications.
Further, these derivations create a foundation for parts of the derivation of
our improved method.

If we assume that all streamlines have the same flow rate, the error in flow
rate of an injector-producer pair is distributed equally among all streamlines.
If a streamline formulation with varying streamline rate is used, the error in
flow rate may instead be distributed by weighting. The error in pressure drop
is common to all streamlines of an injector-producer pair.

To modify the permeability due to mismatch in pressure drop and rate, an
expression relating these three quantities is used. To derive this expression we
start out by (4), reading

vi = −λw ∆p

φi ∆S

ki

MLi + (1−M)xi

.

We regard ∆p as the effective pressure drop for the streamline, possibly ob-
tained by temporal averaging over the depletion period. Averaging the velocity
over the streamline then gives

v̄i = − ln M

M − 1

ki λw ∆p

Li φi ∆S
. (9)

The average actual front velocity can be estimated by

v̄i =
qi

φi∆SAi

. (10)

Here Ai is the average cross-sectional area of a streamline/streamtube and qi

is the effective streamline rate derived by distributing the well rate among all
streamlines connected to a well. Having an explicit expression for Ai is not
important, since it will cancel out later in the derivation. Finally, rearranging
(9) gives the permeability by

ki = −M − 1

ln M

v̄iLi φi ∆S

λw ∆p
. (11)

In the limit of unit mobility ratio, the last expression can be obtained directly
from the averaged Darcy’s law (1).
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Evaluating (11) for calculated and observed data, with v̄i estimated by (10),
we obtain

∆kp,q
i

kcal
i

=
∆pcal qobs

i −∆pobs qcal
i

∆pobs qcal
i

. (12)

The superscripts p and q indicate that the corresponding modification is due
to mismatch in pressure drop and rate. If there are no observation for the
pressure drop or the rate, it would be natural to assume that the calculated
response for the quantity is correct, i.e., calculated and observed responses
coincide. This will make the quantity cancel out from the expression for the
modification.

3.3 Updating Grid Permeability

To obtain a total correction factor ri for streamline i, geometric averaging is
used to combine the relative modifications (8) and (12):

ri =
[(

1 + ∆kt
i/k

cal
i

)
·
(
1 + ∆kp,q

i /kcal
i

)]1/2

.

If the streamline distribution is updated during the forward simulation, one
or several of the temporary streamline distributions are used for the inversion;
see the discussion in Section 4.4.

For simplicity, and to focus on the improved quality of the streamline per-
meability corrections, we will in the following only use a simple deterministic
method to propagate the modifications for the streamline permeabilities onto
the underlying geological grid; see Wang and Kovscek (2000). More sophis-
ticated geostatistical mapping methods incorporating e.g., prior information
on the permeability distribution have been developed by Caers et al. (2002);
Caers (2003); Caers et al. (2004). In Caers et al. (2002) the grid permeabilities
are described by a Gauss-Markov random function. The grid permeabilities are
modified by sampling from the random function conditioning on the updated
streamline effective permeabilities knew

i . This approach honors the variogram
and the histogram and may therefore result in permeability fields that bet-
ter preserve geologic realism. In Caers (2003) the mapping is performed using
gradual deformation, which preserve the geological continuity. Further, the use
of multiple-point geostatistics may enable history matching of complex het-
erogeneous geological structures, like fractures and channels, which is beyond
the scope of variogram-based methods. Finally, in Caers et al. (2004) the effec-
tive permeability modifications are obtained for the flow zone associated with
each producer. The mapping to the grid is performed with Direct Sequential
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Simulation (DSSIM) to honor the variogram while allowing the histogram to
change.

4 Improved Inversion of Effective Streamline Permeabilities

In this section we present an alternative inversion method that is not based
upon the Dykstra–Parson algorithm. Instead, our method solves the differ-
ential equation (4) for the front position in each streamline and uses these
solutions to relate the discrepancies in observed and calculated breakthrough
times to perturbations of the effective streamline permeabilities. There are
several advantages to this approach: (i) we avoid solving the linear system (7)
or making further approximations by decoupling to (8); (ii) our new formu-
lation is easier to generalise; and (iii) we generally obtain faster convergence
and a better history match.

In the Dykstra–Parsons method, (4) is used to relate positions of saturation
fronts in different streamlines. This eliminates real time and pressure, and
couples the streamlines. We propose to avoid this coupling by using (4) directly
to model absolute front positions in real time for each streamline. Integrating
(4) over streamline i

Li∫
0

[MLi + (1−M)xi] dxi = −
Ti∫
0

ki λw ∆p(t)

φi ∆S
dt

1

2
(M + 1) L2

i = − ki λw

φi ∆S

Ti∫
0

∆p(t) dt,

and solving for the effective permeability ki gives

ki = −M + 1

2

L2
i φi ∆S

λw

∫ Ti
0 ∆p(t) dt

= −M + 1

2

L2
i φi ∆S

λw

1

∆p Ti

. (13)

Here ∆p is the temporal average of the pressure drop over [0, Ti].

Evaluating the permeability for observed and calculated data gives the relative
modification

∆kt,p
i

ki

=
kobs

i − kcal
i

kcal
i

=
∆p

cal
T cal

i −∆p
obs

T obs
i

∆p
obs

T obs
i

, (14)
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for streamline i. If v̄i is estimated by

v̄i = Li/Ti, (15)

the permeability modifications (13) and (11) only differ by the mobility fac-
tors (M − 1)/ ln M and (M + 1)/2. However, for unit mobility ratio the two
expressions coincide.

Notice that no mathematical approximations were made in the derivation of
(14) from (4). Under the same physical assumptions, the modifications (14)
should therefore be more accurate than those obtained by (7) and (8). Further,
notice that we also could have solved for φi, or for (ki/φi), instead of ki in
(13), and thereby obtained expressions for relative modifications in effective
porosity or permeability-porosity ratios.

4.1 Accounting for Gravity along Streamlines

Using the new inversion method introduced above, it is straightforward to
account for gravity in the flow direction. To this end, consider the Darcy
velocities for oil and water in the presence of gravity

uoi = −ki λo

(
∆po

Li−xi
+ ρo g sin αi

)
uwi = −ki λw

(
∆pw

xi
+ ρw g sin αi

)
.

(16)

Here αi is the streamline effective dip angle, g = |~g| the acceleration of gravity,
and ρα the density of phase α. The effective dip angle of a streamline Ψi is
given by the time-of-flight weighted average of the local dip angle α(τ),

αi =

∫
Ψi

α(τ)dτ∫
Ψi

dτ
.

Combining (2) and (3) with (16), we can now extend the differential equation
(4) for the front position to account for gravity

dxi

dt
= − ki λw

φi ∆S
· [∆p + ρo g Li sin αi + xi(ρw − ρo) g sin αi]

MLi + (1−M)xi

. (17)

For constant pressure drop, the same procedure as above gives

∆ki

ki

=
T cal

i Iobs − T obs
i Ical

T obs
i Ical

, (18)
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where

Iξ =

Li∫
0

M Li + (1−M)xi

∆pξ + ρo g Li sin αi + (ρw − ρo) g xi sin αi

dxi, ξ = cal, obs. (19)

The integral has the following analytic solution

Iξ = c−2 (a c− b d) · ln(|d + c Li|/|d|) + b c−1 Li,

where a = Li M , b = 1−M , c = (ρw−ρo) g sin αi, and d = ∆pξ +ρo g Li sin αi.
For unit mobility ratios the integral simplifies considerably. Letting the effec-
tive dip angle turn to zero in (19), (18) simplifies to (14).

Time-Dependent Pressure Drops

Allowing for a time-dependent pressure drop in (17) and rearranging we obtain
the following first-order differential equation

e(a + b xi) ẋi + ki c xi = −ki d(t), (20)

where e = (φi · ∆S/λw), while a, b, c and d are as given above, except that
the pressure drop in d is now time-dependent. This equation generally has a
nonlinearity in the first term. However, for unit mobility ratios it is linear and
can be solved for the special case of ρo = ρw

ki = −L2
i φi ∆S

λ

1

(∆p + ρ g Li sin αi) Ti

. (21)

In the limit αi → 0, (21) simplifies to (13).

In the general case we will proceed as in Section 3.2 and rely on spatial av-
eraging rather than trying to solve (20) explicitly for ki. The front velocity
vi = dxi/dt is given by (17), where we regard ∆p as effective pressure drop
for the streamline, possibly obtained by temporal averaging over the depletion
period. Spatial averaging of the front velocity over the streamline gives

v̄i = − ki λw

Li φi ∆S

1

(M − 1)2
·
(
a(M)∆p− (b(M)ρo − c(M)ρw) g Li sin αi

)
,
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where a(M) = (M − 1) ln M , b(M) = ln M −M + 1, and c(M) = M ln M −
M + 1. For unit mobility ratios the average front velocity is

v̄i = − ki λw

Li φi ∆S

(
∆p +

1

2
(ρo + ρw) g Li sin αi

)
.

Similarly to (11), we wind up with

ki = − v̄i Li φi ∆S (M − 1)2

λw [a(M)∆p− (b(M)ρo − c(M)ρw) g Li sin αi]
(22)

for nonunit mobility ratio, while for unit mobility ratio we get

ki = − v̄i Li φi ∆S

λw(∆p + 1
2
(ρo + ρw) g Li sin αi)

. (23)

These two expressions, with v̄i estimated by (10) or (15), can be used to
obtain streamline modifications. An advantage of these expressions is that
the streamline rate can be included. As expected, letting αi tend to zero in
(22) and (23) results in (11). For the case with constant pressure drop, equal
densities ρo = ρw, and v̄i estimated by (15), one can show that the modification
(23) coincides with the exact modification (21).

4.2 Match of Rate

For several injectors and/or producers, it may be necessary to match the error
in the total flow rate of the wells considered. The rate can be matched similarly
to how it is done for the Wang–Kovscek method. Combining the permeability
expressions (11), (22) and (23) with (10), relates the permeability and the
streamline rate. By using these permeability expressions, relative modifications
∆kp,q

i /kcal
i for rate and pressure can be obtained (see (12)).

4.3 Total Modifications

If breakthrough times and pressure drops are matched, the correction factor
becomes

rt,p
i = 1 + ∆kt,p

i /kcal
i .

This modification factor can be combined with the modification due to rate
and pressure drop ∆kp,q

i /kcal
i to give a total correction factor by the geometric
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average (possibly weighted)

ri =
[(

1 + ∆kt,p
i /kcal

i

)
·
(
1 + ∆kp,q

i /kcal
i

)]1/2

.

Since the mismatch in pressure drop contributes to both the relative modifi-
cations, the mismatch in pressure drop may be distributed between the two
expressions. The modification factors can be propagated to the underlying sim-
ulation grid by any of the geostatistical approaches described in Section 3.3.
However, we will for our implementations use the simple deterministic ap-
proach proposed in Wang and Kovscek (2000). The breakthrough times are
obtained by the approach described in Section 3.1.

4.4 Evolving Streamlines

A general problem for streamline-based history matching is the fact that the
streamlines only exists during a single pressure time step. If streamlines are
evolving, one should ideally compose effective streamlines by adding one seg-
ment for each time step. This requires that one is able to keep track of each
streamline from one time step to the next. This means that the number of
streamlines for each injector-producer pair must be constant, which is a hard
constraint to fulfil for a general streamline implementation. To deal with the
problem of streamlines existing for a single pressure step, Wang and Kovscek
(2000) suggest to pick one of the temporary streamline distributions as a repre-
sentative streamline distribution. The geometry and time-of-flight information
is therefore not correct for the whole streamline, so the calculations of effective
properties may be inaccurate. However, this is not critical, because effective
properties are only used to perturb the history match in a given direction and
the quality of this perturbation is estimated in the consecutive forward flow
simulation.

5 Numerical Examples

In this section we assess the new inversion methods introduced in the previous
section. To make the comparison with the original Wang–Kovseck method as
clean as possible, we focus on simple and idealised test cases with a small
number of parameters. Applications of the Wang–Kovseck method to more
realistic test cases and real reservoirs can be found in Gross et al. (2004);
Caers et al. (2004).

We consider three synthetic reservoirs with dimensions 200 × 200 × 10 m3,
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Fig. 2. The true permeability field in mD for Cases 1 and 2 (left) and Case 3 (right).

where pure water (ρw = 1000 kg/m3, µw = 1 cp) is injected at a rate of
300 STB/day into a reservoir initially filled with pure oil (ρo = 700 kg/m3,
µo = 1 cp). Further, we assume a zero residual oil saturation after depletion.

Case 1: Quarter Five-Spot

We first consider a quarter five-spot example with no flow over the outer
boundaries and one injector in the lower-left corner and a producer in the
upper-right corner. Because the total flow rate at the wells is preserved, only
data from fractional flow and pressure drop are matched for this example.
For the flow model we assume linear relative permeabilities, λw(s) = s and
λo(s) = 1− s.

The true permeability is represented on a 20×20×1 uniform grid and consists
of a low-permeable background with an ellipsoidal high-permeability region
imposed along the diagonal; see Figure 2. Matching the main permeability
trends should be rather easy for any streamline-based method, since the high-
permeable region is aligned with the major flow direction (from injector to
producer). For both methods we start the iterations from a homogeneous
permeability field of 150 mD (no prior information).

Figure 3 shows inferred permeability fields, matched fractional flow curves, and
relative errors obtained using nine iterations with the original Wang–Kovscek
inversion method, (8) and (12), and with our improved method, (14). Both
methods match the fractional flow and pressure drop, but whereas the Wang–
Kovscek method has not converged fully after nine iterations, our method has
converged after five. The inferred permeability fields for the two methods are
qualitatively similar; both methods capture the high-permeable region, but
the estimated permeability is too low in both the ellipsoidal region and in
the low-permeable background. On the other hand, the permeabilities close
to the wells are too high, which makes the effective streamline permeabilities
consistent with the effective permeabilities of the true permeability field.
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Fig. 3. Case 1. Comparison of inferred permeability fields, matched fractional-flow
curves, and relative errors for the original Wang–Kovseck method (left) and our new
method (right). In the middle plot, the observed fractional flow is given by a solid
line, the calculated curve by a dotted line, and matched curves by dashed lines.
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Fig. 4. Case 1. Matched fractional-flow curves (dashed lines) with five percent white
noise added to the observed fractional-flow curve (solid line).
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Fig. 5. Case 2. Comparison of inferred permeability fields and matched frac-
tional-flow curves with and without accounting for gravity (left and right, respec-
tively).

If five percent white noise is added to the observed fractional-flow curve, our
method is still able to match the fractional flow (see Figure 4) if we avoid
using the streamlines contributing to approximately the upper five percent of
the fractional-flow curve. Due to the flatness in this part of the curve, the
calculated breakthrough times are more sensitive to noise.

Case 2: Tilted Quarter Five-Spot

We now tilt the reservoir from Case 1, such that the edges of the reservoir are
aligned with the vectors [0.9539, 0, 0.3] and [−0.0943, 0.9493, 0.3]. We com-
pare the inversion obtained using two different formulas from Section 4: (18)
accounts for gravity along streamlines, and (14) does not.

Figure 5 shows inferred permeability fields and matched fractional flow curves
for six iterations. By accounting for gravity we observe a bit faster match
for the pressure drops, but apart from this, there is little difference in the
matching process. We obtain essentially the same result as for Case 1, both
with and without accounting for gravity in the inversion. The reason is that
we calculate relative modifications, for which proportionality errors cancel out.
Although gravity does not give a pure proportionality error, it has the same
impact on calculating both Ical and Iobs for each streamline; see (18). This
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Fig. 6. Case 3. Comparison of inferred permeability fields and relative errors for the
original Wang–Kovseck method (left) and our new method (right).

example demonstrates the robustness of using relative modifications.

Case 3: Five-Spot with Nonunit Mobility Ratio

Finally, we consider a five-spot pattern in a square domain, but now with
an injector in the centre and one producer in each of the four corners. The
reference permeability is given on a 32 × 32 grid as shown in Figure 2. We
assume quadratic relative permeabilities, λw(s) = s2/µw and λo(s) = (1 −
s)2/µo and µo = 0.4 cp, which gives a nonunit end-point mobility ratio of
M = 0.4. As in the previous example, we match fractional flows and pressure
drops using the original Wang–Kovscek method and our improved method
from Section 4. We start the iterations by a homogeneous initial permeability
field of 700 mD (no prior information), and five percent white noise is added
to the observed fractional-flow curve.

Figure 6 shows the inferred permeability fields and relative errors for the two
methods. The error bars show the sum of the relative errors for fractional flow
and pressure drop for all producers. As above, our method converges faster,
especially for the pressure drop. We observe that both methods capture the
mean permeability correctly in the four injector-producer sectors, but fail to
capture permeability structures within each sector properly. In particular we
notice the artifacts along streamline paths, caused by the direct mapping of
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Fig. 7. Illustration of the hierarchically coarsened grids used in the multiscale in-
version process.

effective properties and the lack of a prior (geostatistical) model. In the next
section we propose a multiscale approach that will improve the resolution of
large-scale permeability structures that affect several injector-producer pairs.

6 A Multiscale Method

Many inversion methods are based upon minimisation of an objective func-
tional using a gradient descent method. Inverse problems are generally under-
determined in the sense that one has a few observations and a large number of
unknown parameters. Moreover, since the inversion process is highly nonlin-
ear, the objective functionals tend to have a large number of local minima that
must be avoided. Multiscale inversion has been suggested by several authors
as a means to stabilise the inversion and avoid local minima; see e.g., Yoon
et al. (1999) for a multiscale inversion method based on analytical streamline
sensitivities.

Although our streamline approach is not based upon minimisation of an error
functional, we here suggest to use a similar approach to speed up and stabilise
the inversion. To this end we introduce a family of hierarchically coarsened
grids, as illustrated in Figure 7, where the finest grid coincides with the ge-
ogrid on which we seek to match permeabilities. Given the family of grids,
the idea is quite simple: Starting with a small set of streamlines, we modify
the effective streamline permeabilities to match observed production data as
described in Section 4 and map the perturbed streamline permeabilities back
onto the coarsest grid. Depending on the complexity of the reservoir, one or
more iterations can be performed. The resulting permeabilities on the coars-
est grid are then interpolated (linearly) onto the next grid in the family and
used as initial values for the match on the next scale. The process is contin-
ued until the finest grid is reached, or can be terminated when a sufficiently
good match is obtained or if no improvement in the misfit is observed from
one level to the next. By allowing for early termination, the resolution of the
resulting permeability field will correspond to the information content in the
production data, and spurious effects from over-parameterisation are reduced.
On the coarser grid levels, the ratio between the number of grid permeabil-
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ities to be history-matched and the number of streamlines/data-points can
be more favourable, and therefore the inversion problem may be less under-
determined. Even though we modify the permeability on different coarse grids,
the streamlines can be traced and fluid simulation can be performed on a much
finer grid (e.g., the underlying geogrid) to avoid problems with loss of accuracy
and representation of wells.

We will present two simple synthetic cases to illustrate the multiscale ap-
proach. For simplicity, we assume that the reservoir is square, start with a
uniform 4× 4 grid as the coarsest grid, and recursively refine by subdividing
each grid block into four square grid blocks; see Figure 7. The dimensions of
the grids thus become 4× 4, 8× 8, 16× 16, 32× 32, etc. In the inversion, we
perform only one iteration on all grids, except for the finest grid, where we
iterate until convergence. More iterations could have been performed on each
refinement level, but we only want to capture the trends of the large-scale per-
meability structures on each level. The reservoir and fluid parameters (except
permeability and the mobility ratio) used in these examples are as described
in Section 5. For the two examples we assume quadratic relative permeabil-
ities like for Case 3 and add five percent white noise to the fractional-flow
observations.

Case 4: Quarter Five-Spot

This example is similar to Case 1 from Section 5, except that the true perme-
ability field is represented on a 32 × 32 grid (see Figure 9). Besides, for this
example the oil viscosity is 2.5 cp, which gives an end-point mobility ratio of
M = 2.5.

Figure 8 shows the inferred permeability field on each refinement level com-
pared with the permeability field inferred after seven iterations of the inversion
algorithm directly on the 32 × 32 grid. The high permeable region is located
already on the 4 × 4 grid. Even though the inferred permeability field of the
multiscale approach seems smoother, the location of the high-permeable re-
gion is more accurately positioned and is less smeared out between the wells.
On the plot for the final match on the fine grid, the streamline pattern is
clearly visible. This effect appears during the last few iterations and seems to
be a consequence of an over-parametrisation that could have been avoided if
we had terminated the iteration earlier.

Figure 8 also shows the error reduction with and without the multiscale ap-
proach. Although the error reduction is slightly slower for the multiscale ap-
proach, the same number of iterations are necessary for convergence for both
approaches, and therefore the computational effort for the multiscale method
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Fig. 8. Case4. Comparison of inferred permeability fields and relative errors with
and without the multiscale approach. The true permeability field in mD (upper
left). The four next plots (from left to right) show the inferred permeability fields
on the 4 × 4, 8 × 8, 16 × 16, and 32 × 32 grids. The last plot in the second row
shows the inferred permeability field obtained by a direct inversion on the 32× 32
grid. The two plots on the last row shows the relative error with (left) and without
(right) the multiscale approach.

is smaller since fewer iterations are performed on the finest scale.

Case 5: Five-Spot

In the next example we revisit Case 3. Figure 9 shows the inferred perme-
ability field on each refinement level and the inferred field after five iterations
directly on the finest grid. Already on the 4 × 4 grid some of the large-scale
structures of the permeability field are located. Compared with the inversion
in Case 3, the multiscale approach captures more of the large-scale structures
in the reference permeability field and avoids the artificial streamline-induced
zonation structure observed in Figure 6. Moreover, the multiscale approach is
faster, because fewer iterations are necessary on the fine scale.
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Fig. 9. Case 5. Comparison of inferred permeability fields and relative errors with
and without the multiscale approach. The true permeability field in mD (upper
left). The four next plots (from left to right) show the inferred permeability field on
the 4× 4, 8× 8, 16× 16, and 32× 32 grids. The last plot in the second row shows
the relative errors for the multiscale approach.

7 Concluding Remarks

We have suggested two improvements to the streamline inversion method in-
troduced by Wang and Kovscek (2000). The resulting inversion method is able
to match production data and capture large-scale permeability structures, but
fails to incorporate the (a priori) variability of the permeability field. Combin-
ing the inversion method with existing geostatistical inversion methods, the
method can be extended to yield inferred permeability fields that also satisfy
geological constraints.
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