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Abstract. In this paper we complete the description and application of a computa-
tional framework for the numerical simulation of first-contact miscible gas injection
processes. The method is based on the front-tracking algorithm, in which numerical
solutions to one-dimensional problems are constructed in the form of traveling dis-
continuities. The efficiency of the front-tracking method relies on the availability of
the analytical Riemann solver described in Part 1 and a strategy for simplifying the
wave structure for Riemann problems of small amplitude. Several representative ex-
amples are used to illustrate the excellent behavior of the front-tracking method. The
front-tracking method is extended to simulate higher-dimensional processes through
the use of streamlines. The paper presents a validation exercise for a quarter five-
spot homogeneous problem, and an application of this computational framework for
the simulation of miscible flooding in three-dimensional, highly heterogeneous for-
mations. In this case, we demonstrate that a miscible water-alternating-gas injection
scheme is more effective than waterflooding or gas injection alone.
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1. Introduction

In this series of two papers we describe and apply a front-tracking/streamline
method for the numerical simulation of multiphase first-contact misci-
ble flows. Such flows occur in enhanced oil recovery processes by gas
injection, and environmental remediation of polluted aquifers.

The proposed formulation has three main components:

1. A complete, analytical Riemann solver.

2. A front-tracking scheme to solve general one-dimensional initial and
boundary value problems.
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3. A streamline simulation approach to solve three-dimensional prob-
lems in heterogeneous media, which decouples the 3D transport
equations into a set of 1D problems along streamlines.

The analytical solution to the Riemann problem was described in
Part 1 of the series (Juanes and Lie, 2006). The Riemann problem
consists in solving a system of conservation laws in an infinite one-
dimensional domain, with piecewise constant initial data separated by a
single discontinuity. Our mathematical model makes several important
assumptions: (1) it is a two-phase system, in which water is immiscible
with the hydrocarbon phase, and the two hydrocarbon components (oil
and solvent) mix readily in all proportions; (2) the fluids are incom-
pressible and do not experience volume change upon mixing; (3) the
effects of gravity and capillary forces are negligible; (4) the multiphase
flow extension of Darcy’s law is applicable; and (5) the effects of vis-
cous fingering are negligible. Under these assumptions, the problem is
described by a 2× 2 hyperbolic system of conservation laws. In Part 1
we analyzed the mathematical character of the system and gave a com-
plete analytical solution to the Riemann problem, using an analogy
with the system of equations describing polymer flooding (Isaacson,
1980; Johansen and Winther, 1988).

Here, we use the analytical Riemann solver as a building block for
constructing approximate (numerical) solutions using a front-tracking
scheme. Front-tracking methods refer to numerical schemes that per-
form tracking of shocks and other evolving discontinuities (Holden and
Risebro, 2002). They were developed to construct approximate and
exact solutions to hyperbolic systems of conservation laws in one space
dimension with general initial data (Risebro, 1993), and they have been
used as an essential tool in proving uniqueness of the solution (Bres-
san and LeFloch, 1997). Early application areas of the method in-
clude gas dynamics (Risebro and Tveito, 1992) and reservoir simula-
tion (Bratvedt et al., 1993). Of particular interest is the work of Rise-
bro and Tveito (Risebro and Tveito, 1991), where the front-tracking
method is applied to the multicomponent polymer flooding system in
one dimension. In our implementation of the front-tracking method, all
waves are treated as discontinuities. Shock waves and contact disconti-
nuities are tracked exactly, and rarefaction waves are approximated by
small inadmissible shocks. The discontinuities are tracked until they
interact and define a new Riemann problem. The approximate solu-
tion of this new Riemann problem leads to a new set of additional
discontinuities that need to be tracked. Repeated application of this
procedure allows marching in time. The main advantages of the front-
tracking method just described are: (1) it captures discontinuities
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exactly without introducing any numerical diffusion; (2) it is grid-
independent; (3) it is unconditionally stable; and (4) it can be very
efficient if an analytical Riemann solver is available.

In this paper, we propose the use of streamlines to perform numerical
simulation of miscible flooding in higher-dimensional, heterogeneous
media. Streamline methods are based on a staggered solution of a global
pressure equation and the system of transport equations (Bratvedt
et al., 1993; Batycky et al., 1997; King and Datta-Gupta, 1998). So-
lution of the pressure equation defines the velocity field used to trace
the streamlines. In this way, streamline methods decouple the three-
dimensional equations describing the transport of individual compo-
nents into a set of one-dimensional problems along streamlines. With
a proper parameterization of the streamlines, the numerical solution is
then obtained using the front-tracking method described above. This
computational framework was employed by the authors for the simula-
tion of immiscible three-phase flow (Lie and Juanes, 2005; Juanes et al.,
2004), and it is extended here to miscible gas injection problems. The
method is therefore fundamentally different from that of Holden and
Risebro (Holden and Risebro, 1993) and Haugse et al. (Haugse et al.,
2001), where front-tracking is applied in conjunction with operator-
splitting, and one-dimensional problems are solved sequentially in each
spatial dimension.

An outline of the paper is as follows. The front-tracking algorithm
is given and discussed in Section 2. In Section 3 we present several
representative one-dimensional simulations that illustrate the excellent
behavior of the front-tracking method. In Section 4 we study the con-
vergence behavior of the method for a two-dimensional problem in
a homogeneous medium, and present an application of the proposed
computational framework to the simulation of miscible flooding in a
three-dimensional, highly heterogeneous formation. We compare recov-
ery predictions for different injection scenarios, and conclude that a
miscible water-alternating-gas (WAG) injection scheme is more effec-
tive than waterflooding or gas injection alone. In Section 5 we gather
the main conclusions and anticipate ongoing and future work.

2. The front-tracking algorithm

Front-tracking is an algorithm for constructing exact or approximate
solutions to hyperbolic systems of conservation laws with general initial
data (Cauchy problem):

∂tu + ∂xf(u) = 0, u(x, 0) = u0(x). (1)
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first interaction second interaction

Figure 1. Construction of a global solution by connecting local Riemann fans
depicted in the (x, t)-plane.

The algorithm starts from a piecewise constant function u0(x). Each
discontinuity defines a local Riemann problem, where each Riemann
problem again is connected to its nearest neighbors through common
constant states. All Riemann problems produce a similarity solution,
called a Riemann fan, which consists of constant states separated by
simple waves with finite speed of propagation. Neighboring Riemann
fans can therefore be connected through the common constant state
and this way define a global solution in space, which is well defined up
to the first time two simple waves interact. If the interacting waves are
discontinuities, i.e., shocks or contacts, the interaction defines a new
Riemann problem. By solving the Riemann problem and inserting the
corresponding local Riemann fan, the global solution can be extended
in time until the next interaction and so on (see Figure 1). If all simple
waves are discontinuities, we can hence have an algorithm for building
the global solution of the Cauchy problem.

For systems admitting continuous simple waves (rarefactions), one
can similarly construct an approximate solution to the Cauchy prob-
lem by the above algorithm. To do so, one simply approximates each
rarefaction fan by a set of constant states separated by space-time rays
of discontinuity. This can be done by sampling states along the integral
curve and assigning each discontinuity an appropriate wave-speed; e.g.,
the Rankine–Hugoniot velocity, or the eigenvalue at the left or right
state. Alternatively, one can discretize the wave speeds in the Riemann
fan and then obtain the corresponding constant states.

It is also common to perform some kind of data reduction to reduce
the number of tracked discontinuities. Generally, there are two reasons
for doing this: to prevent blow-up of the number of discontinuities (for
general systems, each wave interaction introduces weak waves in the
passive families), and to speed up the algorithm by reducing the number
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of fronts needed to be tracked. In the current implementation, we use
the following data reduction:

If |ul − ur| ≤ δ1,
ignore the Riemann problem;

else if δ1 < |ul − ur| ≤ δ2,
approximate the solution of the Riemann problem by a single
wave with wave-speed equal (νs(ul) + νc(ul))/2, where νs and
νc are the two eigenvalues of ul;

else if δ2 < |ul − ur|,
solve the full Riemann problem.

In addition, we ignore individual waves if they are sufficiently small.
That is, after the wave structure has been computed, the strength of
each wave Wj : uj −→ uj+1 is inspected and the wave is ignored by
setting uj := uj+1 if |uj − uj+1| ≤ δ1. In other words, in a solution of
type S-C-S, we may e.g., ignore the last S-wave if it is sufficiently weak,
and so on. Altogether, this data reduction introduces (small) errors
in the mass conservation that can be reduced by picking reducing the
threshold values δ1 and δ2. Similarly, potential mass-conservation errors
due to the sampling of rarefaction waves can be reduced by reducing
the sampling distance.

To sum up, the front-tracking algorithm consists of the following
three key points: solution of Riemann problems, approximation of Rie-
mann fans in terms of step functions, and tracking of discontinuities
(fronts). The algorithm is usually realized in the form of a spatially-
ordered list of front objects representing each discontinuity and the
associated constant states and some priority queue for keeping track of
colliding fronts. The front-tracking algorithm is outlined in more detail
in Algorithm 1. The basic data objects are the propagating fronts. Each
front object f has an associated left and right state, a point of origin,
a propagation speed, and a termination point. To track the fronts, we
use two lists, a spatial list F where the fronts are sorted from left to
right and a collision list C where front collisions are sorted with respect
to collision time in ascending order.

3. One-dimensional simulations

In this section we present several simple examples to demonstrate the
behavior of the front-tracking algorithm. We have chosen a simple
model with quadratic relative permeabilities:
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Algorithm 1 The front-tracking algorithm
Construct a piecewise constant initial function u0(x) = ui

Set F = {∅}, C = {∅}, and t = 0
For i = 0 : n

{fL, . . . , fR} = RiemannSolver(ui, ui+1, xi+1/2, t)
c = ComputeCollision(F, fL)
C = Sort({C, c})
F = InsertFronts({F, {fL, . . . , fR})

While (t ≤ T ) and C 6= {∅} do
(c, xc, tc) = ExtractNextCollision(C)
{fL, . . . , fR} = ExtractCollidingFronts(F,c)
{fL, . . . , fR} = RiemannSolver(fL→uL, fR→uR, xc, tc)
{cL, cR} = ComputeCollision(F, {fL, . . . , fR})
C = Sort({C, cL, cR})
F = InsertFronts(F, {fL, . . . , fR})

endwhile

krw(S) =


0 if S < Swc = 0.2,(

S − Swc

1− Swc

)2

otherwise,
(2)

krh(S) =


0 if 1− S < Shc = 0.2,

0.1
(

1− S − Shc

1− Shc

)
+ 0.9

(
1− S − Shc

1− Shc

)2

,
(3)

and viscosities given by the quarter-power rule:

µh(χ) =

[
1− χ

µ
1/4
o

+
χ

µ
1/4
g

]−4

, (4)

with
µw = 1.0, µo = 4.0, µg = 0.4.

3.1. Example 1

The first example is a simple Riemann problem at x = 0.1 with left
state ul = (0.8, 0) and right state ur = (0.2, 0.7). The left state lies
on the border of the region of residual oil, where both eigenvalues are
zero. In this case the R2 region covers the whole saturation triangle.
The solution is therefore of the form ul

C−→ um
S−→ ur and consists of a

composite S-rarefaction-shock followed by a C-contact. Figure 2 shows
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Figure 2. (Example 1) Approximate solutions for δu = 0.001 (upper left) and
δu = 0.01 (upper right), fronts in (x, t)-space (lower left), and solution in saturation
triangle (lower right).

approximate solutions obtained using two different tolerances for sam-
pling the rarefactions, δu = 0.01 and δu = 0.001. Whilst the accuracy
of the rarefaction is different, the shock and contact are represented
exactly in both simulations.

3.2. Example 2

The second example is a simple Riemann problem at x = 0.1 with left
state ul = (0.2, 0.7) and right state ul = (0.7, 0.2). The left state lies in
the L region with νs = 0 < νc = 1.25, and the right state lies in the L3

region. The solution is therefore of the form ul
S−→ u

(1)
m

C−→ u
(2)
m

S−→
ur and consists of a fast composite S-rarefaction-shock followed by a
C-contact and a slow S-rarefaction. Figure 3 shows two approximate
solutions obtained using δu = 0.01 and δu = 0.001.
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Figure 3. (Example 2) Approximate solutions for δu = 0.001 (upper left) and
δu = 0.01 (upper right), fronts in (x, t)-space (lower left), and solution in saturation
triangle (lower right).

3.3. Example 3

In this example we demonstrate the effects of data reduction. To this
end, consider the unit interval x ∈ [0, 1] with periodic boundary con-
ditions and an initial Riemann problem with ul = (0.1, 0.8) and ur =
(0.8, 0.1). We compute the solution up to time t = 0.75 in two ways
(using δu = 0.005):

− Using no data reduction (δ1 = δ2 = 10−12), the simulator solved
89 full Riemann problems.

− Using data reduction with δ2 = 0.01, 56 full Riemann problems
were solved and 19 Riemann problems were approximated by a
single wave.

Figure 4 shows the two approximate solutions along with plots of the
fronts in the (x, t) plane. We see that the data reduction has been ap-
plied to two different sorts of interactions: interaction of a S-rarefaction
and the C-contact emanating from (0, 0.3); and interaction of these
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Figure 4. (Example 3) Approximate solutions for δu = 0.005 using no data reduction
(left column) and approximating Riemann problems for which |ul − ur| < 0.01 by a
single wave (right column).

data-reduced waves and the secondary C-waves produced by the inter-
action of the S-rarefaction emanating from (0, 0) with the fast S-shock
emanating from (0, 0.3). The data reduction had little qualitative effect
on the approximate solution; the two solutions in Figure 4 are virtually
indistinguishable. However, by introducing the data reduction, the error
in mass conservation increases from 6.4 · 10−11 to 0.0028.

One should in general be careful to use (too much) data reduction
for cases with periodic boundary conditions, as errors are then fed
back into the system at the boundaries. For miscible flow problems,
one usually considers cases with inflow conditions at one boundary and
outflow conditions at the other. In this case, data reduction will have
a much weaker effect, as the (small) perturbations introduced by the
data reduction are transported out of the system.
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3.4. Example 4

Consider now a linear reservoir of length L = 2 initially filled with
a fluid of composition (0.3, 0). To produce the reservoir four different
strategies were proposed:

1. Continuous water injection.

2. Continuous solvent (gas) injection.

3. Alternating solvent and water, with periods ∆t = 0.2.

4. Alternating water and solvent, with periods ∆t = 0.2.

Simulations of the four strategies are shown in Figure 5 to Figure 8.
The second strategy (continuous injection of solvent) is best since it
uses the least time to produce the oil initially present. In this strat-
egy, the primary production mechanism is a strong front (C-contact)
between the initial oil and the injected solvent. The injection of water
produces a front (S-shock) that moves faster through the system, but
only displaces a fraction of the initial oil. For the two WAG strategies,
the presence of water effectively slows down the “perfect” displacement
caused by the leading solvent front (C-contact). While pure solvent in-
jection is the preferred strategy in this one-dimensional problem, WAG
injection may be more effective in realistic three-dimensional problems
(see Section 4.2).

The simulation of each of the two first strategies involved one Rie-
mann solution and wave interactions only at the outflow boundary,
whereas the simulation of each of the WAG strategies involved about
1700 wave interactions and 450 Riemann solutions.

3.5. Example 5

From a theoretical point of view, the piecewise constant approxima-
tion used in front-tracking may be inadequate for nonstrictly hyper-
bolic systems. Tveito and Winther (Tveito and Winther, 1995) showed
that numerical methods based on a Riemann solver (such as the ran-
dom choice method and front-tracking) may encounter difficulties for
Cauchy problems with initial data on the transition curve due to an
initial blowup of the total variation. In this example we show that
the miscible flow model has the same property: if initial data on the
transition curve T is approximated by a piecewise constant function,
the total variation of the numerical solution at time t = 0+ approaches
infinity as the number of constant states in the approximation of the
initial data increases.

frontmisc2.tex; 19/10/2006; 0:16; p.10



Multiphase first-contact miscible flows, 2. Front-tracking/streamline simulation 11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S−shock
S−rarefaction
C−contact

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4 oil
water
gas

Figure 5. (Example 4) Simulation of water injection. Left column: plot of fluid
composition in reservoir at times t = 0 : 0.25 : 2.0 from bottom to top. Right
column: fronts in (x, t)-plane and cumulative production curves.
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Figure 6. (Example 4) Simulation of solvent injection. Left column: plot of fluid
composition in reservoir at times t = 0 : 0.25 : 2.0 from bottom to top. Right
column: fronts in (x, t)-plane and cumulative production curves.
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Figure 7. (Example 4) Simulation of alternating solvent and water injection. Left
column: plot of fluid composition in reservoir at times t = 0 : 0.25 : 2.0 from bottom
to top. Right column: fronts in (x, t)-plane and cumulative production curves.
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Figure 8. (Example 4) Simulation of alternating water and solvent injection. Left
column: plot of fluid composition in reservoir at times t = 0 : 0.25 : 2.0 from bottom
to top. Right column: fronts in (x, t)-plane and cumulative production curves.
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Figure 9. Front tracking approximation of the saturation and concentration at
time t = 10−6 for the Cauchy problem with initial data on the transition curve.
The initial function is piecewise contant on a regular grid with ∆x = 1/25
(left) and ∆x = 1/100 (right).

Figure 9 shows the front tracking approximations at time t = 10−6

for two piecewise approximations with ∆x = 1/25 and ∆x = 1/100,
respectively. As can be seen in the figure, a piecewise constant initial
approximation changes the qualitative behavior of the solution. Each
local Riemann problem has a triangular path in phase space that de-
viates from the transition curve, resulting in nonphysical spikes. Even
though these spikes decrease as the magnitude of the jumps is reduced,
the total variation blows up as ∆x → 0 (Tveito and Winther, 1995).

From a computational point of view, this deficiency is not necessarily
important, unless the spikes prevail and pollute the solution at later
times. In Figure 10 we plot the evolution of the front-tracking solution
in phase space for ∆x = 1/25. The spikes are still present in the solution
at time t = 0.2, but have almost disappeared at time t = 0.5. As time
evolves, waves from neighboring Riemann problems interact and create
secondary waves, which also interact, and so on. For each interaction,
the total variation in the solution decreases, see Table I. The oscillations
decay faster with smaller ∆x.
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Figure 10. The evolution of the approximate solutions in phase space for times
t = 0.2 (left) and t = 0.5 (right) computed with front tracking using a
piecewise constant intial function with ∆x = 1/25.

Table I. Total variation of the front-tracking solution as a function of time
and discretization parameter ∆x = 1/N for the initial approximation.

t \ N 25 50 100 200 400

10−6 1.8561 2.3501 3.2175 4.4518 6.2497
0.10 1.8561 1.3441 1.3951 1.4236 1.4055
0.20 1.1245 1.1178 1.1237 1.1203 1.1204
0.30 1.0473 1.0403 1.0424 1.0428 1.0428
0.40 1.0164 1.0159 1.0153 1.0151 1.0150
0.50 1.0073 1.0062 1.0061 1.0061 1.0061
0.60 1.0058 1.0054 1.0054 1.0054 1.0054
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In summary, initial data on the transition curve may introduce
small-scale oscillations and an increased number of wave interactions,
but does not prevent the front-tracking algorithm from converging
to the true solution at later times. Moreover, if the front-tracking
algorithm is combined with repeated projections onto an underlying
grid, as will be the case for the streamline simulations discussed in the
next section, the numerical solution will leave the transition curve as a
combined effect of projections and local wave interactions.

4. Streamline Simulations

The front-tracking method can be used as part of a streamline solver
to simulate multidimensional miscible gas displacements. In a multidi-
mensional setting, one needs to solve the pressure equation,

∇ · vT = 0, vT = −k

φ
λT∇p, (5)

together with the multidimensional system of transport equations,

∂S

∂t
+ vT · ∇f = 0, (6)

∂C

∂t
+ vT · ∇

(
1− f

1− S
C

)
= 0. (7)

The pressure equation (5) and the system of transport equations (6)–
(7) are coupled due to the dependence of the total mobility λT on
the water saturation S and the overall solvent concentration C. The
streamline solver is based on an operator splitting strategy consisting
of the following two steps:

1. Pressure step. Water saturation and solvent concentration are frozen
and their values are assigned to each gridblock of a fixed (back-
ground) grid where the permeability and porosity are defined. The
(elliptic) pressure equation is solved using, for example, a finite dif-
ference method. The total velocity vT is computed, and streamlines
are then traced covering the domain of interest—usually emanat-
ing from injection wells and arriving at production wells. Individ-
ual streamlines are parameterized by the time-of-flight τ = τ(x)
that measures the travel time for a passive particle released at
the boundary (i.e., an injection well) to reach a point x in the
domain. In the simulator, streamline tracing and time-of-flight com-
putations are carried out using an analytic method developed by
Pollock (Pollock, 1988).
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16 R. Juanes and K.–A. Lie

2. Transport step. The three-dimensional transport equations are solved
as a set of decoupled one-dimensional equations along streamlines.
Values of water saturation and solvent concentration are mapped
from the background grid to the streamline grid, defining a Cauchy
problem on each streamline. Saturations and concentrations are
evolved in time by means of the front-tracking algorithm for a user-
specified time step. Once this target time is reached, the streamline
saturations and compositions are projected back onto the back-
ground grid.

Even if one assumes that the fluids are incompressible and there is no
volume change upon mixing of solvent and oil, the total velocity will
change due to changes in total mobility λT . As a result, one intro-
duces an approximation by freezing the streamlines between pressure
updates, and the time-of-flight coordinate really corresponds to the
parameterization at the beginning of the time step. The time step
between pressure updates is therefore limited by this consideration. An
improved treatment of the mobility coupling is possible and, recently, a
predictor–corrector streamline formulation was proposed (Osako et al.,
2004; King et al., 2005) that accounts for the continuously-changing
velocity field during pressure updates.

In any case, each transport step typically involves several thousand
streamlines, resulting in a very large number of calls to the Riemann
solver. A key point in obtaining an efficient solver is therefore to use the
data-reduction algorithm illustrated in Example 3 to reduce the number
of calls to the Riemann solver. Details about the implementation of
a front-tracking algorithm within a streamline simulation framework
are described elsewhere (see, e.g. (Bratvedt et al., 1993; Aarnes et al.,
2005; Lie and Juanes, 2005)), and will be omitted here.

4.1. Quarter five-spot simulations in a homogeneous
reservoir

We present results using the numerical method described above for the
simulation of pure solvent injection in a two-dimensional homogeneous
reservoir initially filled with 70% oil and 30% water. The injection and
production wells follow a repeated five-spot pattern, and the simula-
tions are carried out with grids representing one quarter of a pattern, in
which injector and producer are located in diagonally opposite vertices
of the grid (Figure 11).

The mathematical model does not contain diffusive terms and, there-
fore, the problem is physically unstable and mathematically ill-posed.
Unique numerical solutions are obtained because of the stabilizing dif-
fusive effects introduced by any numerical method. As a result, the
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Inj

Prod

Figure 11. Schematic of a 10 × 10 grid for the homogeneous quarter five-spot
problem.

numerical solution is to a large extent determined by the artificial
diffusion introduced by the computational scheme. This issue of grid
refinement and grid orientation effects has been studied at length in the
context of finite difference methods (Russell and Wheeler, 1983; Shubin
and Bell, 1984) and has motivated the application of high-order finite
difference schemes to the simulation of miscible displacements (Chen
et al., 1993).

In streamline simulation, the are several sources of numerical diffu-
sion:

1. Mapping from the finite difference grid to the streamlines to ini-
tialize a new transport step. The mapping error is proportional to
the gridblock size ∆x.

2. Mapping from the streamline grid to the background grid at the
end of the transport step. The mapping error is in fact a sampling
error, and decreases as the number of streamlines is increased.

3. Numerical diffusion along streamlines, which we avoid completely
by the use of a front-tracking algorithm.

Since the level of numerical diffusion depends on the grid resolu-
tion (gridblock size, time step between pressure updates, and number
of streamlines), the numerical solution is necessarily grid dependent.
The expectation, however, is that front-tracking/streamline methods
exhibit less grid dependence than traditional, first-order finite difference
methods (Glimm et al., 1983; Ewing et al., 1984). The issue of spatial
error and convergence in streamline simulation has been the subject of
recent investigations (Jimenez et al., 2005).
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Figure 12. Water saturation maps at t = 2000 days for the quarter five-spot problem
using increasingly refined grids.

In Figure 12 and Figure 13 we show maps of water saturation and
solvent concentration after 2000 days of injection, respectively, com-
puted on increasingly refined grids. The time step between pressure
updates was kept constant and equal to 50 days. The number of stream-
lines employed increases with the grid resolution, in order to guarantee
that the sampling error from the streamline grid to the background
grid is much smaller than the numerical diffusion due to the mapping
error from the background grid to the streamline grid. It is apparent
that the solution is grid dependent, because the stabilizing mechanism
is the diffusion due to mapping from background grid to streamline
grid, which is proportional to ∆x.

The evolution of the water, oil and solvent cuts (fractional flows at
the production well) are shown in Figure 14 for the different grids used.
As expected —and in accordance with the saturation and concentration
maps shown in Figures 12 and 13— the recovered fractional flows do not
display true convergence. These curves, however, are far less sensitive
to grid refinement than those obtained with first-order finite difference
methods (Chen et al., 1993).

Similar observations apply if we investigate the effect of the time step
between pressure updates. In this case, numerical diffusion is actually
increased as the time step is refined due to the increased number of
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25×25 50×50 100×100
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Figure 13. Solvent concentration maps at t = 2000 days for the quarter five-spot
problem using increasingly refined grids.

mappings between the streamline and finite difference grids. The water,
oil and solvent cuts computed on a 100×100 grid for time steps of 200,
100 and 50 days are shown in Figure 15. Although the solutions cannot
be regarded as truly converged numerical solutions, they are not very
sensitive to the choice of the time step.

Finally, we demonstrate that the front-tracking/streamline method
does converge with respect to the number of streamlines. In Figure 16
we show the produced fractional flow curves computed on a 100 ×
100 grid and a time step of 50 days between pressure updates, with
different number of streamlines. Clearly, the solutions converge as the
number of streamlines is increased. The reason is that the sampling
error from the streamline grid to the background grid is minimized,
and the numerical diffusion comes entirely from the forward mapping
from the background grid onto the streamlines.

4.2. Three-dimensional simulations in a heterogeneous
reservoir

We consider a three-dimensional rectangular reservoir model consisting
of a subsample (30× 110× 15 gridblocks) of the highly heterogeneous
shallow-marine Tarbert formation from the 10th SPE comparative so-
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Figure 14. Water, oil and solvent cuts for the quarter five-spot problem with
increasingly refined grids.

lution project (Christie and Blunt, 2001). The permeability varies six
orders of magnitude in the horizontal and ten orders of magnitude in
the vertical direction, see Figure 17. The porosity is strongly correlated
to the permeability. The reservoir is initially filled with 70% oil and
30% water, (S, C) = (0.3, 0), and for simplicity we neglect gravity and
assume incompressible flow.

To produce the reservoir, we introduce a five-spot well configuration
with one vertical injection well in the center and four vertical produc-
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Figure 15. Water, oil and solvent cuts for the quarter five-spot problem with
increasingly refined time step between pressure updates.

ers at the corners, and consider three different production scenarios:
(i) injection of pure water, i.e., (S, C) = (1, 0); (ii) injection of pure
solvent, i.e., (S, C) = (0, 1); and (iii) a WAG cycle where the injected
fluid composition is changed between pure water and pure solvent every
200 days, starting at day 400. In Figure 18 we show three-dimensional
maps of the solvent concentration C after 800 days of injection for the
pure solvent injection case (top) and the WAG injection case (bottom).
The solutions were obtained using 10,000 streamlines and a time step
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Figure 16. Water, oil and solvent cuts for the quarter five-spot problem computed
on a 100×100 grid with a time step of 50 days and increasing number of streamlines.

between pressure updates of 200 days for the water injection and solvent
injection cases, and 25 days for the WAG case.

We compare the predictions of the streamline/front-tracking simula-
tions with an industry-standard finite difference simulator, Eclipse 100
(Schlumberger, 2003). The first-contact miscible (FCM) option was
used with a value of the Todd and Longstaff parameter ω = 1 to
suppress the effects of viscous fingering. Eclipse was run in fully implicit
mode with adaptive time-step control, and using a nine-point stencil
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Figure 17. Horizontal permeability and well configuration for the Tarbert formation.

(in the areal dimension) to reduce grid orientation effects characteristic
of high mobility ratio miscible displacements. In Figure 19 we show a
comparison of the oil, water and solvent production curves for 2000 days
of production for all three scenarios. Eclipse results are plotted with
solid lines, and streamline/front-tracking results with dashed lines. The
agreement between the two codes is excellent for the water injection
case, and this is consistent with previous findings for immiscible three-
phase flows (Lie and Juanes, 2005). Although in fair agreement, the
finite difference and the streamline/front-tracking solutions show no-
ticeable differences for the WAG injection and solvent injection cases.
The finite difference solution predicts slightly earlier breakthrough of
the injected solvent to the production well, and slightly higher recovery
overall. A plausible explanation for this behavior is that the finite
difference scheme introduces numerical diffusion (not present in the
physical model), which causes the injected solvent to contact more of
the initial oil, thereby predicting a shorter travel time between injector
and producer as well as an enhanced sweep efficiency. Artificial diffusion
is also introduced in the streamline simulations every time the pressure
field is updated, due to the necessary remapping of saturations and
concentrations from the streamlines back to the finite difference grid.
On the other hand, the front-tracking method does not introduce any
numerical diffusion during the evolution of saturations and concentra-
tion along streamlines. For the time step between pressure updates
chosen, it seems apparent that the artificial diffusive effects of the
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Figure 18. Map of the solvent concentration in the Tarbert formation after 800 days
for continuous solvent injection (top) and water-alternating-gas injection (bottom).

streamline simulations are smaller than those of the finite difference
simulations.

Another important aspect of the streamline/front-tracking approach
is the potential for computational efficiency. In Table II we record the
run times for the streamline/front-tracking and Eclipse simulations, for
each of the cases considered (water, gas, and WAG injection). Although
the streamline front-tracking simulator should be regarded as a proto-
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Table II. CPU times for the streamline/front-tracking and Eclipse simulations.

Streamline/front-tracking Eclipse

(Pentium M, 1.6GHz, 512Mb) (Pentium V, 3GHz, 4096Mb)

Water injection 27min 3h 33min

Gas injection 3h 33min 6h 31min

WAG injection 8h 15min 14h 47min

type far from being a commercial implementation, if we account for
the difference in clock speeds, the streamline simulator is about 5 to 10
times faster for the cases studied.

An interesting practical observation from the simulations shown
above is that the recovery efficiency of the WAG scheme is higher than
that of either water injection and gas injection alone, even though no
attempt was made to optimize the WAG ratio or slug size.

5. Conclusions

In this series of two papers we have presented an efficient computa-
tional framework for the simulation of first-contact miscible gas in-
jection processes. The framework is based on three key technologies:
(1) a streamline method that decouples the three-dimensional transport
equations into a set of one-dimensional problems along streamlines;
(2) a front-tracking algorithm for the accurate (or even exact) solution
of general one-dimensional initial and boundary-value problems; and
(3) an analytical Riemann solver for the first-contact miscible system,
used as a building block in the front-tracking method.

The mathematical model and the analytical Riemann solver were
described in Part 1, and used here within a front-tracking/streamline
framework that exploits the markedly different character of the govern-
ing equations: an elliptic pressure equation, and a hyperbolic system of
transport equations. The integration of analytical Riemann solvers, the
front-tracking method, and streamline tracing, offers the potential for
fast and accurate prediction of miscible gas and WAG injection in real
reservoirs. In this paper, several representative examples are used to
illustrate the excellent behavior of the front-tracking method. In partic-
ular, we present an application of this computational framework for the
simulation of miscible flooding in a three-dimensional, highly heteroge-
neous formation, and demonstrate that a miscible water-alternating-gas
injection scheme is more efficient than waterflooding or gas injection
alone. Although this was not pursued here, this fast computational tool
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Figure 19. Rates and cumulative production curves for water, solvent and WAG
injection for the Tarbert formation. Eclipse results are shown with solid lines;
streamline/front-tracking results are shown with dashed lines.

could have been used in an optimization loop for designing optimal
WAG schemes (e.g., WAG ratio and slug size).

The application of the proposed computational approach to real
reservoir simulation studies requires several extensions. One important
aspect that was left out of the model here is the effect of viscous finger-
ing. This is relevant because solvent injection often leads to an unstable

frontmisc2.tex; 19/10/2006; 0:16; p.26



Multiphase first-contact miscible flows, 2. Front-tracking/streamline simulation 27

displacement process, in which the solvent fingers through, leading to a
lower displacement efficiency. A rather extensive mathematical analysis
of the effects of viscous fingering has recently presented in (Juanes
and Blunt, 2006) using the empirical viscous fingering model proposed
by Blunt and Christie (Blunt and Christie, 1993; Blunt and Christie,
1994). The new analytical solutions presented in (Juanes and Blunt,
2006) constitute the first step towards a complete Riemann solver for
first-contact miscible flow in the presence of viscous fingering.

Other physical processes, such as gravity, capillarity, compressibility,
volume change on mixing, and the ability to handle regions with differ-
ent relative permeability functions (Gimse and Risebro, 1992; Gimse
and Risebro, 1993) should also be incorporated into the streamline
simulator.
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