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Abstract

Two decades ago, Helge Holden proposed seven guidelines to improve the way new achievements and
results in scientific computing were presented, evaluated, and compared in contemporary scientific
literature. In this essay, written as a tribute to Helge on his 60th birthday, I revisit the guidelines and
point out why they are still valid today seen from my perspective, working as a contract researcher
at the interface between mathematics and applications in industry.

Developing new computational methods usually involves a lot of experimental programming.
Over the past decade, my research group has developed an open-source community code that today
has hundreds of users worldwide. I discuss some considerations that have gone into this development
and present a few lessons learned. Moreover, based on this experience, as well as from development
of professional software for our clients, I present advice on how you can be more productive in your
experimental programming and increase the impact of your scientific results.

Science is what we understand well enough to explain to a computer. Art is everything else we do.

– Donald Knuth, Foreword to the book A=B (1996)

1. Introduction

Throughout the 1980 and 90s, numerical computation established itself as a third way to science
in complement to the classical duality of experiments and theoretical models. These were vigor-
ous times for scientific computing. Major advancements in numerical discretization methods and
iterative linear solvers, combined with a continuous and rapid growth in computing power, enabled
highly resolved numerical simulations to be adopted in many new scientific disciplines. Growing
maturity of third-generation programming languages like FORTRAN, C, and C++ enabled scien-
tists to write simulation programs of unprecedented complexity, and color monitors with powerful
computer graphics spawned the development of advanced and powerful visualization techniques
that increased our ability to visually interpret and understand the results of advanced simulations.
During the same period, LATEX became widely adopted among scientists, which together with the
emergence of the world wide web in the early 1990s, dramatically changed the way science was
communicated. All of a sudden, it was quite simple to include both vector and raster graphics
in your scientific papers, make very impressive presentations, and quickly share these with your
colleagues around the world. Altogether, this presented unparalleled opportunities for members of
the relatively young scientific-computing community, which grew rapidly in numbers.
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Being part of a revolution, it is easy to become too eager in your quest for progress and forget or
disregard wisdom and well-established practices developed by previous generations. Helge Holden
was among those who saw this, and during my first years as his student, he wrote a paper [11]
in an attempt to influence the way computer simulations were performed and presented to the
scientific community: “[. . . ] some words of warning may be appropriate at this moment as we are
easily becoming victims of ever more impressive presentations. It is easy both as spectators and
performers of the art of scientific computing to forget the critical eye of the scholar and the rigorous
requirements of modern science. It is becoming all too common to present results of simulations
lacking sufficient documentation to allow the repetition or reproduction of the results.” To amend
what he perceived as a serious deficiency, Helge proposed seven guidelines1:

1. Your results should always be reproducible.
2. Test the stability of your method with respect to variation of parameters.
3. Compare your method to other methods.
4. Report cases where your method fails.
5. When possible, compare the computer simulations to real experiments.
6. Establish standard test cases in your field.
7. Make your own code available to your colleagues.

Some of the observations presented in the manuscript were quite controversial at that time and
the paper was never accepted for publication. However, being controversial does not mean you are
wrong, and in this essay, written on the occasion of Helge’s 60th birthday, I try to give him the credit
he deserves by providing a complementary discussion of the ideas put forth in his original paper. In
particular, I will try to relate part of the discussion to research activity over the past two decades,
involving joint supervision of a number of master and doctoral students. A main achievement of
this research is the development of MRST, a comprehensive toolbox for rapid prototyping of new
computational methods for subsurface flow modelling (http://www.sintef.no/mrst), and OPM,
an open innovation platform for industry-grade simulations (http://opm-project.org). In the
last part of the essay, I discuss some of the considerations that have gone into the development of
these softwares and summarize some lessons learned. Like many other scientists who spend a major
portion of their time writing software, members of my research team are self-taught. However, we
have been exposed to best practices for professional software development as part of our contract
research. I summarize what I have observed to be good practices if you want to be a productive
developer of computational methods, write reliable codes, and increase the impact of your work.

2. Reproducible research for scientific computing

Replication of experiments is usually considered the golden standard in science and should not
be confused with the principle of reproducibility, which Helge suggested as a necessity if scientific
computing was to be considered as a serious science. I like the explanation of the difference between
the two concepts given by the editor of the Biostatistics journal [28]:

The replication of scientific findings using independent investigators, methods, data,
equipment, and protocols has long been, and will continue to be, the standard by which
scientific claims are evaluated. However, in many fields of study there are examples
of scientific investigations that cannot be fully replicated because of a lack of time or
resources. In such a situation, there is a need for a minimum standard that can fill the
void between full replication and nothing. One candidate for this minimum standard is

1The paper actually started out as “Ten commandments on scientific computing”, but was toned down during the
process towards potential publication.
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reproducible research, which requires that data sets and computer code be made available
to others for verifying published results and conducting alternative analyses.

Although offered in a different scientific field, it applies equally well to scientific computing.
Reproducible research in scientific computing is usually attributed to Jon Claerbout [9, 10]. In

1990, he set a goal of reproducibility for his research group at Stanford University. The goal was that
not only should anybody be able to recompute the group’s research results on any computer, but
they should also be able to reproduce documents the group had published to present this research.
At that time, this was a quite ambitious undertaking. Today, it somewhat simpler if you use
notebook facilities in a scripted language. One good example is the Jupyter Notebook for Python
(http://jupyter.org/), which enables you to mix computer code with rich text, mathematical
formulas, plots and rich media. Similar functionality was recently introduced through so-called
Live Scripts in MATLAB, which in many aspects supersedes the useful, albeit less powerful publish
function. Likewise, use of virtual machines or container systems like Docker can be good ways to
disseminate research on computational methods. A virtual machine emulates a computer system
and enables others to rerun the software and data used by the authors of a scientific paper, without
having to download and set up the necessary software libraries used for the simulations. Software
containers are more lightweight systems that only bundle the libraries and settings necessary to make
your code run on any system. Notice, however, that virtual machines and container systems only
ensure a very limited type of reproducibility since all you can do is to rerun numerical experiments
and change input parameters. Without access to source code, you really cannot dig into the code to
understand how it works and verify that it indeed implements what is written in the scientific paper.
Access to complete source code, as suggested in Holden’s last guideline, is therefore an important
ingredient to reproducibility and the higher goal of replicability. We will come back to this later.

During the last two decades, the idea of reproducible research in computational science has
picked up significant momentum and has been voiced by a large group of well-respected and influ-
ential computational scientists, see e.g., [19]. However, if one chooses to look critically at scientific
publishing, it has largely remained in the same sorry state as observed by Helge Holden in 1994
[11]. Here, I have chosen to include two quotations by other scientists. The first is from 1995 by
Buckheit and Donoho [6]:

An article about computational science in a scientific publication is not the schol-
arship itself, it is merely advertising of the scholarship. The actual scholarship is the
complete software development environment and the complete set of instructions which
generated the figures.

One decade later, the unfortunate situation was expressed even more pointedly by LeVeque [17]:

Within the world of science, computation is now rightly seen as a third vertex of a
triangle complementing experiment and theory. However, as it is now often practiced,
one can make a good case that computing is the last refuge of the scientific scoundrel [. . . ]
Where else in science can one get away with publishing observations that are claimed to
prove a theory or illustrate the success of a technique without having to give a careful
description of the methods used, in sufficient detail that others can attempt to repeat the
experiment? [. . . ] Scientific and mathematical journals are filled with pretty pictures
these days of computational experiments that the reader has no hope of repeating. Even
brilliant and well intentioned computational scientists often do a poor job of presenting
their work in a reproducible manner. The methods are often very vaguely defined, and
even if they are carefully defined, they would normally have to be implemented from
scratch by the reader in order to test them.
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Even now, ten years after, much of the same observations hold true. As referee and editor, I have
never to date been offered the possibility to look at any authors’ source code or use their software to
rerun and verify numerical experiments reported in the paper. There are journals that require soft-
ware to be published alongside papers, but these are few. Fortunately, there are indications that for
many scientific journals it is more a question of when and how the requirement for reproducibility
will be mandated. An increasing number of journals are offering authors the possibility to upload
their computer code and input data, so that others can download and experiment with these on
their own computer. Nevertheless, even though readers tend to access scientific publications elec-
tronically, the standard is still a static text document in most journals, and review of software and
interactive, notebook-type presentation of numerical experiments have yet to permeate scholarly
publishing. In the future, one can only hope that the growing demand for open-access publishing,
and general competition within scientific publishing will induce a much needed innovation toward
more interactive formats that better support the principle of reproducibility.

3. From proof-of-concept towards widespread adoption

Many researchers develop new methods to satisfy their own curiosity, or because it is great fun,
but I still believe that most of us do it because we want to make something useful and have a lasting
impact on the scientific community and/or society. In this, academia and contract research organi-
zations, like the one I have worked in for the past two decades, are not very different. The difference
lies more in how we measure impact and success. In academia, the apparent success criteria are
theories and scientific papers, whereas impact can be measured in terms of citations, invitations
to conferences, etc., which are superficial indications of the more vague concept scientific quality.
Publications and citations are also important in contract research organizations, but creating values
for your clients and acquiring new research contracts generally rank higher.

In this section, I discuss how Holden’s Guidelines 2 to 6 can be used to help you to success and
ensure that the methods you develop have an impact, regardless of whether you work in academia or
closer to industry and commerce. My focus will primarily be on the experimental process leading up
to new computer codes whose aim are verify that new computational methods work as claimed, verify
and validate physical models, and/or provide proof-of-concepts for new computational workflows.
High scientific quality in this process is utterly important if the computational methods developed
should later enter large-scale community codes used for scientific discoveries in other parts or science,
or professional production codes developed to support (critical) decisions in the private and public
sector.

3.1. Verification and comparison with other methods

To justify the development of a new computational method and entice the interest of others,
two approaches are common to use, possibly in combination:

� You can either demonstrate that your method solves a new problem not yet solved by other
methods, or that is solves a class of problems that so far has only been partially solved; or

� You can demonstrate that your method solves a known class of problems better than existing
methods, e.g., by comparing with these methods and/or pointing out deficiencies that your
method does not have (Guideline #3).

Providing honest and fair comparisons with existing methods is more difficult than it may sound. In
well-established applications of various forms of fluid or solid dynamics, there is usually a plenitude
of computational methods to compare with. It is therefore tempting to pick a standard textbook
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method, which is simple to implement and whose limitations and deficiencies are widely accepted.
While such comparisons can be informative to a certain point, they do not carry the same value
as comparisons with a state-of-the-art method. The best is, of course, to collaborate directly with
the developers of the method you wish to compare with, since they have intimate knowledge of the
inner workings of the method and know how to tune (undocumented) features to insure optimal
performance. Such collaborations are sometimes out of the question if commercial interests are
involved or the goal of your research is to defeat the other method. Unless implemented as open
source, it is therefore often difficult to get your hands on a functional and efficient implementation
of the methods you should compare with, especially if they are from recent literature; I will get back
to this later when discussing Guideline #7 in Section 4. Your only option is then to implement
the methods yourself. This is in many cases a significant undertaking and you easily end up
spending a considerable time reinventing or reverse-engineering crucial algorithmic features that
are not well documented for the reasons discussed in the previous section. Let me take one of
my own papers [14], which compared and contrasted various upscaling and multiscale methods for
simulating two-phase flow in porous media, as an example. Writing this paper required almost a
half-year, concentrated effort to bring our implementation of methods not developed by ourselves to
a maturity level where we could trust them to provide fair and unbiased comparisons with our own
multiscale method. This, despite the fact that the first author is an unusually smart and capable
programmer. In our case, this exercise proved to be worthwhile since it gave us a lot of insight that
could be used in subsequent research. Around that period, we had what I would describe more
as a friendly competition than a direct cooperation with the developers of one of the contending
multiscale method. Whenever they published a refined version of their multiscale method, we tried
to come up with test cases that showed deficiencies in their method and rendered ours in a good
light, and vice versa. My impression is that the overall development of multiscale methods benefited
from such a healthy competition, and I would generally recommend it as a means to bring your
research rapidly forward.

This brings me to the choice of the cases you use to verify, validate, and assess the performance
of your method. If your method solves partial or ordinary differential equations, the first thing to do,
is to verify that it is able to reproduce analytical solutions on simplified problems. If possible, these
solutions should verify correct behavior of as many as possible of the terms entering your model
equations. Secondly, you should verify that your method converges and/or scales as anticipated.
Once this is done, you should look at the robustness and versatility of your method. Slightly
paraphrasing Guideline #2, this means that you should stress test your method with respect
to assumptions and variation of parameters so that you know how robust the method is, what
the limitations are, and so on. Looking at Guideline #4, the results of your tests should be
reported irregardless of whether they are positive or not. This will, in the long run, give your
more scientific credibility. Looking at it from a purely selfish perspective, it is better that you
discover and disseminate weaknesses in your own method, rather than having others pointing it out
in subsequent publications.

Unfortunately, in performing extensive and objective testing of your method, you have several
mechanisms working against you. First of all, humans are inherently lazy, and if we can get away
with only investigating and presenting a restricted range of numerical tests, we will almost inevitably
do so. In particular, the publish or perish syndrome tends to leave us all with little time to conduct
thorough tests of new methods. Once we have found a small series of cases showing the superiority
of our new method, we seek to publish. In doing so, it is very easy to bring the competition to
your own home ground and design biased test cases focusing on the aspects for which your method
is particularly good. Likewise, when running large series of test cases, it is very easy – despite our
best intentions – to subconsciously only pick those instances that show our method in a good light.
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This is a known fallacy in experimental science, but best practices that address this are, to the best
of my knowledge, seldom discussed when teaching courses in computational science.

The mechanisms discussed above are strengthened by contemporary publishing culture, which
tends to focus on success rather than failure and seldom allows you to publish research on methods
that fail to work. This is a pity, since it may often be more interesting for others to learn about well-
conceived approaches, or approaches that suggest themselves naturally based on current knowledge,
that turn out to not work as anticipated. Publishing negative results will not only prevent others
from wasting precious time chasing dead ends, but if you also provide an explanation why your
method did not work, others may gain significant new insight that can help them to come up with
alternative solutions.

3.2. Benchmark problems and standard test cases

Holden’s Guideline #6 rightfully suggests that you should establish test cases that can work
as a standard in your field. Setting up good test cases is not a simple undertaking, but usually
has great value for the scientific community, provided that the test case is well designed. (It is
also smart from a bibliometric point of view, since papers introducing standard test cases typically
generate a large number of citations.) Test cases come in many variants, from standard benchmark
problems that are run to measure the computational performance of processors, (iterative) linear
solvers, nonlinear solvers, etc., to more open-ended setups, where the challenge is to compute as
accurate or optimal solution as possible. Benchmarks can also pose problems that do not yet have
any known or well-established solution. Test cases that contain observed behavior of a physical
system (as emphasized in Guideline #5) are particularly useful, since the ultimate goal of many
computer simulations is to predict the results of actual physical processes.

For most researchers, the use of standard test cases is a simple, yet effective way to compare
different computational methods. Given that the test case is utilized for the same purpose, and
results are reported in a consistent manner, it is in principle easy to compare results reported by
different researchers. To a certain extent, this alleviates the need to compare with other state-of-
the-art methods as long as these have been validated on the same test cases. Oftentimes, researchers
will also modify standard test cases and (ab)use them for different purposes than what they were
designed for. This can be quite useful, since the research community may have developed a famil-
iarity with the original setup that enables your peers to quickly interpret and assess results also on
a modified setup, as long the original case is not obfuscated beyond recognition.

In his paper [11], Helge Holden pointed out that test cases should be set up based on a consensus
process in the scientific community, not as a static decision, but in accordance to scientific progress
and development of computers. Carefully designed test problems have the power to drive research
in certain directions, and can be a useful way to align activity in a research community with certain
business interests and societal needs. The danger is, of course, that test cases may have a too strong
influence on the focus of a scientific community. This was also noted by Helge, who pointed out the
danger that researchers may be tempted to tailor-make their methods to benchmark tests. I have
seen this tendency in my own field of research: computational methods for subsurface multiphase
flow. Simulation models of real petroleum reservoirs take a long time to make and contain a lot
of information about company assets. These models are hence considered business critical and
are seldom shared openly with the research community. For many researchers, the most obvious
alternative when looking for realistic data has been the (in)famous SPE 10 test case [8]. This
synthetic model was originally posed as a hard test case for numerical homogenization methods
(referred to as upscaling methods in petroleum engineering) and has an exaggerated variation in
petrophysical parameters, but a much simpler grid geometry and fluid model than what is common
in models of real assets. This is often overlooked, and there are many examples of over-fitted
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methods that show excellent performance on SPE 10 and similar cases, but fail to provide solutions
on problems of practical value. Once such a model comes into widespread use, it has a self-reinforcing
effect. Even though you realize that it not necessarily is a representative test case, you have to use
it because this is what your peers expect you to do.

When posing a test case, there are many practical issues to consider, and these will obviously
vary from one field of science to another. As a minimum requirement, the purpose of the test case
should be clearly specified along with the set of assumptions that restrict the problem and/or leave
room for the user to make his/her own choices. These should be stated in a document that can be
referred to by a persistent and unique identifier such as a Digital Object Identifier (DOI) or alike.
In many cases it is natural to identify output parameters to be measured, or offer a set of reference
and/or user-generated solutions or output parameters for comparison. If the test case involves input
(or output) data, one should make sure that these are published along with clear specification of
legal rights, preferably under a permissive license that enables users to freely interact with the data.
For test cases involving several subproblems, it is also important that each subproblem is clearly
labeled so that users later can refer to it in a unique manner.

Within subsurface flow modelling, a common approach to compare methods or modelling ap-
proaches is to invite participants to make their best attempt to reproduce a certain physical scenario.
After a certain period, results are collected, compared and contrasted, and reported in a publica-
tion. (SPE 10 mentioned above was one such benchmark). In several cases, the data have only been
made available to registered participants, and after the study has finished, the data are no longer
available. This is a short-sighted practice that should be avoided. Not only should the data offered
as part of the original setup remain available, but results reported by different participants should
be made openly available so that researchers later can use them to make independent comparisons.
The same goes for any truth model involved in the study.

Last, but not least, let me point out that standard test cases can easily be created somewhat
unintentionally. Numerical examples reported in the first papers discussing a certain class of meth-
ods have a tendency of later becoming de facto test cases. This means that rather than reporting
somewhat haphazardly generated examples highlighting salient features of your method in a grace-
ful view, you should always consider to what extent these examples can be reused by others and
put extra effort into designing test cases that can be used to stress-test not only your method, but
a wide class of methods designed for similar purpose.

3.3. Evolution of computational methods viewed using Gartner’s Hype Cycles

Over the years, I have watched the evolution of several computational technologies; some quite
close, like GPU computing and multiscale methods, and others more from afar; some have become
widely adopted, whereas others have dwindled into obscurity. If we disregard the rare and ingenious
ideas that get widely adopted in almost no time, evolution of computational methods follow a very
similar pattern, shown in Figure 1. This curve, called Gartner’s Hype Cycles, was developed to
interpret technology hypes and enable industries to assess their risk when investing in emerging
technologies. Let us see how it can be applied to describe research and dissemination of new
methods in scientific computing.

In part, this curve is the result of a divide in focus among most mathematicians and researchers
in the applied sciences. Mathematicians tend to develop advanced theories and rather sophisticated
methods for idealized problems, whereas researchers in applied sciences and industry tend to work
on problems that are outside the bounds of contemporary theories using somewhat less sophisticated
methods. Let me exemplify: Whereas a lot of theory for nonlinear PDEs is developed in unbounded
domains, models for real physical processes are usually posed on bounded domains and are to a
large degree determined by their boundary conditions. Likewise, mathematicians tend express their
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Figure 1: Development of computational methods following the Gartner Hype Cycle. An important aspect of my job
as contract researcher is to identify promising technologies and make the transition from uniformed optimism to the
plateau of productivity as short as possible.

results using functional spaces and study PDEs of a certain type (hyperbolic, parabolic, elliptic),
whereas models of many physical processes often exhibit mixed characteristics or involve a mixture
of differential equations, empirical laws, and tabulated relationships for which it is often not clear
what the appropriate functional spaces are.

Early reports on new methods arising from mathematics or computer science have a certain
tendency of being overly optimistic with regard to generality and application potential. There
are at least two reasons for this. First of all, you need to have a certain missionary streak, or
alternatively be a salesman to entice the interest of others. Secondly, new methods are generally
not as well tested as one might hope because of the mechanisms discussed in the previous section,
or because testing on state-of-the-art descriptions of physical phenomena is way too complicated to
be contemplated within a realistic time-frame by anybody without expert application knowledge.
However, once a new idea picks up momentum, it is bound to be tested for a wide variety of models
and parameters as researchers try to adapt the ideas to their own problems. This will generate many
success stories, but also a lot of failures when the new method is applied outside its scope or range of
validity. Sooner or later, the initial interest starts to wane when it becomes clear that the method is
not as suitable as initially suggested or will require significant more research to introduce sufficient
improvements or do the necessary adaptions. Continuing to research a method down the slope of
informed pessimism and through the trough of disillusionment can be a very frustrating exercise.
However, as pointed out above, a lot of new insight can often be gained through failures, and if
you manage to grit your teeth and stay focused, you may eventually be able to start climbing the
slope of enlightenment and push your method up to the plateau of productivity, where widespread
adoption takes place.

How do you accelerate the time to informed optimism? Here, good test problems play an
essential part. These should not only be the kind that stress-test your method within its current
scope, but it is also important to have a succession of increasingly challenging test cases that can be
used as milestones to continuously drive your methods towards a wider scope. Equally important,
you need to have flexible prototyping tools to support the necessary experimental programming. I
will get back to this in the next section.
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A personal story. A few years after the turn of the century, my research group started to develop
multiscale methods for reservoir simulation. From my perspective, this process has followed the
Gartner Hype Cycle. Helge has not been directly involved as a publishing author in this research,
but has acted as co-supervisor for many master and doctoral students.

I had first encountered the idea in 1997, when Helge and I met Tom Hou – who that year
published the first paper on multiscale methods [12] – during a sabbatical at the Mittag–Leffler
Institute in Stockholm. I remember that Helge asked me whether we should start working on this,
but I found the idea to be somewhat contrived and doubted it would find widespread application.
Quite ironic, since I later have spent more than a decade developing multiscale methods towards
industry adoption. For completeness, let me briefly describe the multiscale idea. Assume that you
have a variable-coefficient Poisson equation, in which the coefficient exhibits variations over many
orders of magnitude and that the spatial variation of the coefficient takes place over a broad range of
length scales with no clear scale separation. (Poisson’s equation arises in porous media if we combine
mass conservation ∇ · ~v = q for an incompressible fluid with Darcy’s law ~v = −K∇p.) Discretizing
the equation, e.g., with a standard first-order finite-volume method, we get the following

−∇ ·
(
K∇p

)
= q −→ Ap = q. (1)

Here, p is the pressure (or more generally the potential) of a single-phase fluid, K is the permeability
of the rock (i.e., the ability to transmit fluids), and q is a volumetric source term. The key idea
of multiscale methods is to partition the fine grid used to discretize the Poisson equation into a
coarse grid, to which we associate a vector of unknowns pc. For each coarse grid block, we define
and solve a variable-coefficient Poisson equation with zero right-hand side on the fine grid. The
fine-scale solution is restricted so that the resulting solution is one at the center of the block and
zero at the centers of all the other blocks. By specifying appropriate boundary conditions, the local
solution, which we will refer to as a multiscale basis function, will have compact support restricted
inside the nearest neighbors of our block. Collecting these basis functions as columns in a matrix
P, we have derived a prolongation operator that maps unknowns on the coarse grid to unknowns
on the fine grid. If we also define a restriction operator R that sums entities defined over all cells
inside each block, we have a systematic method for forming a reduced flow problem on the coarse
grid that is consistent with the differential operator ∇ ·K∇ on the fine grid,

RAPpc = Rq −→ Amspc = qc. (2)

What I have described is an algebraic formulation of the multiscale finite-volume method [13]. When
I started working on these methods, there had already been made some bold claims that multiscale
methods would give three orders of magnitude computational speedup. Over the succeeding years,
we used an alternative mixed formulation [7] to extend multiscale methods to the complex grid
formats used in industry. Grids of real assets have unstructured topology and polyhedral cell
geometries with bilinear non-matching faces and up to three orders-of-magnitude aspect ratios. By
and large, we succeeded in adapting the method to these grids and developing automated coarsening
methods that robustly could handle the many intricate special cases arising for such grids [3, 4].
However, our somewhat cyclopic path of development reached its peak of inflated expectations when
we tried to extend the method from slightly compressible flow to models with the full complexity
seen in industry-standard applications. It turned out that the mixed formulation of complex flow
models was not as robust as existing literature had seemed to indicate. After several futile attempts,
we abandoned the multiscale mixed finite-element method and let it slide down the slope of informed
pessimism towards obscurity.

During the same period, the development of the multiscale finite-volume method had followed an
equally cyclopic path towards realistic flow physics. Useful developments included a fully algebraic
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formulation and reformulation of the method as an iterative method. In the iterative formulation,
the multiscale matrix Ams is used as a global preconditioner to eliminate low-frequency error com-
ponents in combination with a standard local smoother that effectively eliminates high-frequency
error components. This makes the method quite similar to a multigrid method, but has the ad-
vantage of exposing parallelism and enabling users to stop the iteration at any tolerance and still
obtain mass-conservative fluxes. On the other hand, the development had been quite unsuccessful
in extending the method to unstructured grids and the special grid formats uses in the petroleum
industry. Being able to handle such grids is a prerequisite for industrial adoption. On an offhand
chance, I suggested to Olav Møyner, one of Helge and my students, that he could write his master
thesis on this problem. This turned out to be a stroke of luck. Over the past 4–5 years, we have
managed to develop a new and very robust formulation for fully unstructured and stratigraphic
grids [24, 25], by combining original ideas from Olav with insight obtained working on the mixed
method. Our new method has been implemented by Schlumberger and is a cornerstone of what
today is considered as next-generation technology for reservoir simulation. The interested reader
can find a more thorough discussion of this method, and the various technical developments that
lead up to it over the past decade, in Lie et al. [22].

The research described above has had two unintended side effects. First of all, it has inevitably
given members of my research group a lot of insight into multiphase flow in porous rocks and induced
a shift in our research focus from mathematics towards reservoir engineering. More important,
it has lead to the development of an open-source community code for rapid prototyping of new
computational methods for subsurface flow simulation that currently is used by many hundred
researchers, students, and engineers all over the world. More details about this software are given
in Section 5, whereas a summary of the lessons learned during its development will be presented in
the next section.

4. Development of open-source community code

In his seventh and last guideline, Helge recommended that academic computer codes used in
simple numerical experiments should be made available to others. This is probably the guideline
I have personally taken most to heart. Today, the arguments for Guideline # 7 probably seem
overly cautious. In particular, I tend to differ on Helge’s observation that public release should be
restricted to codes of little commercial value. As you will see later in this section, it is possible to
publicly release codes with significant commercial value, you only have to use a different business
model than licensing if you want to use the code to earn money. However, at that time, the idea of
giving away your code for free was, as far as I understand from Helge, considered by many to be an
almost ridiculous idea, which explains why the accompanying arguments were toned down during
the unsuccessful review process. Almost twenty years later, LeVeque [18] presented very compelling
arguments for why you should release your code publicly. The short and humorous article describes
an alternative universe in which mathematical proofs are not required and presents ten reasons why
papers should not contain proofs. Through this simple thought experiment, LeVeque shows how
absurd it is that computational sciences does not live by the same standard as mathematics. If his
arguments do not convince you, I do not have much new to add, except to say that it has worked
marvels for my research group. If you are already convinced, I urge you to set a good example in
your own research, and request others to follow your lead when you act as supervisor, as reviewer
or editor for scientific journals and conferences, or as evaluator on grant proposals.

My aim herein is to explain how you can bring methods from the peak of inflated expectations
and onto the slope of enlightenment. My focus will thus be on somewhat larger codes than what
Helge originally suggested to release. Based on our experience in developing and maintaining what
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has become two community codes, I can make a few simple observations of why this may be highly
useful for a research group:

� Publishing and maintaining an open-source code is an efficient (albeit not always simple) way
of coordinating activities within a research group or among cooperating scientists.

� Releasing your code to the public does not jeopardize your intellectual property rights as long
as you are careful in your choice of licensing policy and combine it with scientific publications.

� Release of open-source code is an efficient means of attracting interest to your research and
getting in connection with potential collaborators.

� When governed by a firm but kind hand, the development of a common code base will enforce
internal collaboration across different research activities and insure that results from one
activity can be leveraged in another.

However, I think that some of these observations also hold for less comprehensive codes, and if this
is what is most relevant in your case, you may still gain useful insight from the following discussion.

4.1. Choice of language for experimental programming

Unlike professional programmers, who typically have a detailed specification of software require-
ments from end users, developers of new numerical methods and computational algorithms seldom
know exactly what their programs should do. Obviously, you will know what problem you aim to
solve and have an idea of how to do it, but generally you will not know whether your approach
will work until you have tested. The first attempt seldom does, and getting a working algorithm
usually involves a lot of test and trials. Hence, the computer is your laboratory and should be
treated as one, meaning that you should try to make your experimental programming as productive
and reliable as possible, and that numerical experiments should be subject to the same standard as
physical experiments (as discussed above).

One important choice you have to make is what language to use. This choice will obviously
depend on what part of computational science you work in, what computer languages you have
been exposed to, and the level of your programming skills. However, for the type of work I am
doing (developing simulation technology to describe physical processes), my recommendation is
crystal clear: Unless you are really fluent in a compiled language like C, C++, or FORTRAN, as
much as possible of your initial experimental programming should be done in a scripting language
like Python, Julia, or MATLAB/Octave that offers extensive support for numerical algorithms. The
resulting code may not be as efficient as in a compiled language, but the development process is so
much simpler. Once you get your ideas to work, you can always replace parts of your code by a
compiled back-end code or rewrite everything from scratch in a compiled language. In my research
group, we primarily use MATLAB for prototyping and C/C++ when developing production codes
for our clients. Even with several very capable programmers in the group, it is my consistent
experience that developing ideas in MATLAB and later reimplementing in C/C++ is more efficient
than doing everything in C/C++ from the start.

Table 1 lists a number of factors I believe contribute to slow down experimental programming
in a compiled language compared with a scripting language. The basic (imperative) syntax in a
scripting language like MATLAB and its open-source clone Octave is fairly simple and will generally
be intuitive to any mathematician with a basic course or two in programming. The language has
many built-in mathematical abstractions, which together with numerical functions and routines
for data analysis and visualization enable you to write quite compact programs that are close to
the underlying mathematics. This is, of course, also possible in C++, provided that you have the
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Table 1: List of factors that contribute to slow down the development cycle of experimental programming in third-
generation compiled language compared to a fourth-generation, scripted language.

3rd generation 4th generation

Fortran, C, C++ MATLAB, Python

Syntax complicated intuitive

Cross-platform challenging 3

Build process 3 7

Linking of external libraries 3 7

Type checking static dynamic

Mathematical abstractions user-defined built-in

Numerical computations libraries built-in

Data analysis and visualization libraries/external built-in

Debugger, profiling, etc external/IDE built-in

Traversing data structures loops, iterators vectorization†

† also: indirection maps and logical indices

right user-defined abstractions and suitable libraries for numerical computations, data analysis, and
visualization. C++ is a multi-paradigm programming language that gives you the choice between
procedural (imperative), object-oriented, generative, and template meta programming. Not only
is the language wordier and less expressive than MATLAB/Octave, but it is easy to write quite
obscure programs by utilizing features of the language that are alien to those who are less diligent
in their search for sublime computer codes.

The build process and linking of external libraries are two other factors that not only contribute
to slow down the development cycle, but also severely challenge the portability of your code. For
small, standalone codes, this is not a big problem, but for medium to large-scale codes, it can be
a very time-consuming task2 to set up an appropriate build system, make sure that all necessary
libraries and software modules are in sync, and insure cross-platform compatibility. These issues
are largely non-existent in MATLAB since it is an interpreted and not a compiled language. There
can obviously be some problems with backward and forward compatibility as a result of existing
functionality being improved and new functionality being introduced, but by and large this has not
been an issue for us. (The only exception might be the 3D graphics, which not only is surprisingly
slow in MATLAB, but also has issues with cross-platform compatibility.)

Altogether, the development process tends to be quite different in MATLAB/Octave than in
C++. Experimental programming is at its best when you can gradually make small changes to an
existing and functional code. By using the built-in debugger, you can prototype while testing an
existing program. As in any debugger, you can run code line by line, and stop and inspect variables
at any point. However, since MATLAB/Octave is interpreted and has dynamic type checking, you
can at any point not only change the content of your variables and data structures, but modify them
completely by changing their type, introducing new data members, etc. You can also introduce new
variables, data structures, and (anonymous) functions, or go back and rerun parts of the code with
changed parameters. This way, you can try out each operation and build your program as you
go. In my opinion, this is one of the primary reasons why prototyping in MATLAB/Octave is so
efficient. On the other hand, static typing insures a certain consistency and can be very helpful in
catching errors.

Let me end the section with a few words about homespun versus commercial or community
codes. This question is particularly relevant when working at the interface between mathematics

2In the OPM project, the development team spent more than a year to get to a satisfactory solution.
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and an applied science; in my case, simulation of CO2 storage and hydrocarbon recovery. It is
very hard to make any general recommendation, but let me observe the following: To avoid the
danger of spending a lot of time reinventing the wheel, you should know what is current state-of-
the-art and know both the capabilities and limitations of contemporary commercial and community
codes. This is generally no little undertaking, but should at least be attempted to prevent you from
falling prey to the infamous not-invented-here syndrome. On the other hand, reimplementing well-
established functionality is a good way to increase your expertise and understand tacit assumptions
and limitations in exiting software. As computational software matures, they tend to include an
increasing number of (undocumented) safeguards ensuring robust behavior even when the software
is used with inconsistent input and outside its normal range of validity. Simulators of physical
processes should never be used as black boxes and it is of uttermost importance to have a number
of experts that understand their inner workings.

4.2. Advice for good development practices

At the end, I will share some advice based on my experience as manager for the development
of MRST [20, 26] as well as various research projects that have involved a significant amount of
software development. My advice are not necessarily particularly original (see e.g., [30]), nor as
focused on the actual coding and software tools as die-hard programmers would have liked, but
hopefully they may still be useful:

� Learn standard tools for efficient software development like (distributed) version-control sys-
tems, issue trackers, unit testing, and task automation (i.e., systems that enable automatic
acceptance and regression testing of your code) and use them to your advantage.

� Write for humans, not computers. In experimental programming, researchers spend the ma-
jority of their time reading/writing code and not waiting for computer runs to finish. Using
consistent style and formatting makes it easier for others to read and understand your code.

� Write your software incrementally, using an agile approach. Get a first (simplified) version
to work as early as possible, test it, and use the results to improve and expand your im-
plementation. Be prepared to make (substantial) changes as you gain more insight into the
problem.

� Break your code up into easy understandable functions, document what the functions do,
their input and output arguments, and include, if possible, small examples of their typical
and intended use.

� Be lazy! If the computer can do a task for you, let it do it. (One example: use automatic
differentiation as discussed on page 20 to avoid the error-prone process of deriving and imple-
menting derivatives of functions).

� Document functionality, not semantics and mechanics. If nothing else, insure that your future
self is able to understand the code.

� Avoid premature optimization. Once the code is working as anticipated, you can always profile
it and try to remove bottlenecks. If this obfuscates the code, you should consider keeping the
original version as part of the documentation.

13



4.3. Maintaining integrity of your code

It is challenging to maintain integrity of your software under the (frequent) restructuring of
code that inevitably follows from an agile approach; in particular for complex code features that
are not well covered by e.g., unit tests. My best advice to maintain integrity is: by thinking about
it all the time3. That said, you can make life easier for yourself if changes are committed to the
version-control system and tested as frequently as possible. Best practices for multiple developers
working on distributed software repositories suggest that commits should be merged into baseline
every day. My experience is that this rule is difficult to enforce strictly in research projects, but it
is seldom a good idea to work for more than a day without testing your code or let your private
development branches deviate too far from baseline.

I also recommend that you use a tool for software self-testing like Jenkins, which automates the
task of pulling code from your repository and running a set of predefined tests. Ideally, automated
tests should incorporate as many of the cases you use for validation and verification as possible
and should not only check that the code runs through without errors, but also verify that results
are correct and monitor performance measures such as iteration counts, convergence rates, com-
putational time, etc. To design meaningful tests, you should keep in mind that computed results
are seldom bitwise identical so that suitable mathematical norms should be used when comparing
against analytical solutions and previously stored computations. In OPM, for instance, we dis-
tinguish between acceptance tests, which check that you are within a prescribed tolerance of an
analytical or numerical reference solution, and regression tests, which check that you reproduce
previous results within zero or a tiny tolerance. Often, results of these tests need to be manually
interpreted, since it is generally quite difficult to design fully automated tests of results that keep
changing as your algorithms and methods get better and better. To avoid becoming a drag, the self
tests should neither be too extensive nor run too frequently (e.g., once per day), and possibly be
split up into multiple levels that are run at different time intervals.

Code review, or peer review of source code, is another recommended best practice to maintain
integrity and insure correctness of new code. We have used this with some degree of success in
OPM. However, formal code reviews can easily degenerate to counterproductive discussions about
semantics and mechanics more than assumptions and functionality, and I am personally more fond
of the informal peer review that arises naturally when multiple developers collaborate to test and
maintain the same code.

4.4. Choosing the right development model

When setting up a new open-source project, there are several choices you need to make. First
of all, you need to decide where to host your software repository and how you wish to distribute
your code. Should you place your code in a public repository on a centralized service like GitHub
and Bitbucket so that anybody who wants can have access at any time, or should you place it in
a private repository and only provide periodic releases or only release it when you have finished
the development? The fact that our work can/will be viewed and evaluated by our peers tends
to keep most of us on our toes, and any of the first two alternatives is thus preferable. The third
alternative is an ensnaring invitation to procrastinate important activities such as cleaning up code,
documenting it, writing examples/tutorials, and so, and should thus be avoided. Whether you
should choose the first or the second alternative depends on the commercial setting; how your
research is funded; licensing and copyright questions; how you, your organization, or your project

3Supposedly, this is what Sir Isaac Newton answered when asked how he discovered the law of gravity. I have not
been able to verify the truth of it, but I still think it is a good explanation that characterizes a lot of scientific work.
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wish to collaborate or cooperate with external contributors to the software; and to what extent you
want to retain control of future developments.

As explained already, my research group has been involved in two larger open-source projects
over several years. The Open Porous Media (OPM) initiative follows an open and fully transparent
innovation model. The code, which is hosted on a public repository on GitHub, has been jointly
developed by researchers from several different organizations, funded through contract research.
Copyright is held jointly by the developers’ organizations and commercial companies funding the
development. Contributions from third-party developers who wish to retain copyright are welcome
and encouraged, which is a major advantage and incentive to contribute. However, contributions will
be reviewed by a meritocratic group of official maintainers, who are appointed partly by affiliation,
and contributions are requested to follow the GNU Public License (GPL), which is a copyleft license.
The overall model insures a certain negative control for the funding partners, and is designed to
prevent undue commercial utilization or hijacking of the project. The disadvantage is that this
limits the incentives of non-funding partners to develop and maintain the code on their own. In
my experience, it is also relatively costly to provide strategic direction and ensure that necessary
consensus is reach among the developers. Several large open-source projects, like FEniCS, use an
alternative model in which the project is managed by a non-profit foundation.

Some open-source projects are characterized by the fact that full copyright is owned exclusively
by a single entity. This model is partially used for MRST [20, 26], which I will discuss in more
detail in Section 5. MRST is an important part of our research infrastructure, but is developed as
a shared public utility and not as a product to be sold. The central software modules that make
up the biannual releases are owned by SINTEF (which is a non-profit research foundation) and
are kept in private repositories on Bitbucket. Code contributions to the fundamental parts of the
software are only accepted if the contributor transfers copyright of the code to SINTEF. On the
other hand, we both encourage and help our collaborators and third-party developers to create and
release add-on modules to the software as long as these follow the GPL license used for the rest of
the software. In principle, these modules can modify or replace any part of the basic functionality
in MRST. The reason we have chosen this particular model is that it gives us strategic control of the
basic functionality, freedom to use the software we developed as we wish in contract research and
if necessary release it to our clients under a different license, as well as clear incentives to maintain
and improve the software.

4.5. Maintaining a lab journal

The discussion in the previous sections focused mainly on the software engineering, which for
many scientific purposes is secondary to the development of algorithms and methods. In this
latter process, the computer is essentially your laboratory. Within experimental sciences, it is basic
knowledge that all experiments should be documented in a lab journal. The same should go without
saying for numerical experiments:

� State hypotheses and cases you want to test, report your results, and discuss how you interpret
them, potential causes for incorrect behavior, ideas for future improvements, etc.

� If possible, use a notebook format (like in Jupyter or Live Scripts in MATLAB) to set up your
test cases, in which you can mix text, plots, and computer code.

� Save the exact input parameters and your results; disk space is much less expensive than the
time you spend, should you later need to go back and recreate your results. Use a version-
control system for all input data that have been manually created.
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� Mark entries in the lab journal with a unique label from your version control system identifying
the exact code and inputs you used to run the tests. With a version-control system like Git
or alike, this would be the hexadecimal commit number.

This will save you a lot of time when (and not if) you have to go back and redo some of your
experiments (e.g., when getting a paper back from review). It will also make it much simpler to
communicate your preliminary results to colleagues or your supervisor/students.

4.6. Personal attitude

Last, but not least, I would like to point out that open source projects have a huge affinity on
software nerds/geeks. To avoid becoming one, I suggest:

� Don’t use your programming skills to show off! Try to aid others rather than alienating them.

� Keep it simple, stupid! If you feel pride in having managed to condense a complicated com-
putational construct to a few code lines, chances are pretty high that you will be the only one
understanding it.

� Try not to become a religious fanatic who quarrels or fights turf wars over standardization
and whose opinions get stronger the less important the issue discussed is.

� If using object orientation, avoid becoming an onion producer who makes layers upon layers
of abstractions (with no core) in an attempt to be generic.

With this, I wish you good luck in your experimental programming. I look forward to see your
source code on the net as an integer part of your next paper.

5. The MATLAB Reservoir Simulation Toolbox

In the last section of this essay, I try to make the ideas discussed above more concrete and
demonstrate that it is indeed possible to also publish codes that have a significant commercial
potential. To this end, I will describe a comprehensive open-source software developed by my
research group over the past decade. The discussion is admittedly detailed at times, but I still hope
that readers outside of the reservoir simulation community may find it inspiring and possibly learn
something from our use of the MATLAB (or Octave) language. I believe, in particular, that our
close relation between mathematical operators and their numerical implementation can be useful
for others working with low-order finite-volume discretizations of flow equations within other fields
of science and engineering.

5.1. A brief history of the software and why it was developed

What is today the MATLAB Reservoir Simulation Toolbox (MRST) [21, 20, 15, 5, 26] grew out
of research on mimetic discretizations and multiscale methods for reservoir simulation on complex
grids, as outlined in Section 3.3. It was early decided to use MATLAB as our primary development
platform, in part because of an idea that a scripting language would be more efficient, inspired
by the late Hans Petter Langtangen’s pioneering work [16], and in part because we happened to
know MATLAB quite well. At first, our development was poorly coordinated. As an example,
writing one of our earliest papers [1], involved three different codes, each written by only one of the
authors. Obviously, this was no viable path, and hence MRST was born. A few years earlier, we
had published an educational paper that essentially explained how to implement a simple reservoir
simulator in less than 50 lines of MATLAB code [2]. This paper and the accompanying code had
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attracted much more interest than anticipated. Inspired by this, and with Helge’s last guideline at
the back of my mind, I decided we should release our new code under a free software license. We
chose to use the GNU General Public license, since this would prevent others from simply picking
up our software and use it in commercial products.

Pushing multiscale and mimetic discretization methods toward realistic applications meant that
we had to develop a lot of general infrastructure for multiphase flow simulations on unstructured
grids [21]. This made the new software quite attractive also in other projects, and MRST grew into
a general prototyping framework that was used in more or less all of our research. All the way,
our development policy has been that generic ideas from contract research is put into MRST and
released publicly. Code which is decided to have business-critical value to our clients or ourselves,
is isolated in separate branches or modules and is never published. Since the software serves many
different purposes, we have, after a bit back and forth, come to the conclusion that it is best to
organize it so that it consists of a small core module offering basic functionality, and a large set
of add-on modules that each implements specific computational methods or mathematical models.
Many of these modules can be combined to support more comprehensive workflows, but there are
also cases in which two modules offer functionality that makes them mutually exclusive.

Continuing to release research results in the form of open-source software was not uncontroversial
within my organization, but somehow I managed to convince my superiors that the marketing effect
would far out-weight the loss of potential license fees. My winning argument was that when your
marked is monopolized by a few software providers, you need to use another mechanism to attract
potential clients. With our industry clients, my argument is that allowing us to release generic
parts of new functionality we develop for them, is the price they pay for being able to leverage
functionality developed for other clients.

Initially, MRST was written using a procedural (imperative) programming paradigm and focused
almost exclusively on incompressible flow [21]. We made a few attempts at extending the capabilities
to contemporary flow physics, but were not really successful until one of my colleagues, Stein
Krogstad, decided to implement automatic differentiation [27]. (I will come back to this in more
detail below.) This opened unparalleled capabilities for rapid prototyping and within a few weeks,
we had developed our first compressible, three-phase solver and verified that it gave satisfactory
match with the market-leading commercial simulator simplified test cases. Ensuring robust and
accurate simulations on models of real hydrocarbon assets is far more challenging, and it took us
several months to figure out the correct way to interpolate tabulated fluid data4, reverse-engineer
undocumented features in models of near-horizontal wells, etc. This is generally where the science
stops and the art or tricks-of-the-trade starts. A full-fledged reservoir simulator contains a lot
of intricate functionality, like well modelling, nonlinear solvers with time-step control, (multilevel)
iterative linear solvers with appropriate preconditioning methods, and so on. This means that codes
written with a procedural approach gradually become quite unwieldy, unless these are meticulously
designed, which seldom is the case in experimental programming. To amend this, Olav Møyner (who
was doctoral student of Helge and me at the time) developed a new object-oriented framework.
Combined with automatic differentiation, this framework offers very powerful support for rapid
prototyping [15, 5, 23].

At this point, you may ask how efficient MATLAB is for reservoir simulation. The incompressible
simulators written using a procedural approach are quite efficient, typically a factor 3–5 times
slower than commercial solvers, and we have been able to simulate two-phase flow on models having

4As an example: If two parameters µ and B that enter your flow equations as 1/µB, should you interpolate µ and
B, µB, 1/µ and 1/B, or 1/µB? It turned out that the latter choice was the correct.
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up to 60 million grid cells on a standard workstation. Industry-standard models for three-phase
compressible flow are significantly more computationally demanding than incompressible, two-phase
flow. Moreover, our automatic differentiation approach has primarily been written to be as flexible as
possible and incurs a certain overhead, but we believe that this can be significantly reduced through
a more careful implementation of our library for automatic differentiation. In sum, I currently
would not recommend simulation of models containing more than a few hundred thousand cells,
which in most cases should be more than sufficient when developing proof-of-concept simulators
and workflows on models with realistic complexity.

Looking at the large user community that the software has attracted, it seems that a somewhat
suboptimal computational performance is by far out-weighted by the flexibility, free access, and
full source code that MRST offers. Each of the past eight biannual releases have been downloaded
from 1000 to 2000 unique computers (according to Google Analytics), and at the time of writing,
the software has been used in 90 master and doctoral theses, and in more than 110 journal and
proceedings papers by authors not affiliated with SINTEF.

What are the points that make the software attractive to such a large audience? First of all, it is
because the software is free, in a high-level language like MATLAB, and offers full access to source
code. However, I also believe that the fact that we have been quite diligent in documenting the code
and developing tutorials and examples that highlight the salient features of various functionality
has contributed to make it more attractive. Last, but not least, we have put significant effort
into developing routines for reading and processing input data on industry-standard format, which
significantly simplifies the process of testing new methods on realistic scenarios.

Let me also add that major parts of MRST can also be run in the latest version of Oc-
tave, as a completely free alternative to MATLAB, provided a number of changes are made to
account for minor differences between Octave and MATLAB. The main exception is graphical
user interfaces, which are written quite differently in the two languages. Originally, OPM Flow
(http://opm-project.org) was developed as a C++-cousin of MRST, intended for full-scale com-
mercial simulations. The two have many similarities in the underlying design, which simplifies the
process of moving methods prototyped in MRST into industrial adoption. Lately, however, the
OPM project has focused more on optimizing computational performance and this has resulted in
larger and increasing differences in the two codes.

5.2. Key ideas for rapid prototyping

In this section, I will try to briefly explain some of the principles we have used in MRST to
support rapid prototyping. Our choices are admittedly strongly influenced by the type of problems
we study and the low-order finite-volume methods we use to this end. Still, there might be some
insight here that also applies to other types of problems and numerical methods.

In developing the toolbox, we have tried to make functionality that enables clean and simple
implementation of flow equations, as close to the underlying mathematical models as possible. This
way, we seek to insure less error-prone coding and create quite compact codes that are relatively
simple to maintain and extend. Key ideas to this end, include

� Hide specific details of grid, discretizations, constitute laws, and parameters describing geo-
logic and petrophysical properties.

� Always use a fully unstructured grid format to represent all types of grids so that algorithms
can be implemented without knowing the specifics of the grid.

� Define abstract discretization and averaging/mapping operators that are not tied to specific
flow equations and can be precomputed independently.
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� Use vectorization to ensure an almost 1-to-1 correspondence between continuous and discrete
variables to avoid visible loops and use as few indices as possible.

� Use automatic differentiation to avoid having to explicitly linearize flow equations, analyti-
cally compute and implement derivatives, gradients and Jacobians, which generally is a time-
consuming and error-prone process.

Vectorization, logical indexing, and summation techniques. MATLAB/Octave is a quite expressive
language and has many different constructions that help to make your code shorter and hence
easier to read and maintain. Two relative simple techniques are commonly used to avoid looping
through arrays, as one typically would do in C++ and similar compiled languages. Vectorization
lets you operate directly on the matrix level and write code almost as if you were working with
scalar variables

% Vec to r i z a t i on % For−loop
f = s i n (y ) . * exp(−x . ˆ 2 / 2 ) ; f = ze ro s ( s i z e (x ) ) ;

f o r i=1:numel (x )
f (i ) = s i n (y (i ) )* exp(−x (i ) ˆ 2 / 2 ) ;

end

Because of MATLAB’s Just-in-time (JIT) compiler, the vectorized code can be slower than the
for loop when the arrays x and y have few elements. On the other hand, the vectorized code is
much closer to the mathematics and significantly more efficient on large arrays. This was a trivial
example, but the principle applies to more complex cases. Another nice feature is logical indexing.
To exemplify, we can set all negative elements of a vector to zero

v (v<0) = 0 ;

or compute the average of negative and positive values

i = v>=0;
avg = [ sum(v (~i ) ) sum(v (i ) ) ] . / [ sum(~i ) sum(i ) ] ;

Another useful construct, is the accumarray(p,v) function, which collects all elements of v that
have identical subscripts in p, sums them, and stores in the location given by p. As an example,
let p be a partition vector defining a coarse grid so that p(i)=j if cell i belongs to block j. The
average of a scalar quantity v defined in each cell can be computed as

avg = accumarray (p , v ) . / accumarray (p , 1 ) ;

To compute the average over a vector quantity with m elements per cell, defined as an n×m array
v, we can use a sparse matrix to sum the elements and bsxfun for element-by-element division,

tmp = spar se (p , n , 1)* [ v , ones (n , 1 ) ] ;
avg = bsxfun ( @rdivide , tmp ( : , 1 : end−1) ,tmp ( : , end ) )

The last two constructs are powerful, although not as neat as logical indexing, and are used a lot
in MRST for computational efficiency and to generate compact codes devoid of for loops.

Grids and discretizations. The most fundamental quantity in MRST is the grid, which generally
will be a collection of 3D polyhedral cells having an unstructured topology. To ensure maximum
flexibility in developing new computational algorithm, all grids are represented in a relatively verbose
format containing geometric properties such as vertices; face centroids, normals, and areas; and cell
centroids and volumes. The grid topology is described in terms of mappings between cells and faces,
and between faces and the cells they separate, as shown in Figure 2. Using these mappings, we can
define discrete divergence and gradient operators. The div operator is a linear mapping from faces
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Grid structure in MRST
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Figure 2: Illustration of the grid structure in MRST and typical grids used in subsurface flow simulation. The two
tables show the mappings used to define discrete differentiation operators; for the face-to-cell mapping, only the last
two columns are actually stored.

to cells. Let v[f ] denote a discrete flux over face f with orientation from cell C1(f) to cell C2(f).
Then,

div(v)[c] =
∑

f∈F (c)

sgn(f)v[f ], sgn(f) =

{
1, if c = C1(f),

−1, if c = C2(f).
(3)

Likewise, the grad operator maps from cell pairs C1(f), C2(f) to faces f

grad(p)[f ] = p[C2(f)]− p[C1(f)], (4)

where p[c] is the pressure associated with cell c. Since div and grad are linear operators, they can be
represented by a sparse matrix D so that grad(x) = Dx. If we assume zero flux across the boundary,
the discrete gradient operator is the adjoint of the divergence operator, as in the continuous case,
i.e., div(x) = −DTx. To discretize Poisson’s equation (1), we also need to represent the operator
∇ ·K∇ by defining a transmissibility T[f ], so that v[f ] = −T[f ]grad(p)[f ]. To derive concrete
expression for T, we change notation slightly and let vi,j denote the flux from cell i to cell j. Using
Darcy’s law and a standard finite-difference approximation, we have that

vi,j = −
∫

Γij

K∇p · ~nij ds ≈ AijKi
(pi − πi,j)~ci,j
|~ci,j |2

· ~ni,j = Ti,j(pi − πi,j),

where the interface Γij between cells i and j has area Aij and directional normal ~ni,j . Moreover,
Ki is the constant value of K inside cell i, πij is the pressure at the centroid of Γij , and ~ci,j is
the vector from the cell centroid to the face centroid. A similar expression holds for cell j. If we
require continuity of fluxes, vi,j = −vj,i, it follows that Tij =

[
T−1
i,j + T−1

j,i

]−1
. Constructing the

discrete operators and computing the transmissibility can be done in approximately twenty lines in
MATLAB using the unstructured grid format, as we will see later. In practice, you will probably
want to add a few safeguards as we have done in MRST, which make the code somewhat longer.
Once the operators and T are computed, we do not need to know any detail of the grid to discretize
our flow equations, which can be done quite compactly, as shown in Figure 3.

Automatic differentiation. The basic premise of automatic differentiation (AD), also called algorith-
mic differentiation, is that standard function evaluations in a computer code consists of a sequence
of elementary unary and binary operations, for which known derivative rules exist. The key idea is

20



Incompressible flow:

∇ · (K∇p) + q = 0

Compressible flow:

∂(φρ)

∂t
+∇ · (ρK∇p) + q = 0

Continuous

Incompressible flow:

eq = div(T .* grad(p)) + q;

Compressible flow:

eq = (pv(p).* rho(p)-pv(p0).* rho(p0))/dt ...

+ div(avg(rho(p)).*T.*grad(p))+q;

Discrete in MATLAB

Figure 3: Correspondence between how flow equations are specified mathematically and implemented in MRST using
the discrete operators. Here, pv and rho are functions evaluating porosity φ and density ρ as function of pressure,
and avg is a mapping from cells to faces, avg(ρ)[f ] = 1

2
(ρ[C1(f)] + ρ[C2(f)]).

now to keep track of variable values and their derivatives with respect to a set of independent vari-
ables. Consider a scalar independent variable x and a dependent variable v computed as a function
of x, i.e., v = f(x). Automatic differentiation introduces a new extended pair 〈x, 1〉, i.e., the value x
and its derivative 1. Using this extended pair, the computer can use elementary derivative rules for
unary and binary operations together with the chain rule to mechanically accumulate derivatives
of v evaluated at the specific value x represented as 〈f(x), f ′(x)〉. If, for instance, v = sin(x), then
the corresponding AD-pair reads 〈sin(x),− cos(x)〉. Similarly, we have for binary operators

〈u, ux〉+ 〈v, vx〉 = 〈u+ v, ux + vx〉 , 〈u, ux〉 ∗ 〈v, vx〉 = 〈uv, uvx + uxv〉 .

In MRST, these rules are implemented using operator overloading as suggested in [27], so that all
function evaluations can be written exactly the same way irregardless of whether AD is used or not.

Putting it all together. Now, let us see if we can put the pieces together and implement a flow solver
that is applicable to both structured an unstructured grids. For the moment, I will skip details
of how the grid G and the permeability K are generated. Simple grids can be generated by a few
function calls to grid-factory routines in MRST. We start by extracting grid information

C = G . faces . neighbors ;
C = C ( a l l (C ~= 0 , 2) , : ) ;
cn = gridCellNo (G ) ;
F = G . cells . faces ( : , 1 ) ;
[ nf , nc ] = deal ( s i z e (C , 1 ) , G . cells . num ) ;

The first two lines extract the last two columns of the face-to-cell map from Figure 2 and remove
all external faces (indicated by one of the cell numbers being zero). The next two lines extract the
two columns of the cell-to-face mapping, whereas the last line gets the number nf of internal face
and the number of cells nc. Using this information, it is straightforward to construct the discrete
operators

D = spar se ( [ ( 1 : nf ) ’ ; ( 1 : nf ) ’ ] , C , ones (nf ,1)* [−1 1 ] , nf , nc ) ;
grad = @ (x ) D*x ;
div = @ (x ) −D ’* x ;

To compute the transmissibility, we start by extracting the face normal and the matrix containing
vectors from cell to face centroids

sgn = 2*(cn == G . faces . neighbors (F , 1 ) ) − 1 ;
c = G . faces . centroids (F , : ) − G . cells . centroids (cn , : ) ;
n = bsxfun ( @times , sgn , G . faces . normals (F , : ) ) ;
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Here, the first line determines the correct sign of the face normal. Now, we have all information we
need to compute the transmissibility,

[ i , j ] = deal ( [ 1 1 2 2 ] , [ 1 2 1 2 ] ) ;
hT = sum(c ( : , i ) .* bsxfun ( @times , K (cn , : ) , n ( : , j ) ) , 2 ) ;
hT = hT . / sum(c .* c , 2 ) ;
T = 1 . / accumarray (F , 1 . / hT , [ G . faces . num , 1 ] ) ;
T = T ( a l l (C~= 0 , 2 ) , : ) ;

The first line sets up of the row and column numbers of the permeability tensor, which is stored
as a vector of the form [Kxx, Kxy, Kyx, Kyy] for each cell in a 2D grid. (For 3D grids, K has nine
entries.) The next two lines compute the one-sided transmissibilities, the next line their harmonic
average, and the last line extracts those corresponding to internal faces. In the actual prototyping
framework, you would not have to implement all the generic code lines discussed above, but rather
call a function that does this for you with a lot of safeguards

S = setupOperatorsTPFA (G , rock ) ;

Here, rock is a structure containing petrophysical properties, including K.
Now, we are finally in a position to specify and solve our equations. To this end, we declare

pressure as our primary variable, which hence will be considered the independent variable when
linearizing the discrete equations

q = . . . % t h i s i s case s p e c i f i c
p = initVariablesADI ( z e r o s (nc , 1 ) ) ;
eq = div (T .* grad (p))+q ;
eq (1 ) = eq (1 ) + p ( 1 ) ;
p = −eq . jac{1}\eq . val ;

The second line defines p to be an AD-variable initialized with all zeros, the third line defines our
discrete equation on residual form as shown in Figure 3. With zero Neumann conditions only,
the solution is not unique and the fourth line modifies the first element of the system matrix
to (somewhat arbitrarily) fix the pressure in the first cell to zero. Going back to (1), we have
a residual equation on the form R(p) = Ap + q = 0. The last line computes the solution as
p = −(∂R∂p )−1q = −A−1q. Figure 4 shows the setup and solution of two specific problems. The
only difference between these two cases is the specification of the grid G and the source term q.
Notice also that the same code can be used to compute pressure on complex stratigraphic and
unstructured grids in 3D after trivial modifications of the i and j arrays to span 3 × 3 tensors in
the transmissibility calculation.

To extend the code to the compressible, single-phase equation shown in Figure 3, we need to
define functions that compute ρ and φ as functions of p and add an outer loop for the time steps and
an inner Newton iteration to solve what is now a nonlinear residual equation; details are given in
[20]. These single-phase problems are almost trivial, but should give you an idea of how to construct
more advanced solvers.
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% Make grid

G = twister(cartGrid ([8 8]));

G = computeGeometry(G);

% Set source terms (flow SW -> NE)

q = zeros(G.cells.num ,1);

q([1 end]) = [1 -1];

% Unit insotropic permeability

K = ones(G.cells.num ,4); K(:,[2 3]) = 0;

% Make grid using external grid generator

pv = [-1 -1; 0 -.5; 1 -1; 1 1; 0 .5; -1 1; -1 -1];

fh = @(p,x) 0.025 + 0.375* sum(p.^2 ,2);

[p,t] = distmesh2d(@dpoly , fh, 0.025, [-1 -1; 1 1], pv, pv);

G = computeGeometry(pebi(triangleGrid(p, t)));

% Set source terms (flow SW -> NE)

q = zeros(G.cells.num ,1);

v = sum(G.cells.centroids ,2);

[~,i1]=min(v); [~,i2]=max(v);

q([i1 i2]) = [1 -1];

Figure 4: Poisson problems describing single-phase flow on a rectangular grid and on an unstructured Voronoi grid;
the latter is constructed from a triangulation generated by an open-source mesh generator [29]. The color plots show
pressure with red denoting high pressures near the fluid source and blue low pressures near the sink. The spy plots
show the sparsity structure of the D matrix used to define the discrete div and grad operators. For the rectangular
grid, the upper block corresponds to ∂

∂x
and the lower block ∂

∂y
. Permeability is specified in exactly the same way for

the unstructured and structured grids.
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