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Abstract

In water-based EOR methods, active chemical or biological substances are added to modify the
physical properties of the fluids or/and the porous media at the interface between oil and water.
The resulting displacement processes are governed by complex interplays between the transport of
chemical substances, which is largely linear and highly affected by numerical diffusion, and how
these substances affect the flow by changing the properties of the fluids and the surrounding rock.
These effects are highly nonlinear and highly sensitive to threshold parameters that determine sharp
transitions between regions of very different behavior. Unresolved simulation can therefore lead to
misleading predictions of injectivity and recovery profiles.

Use of higher-order spatial discretization schemes have been proposed by many authors as a
means to reduce numerical diffusion and grid-orientation effects. Most higher-order simulators re-
ported in the literature are based on explicit time stepping, and only a few are implicit. One reason
that fully-implicit formulations are not widely used might be that it becomes quite involved to com-
pute the necessary linearizations for modern high-resolution discretizations of TVD and WENO
type. Herein, we solve this problem by using automatic differentiation.

As an example of EOR, we consider polymer flooding, which involves complex and adverse
phenomena like adsorption in the rock, degradation and in-situ chemical reactions, shear thin-
ning/thickening, dead pore space, etc. Using a few idealized test cases, we compare and contrast
explicit and fully-implicit time stepping for a variety of high and low-resolution spatial discretiza-
tions.



Introduction

In many oil recovery processes, water is injected to maintain reservoir pressure and to force the oil
towards production wells. Water is less viscous than oil, thus the water front can develop viscous insta-
bilities and finger through the reservoir. As a consequence, much of the oil can be left behind as residual
or non-recoverable oil (Gao, 2011). Enhanced oil recovery (EOR) is essential to improve oil recovery
and to increase a field’s potential. In water-based EOR methods, the physical properties of the fluids and
the surrounding rock can be modified through active chemical or biological substances (Lake, 1989).
The transport of these substances is largely linear and therefore highly affected by numerical diffusion.
Furthermore, the subsequent effects on the fluids and the surrounding rock are highly nonlinear and
sensitive to threshold parameters that determine transitions between regions of very different behavior.
Thus, the displacement process is complex and challenging to simulate. Unresolved simulation can lead
to misleading predictions of injectivity and recovery profiles.

As an example of water-based EOR, we consider polymer flooding, which improves both the local
displacement efficiency and the areal sweep (Lake, 1989; Sorbie, 1991). Injecting dissolved polymer
increases the water viscosity and enhances its ability to push oil through the rock because of a more
favorable mobility ratio between the injected and displaced fluids. This effect is most pronounced when
mobility ratios are unfavorable, e.g., in reservoirs with heavy oil. Polymer molecules dissolved in water
can also improve the areal sweep efficiency by reducing channeling through high flow zones and through
viscous cross-flow between layers of different permeability. Water viscosity is strongly affected by
the polymer concentration, and it is therefore crucial to capture polymer fronts sharply to resolve the
nonlinear displacement mechanisms correctly. Polymer fronts will in the worst case be linear waves and
generally have significantly less self-sharpening effects than water fronts. This poses a challenge when
using standard low-order methods, whose large numerical diffusion tend to smear the polymer bank and
hence fail to accurately resolve the EOR effect. To overcome this challenge the use of higher-resolution
spatial discretization schemes have been discussed by many authors, e.g., Bell et al. (1989); Holing et al.
(1990); Khan et al. (1995); Kaibara and Gomes (2001); Chertock et al. (2009); Trangenstein (2009).
These discretizations are developed to maintain high-order accuracy on smooth parts of the solution and
at the same time minimize the creation of spurious oscillations around discontinuities.

The predominant approach to industry-standard reservoir simulation is to use a fully-implicit discretiza-
tion. On one side, this takes care of the coupling between fluid pressure and transport of phases and
components. More important, it presents an efficient means to treat short time constants coming from
high local flow rates (e.g., in near-well regions), cells with small pore volumes, etc. With a few ex-
ceptions, see e.g., Blunt and Rubin (1992); Liu et al. (1995), most higher-order simulators reported in
the literature are based on explicit time stepping. One reason why fully-implicit formulations are not
widely used together with high-resolution discretizations such as total variation diminishing (TVD) and
weighted essentially non-oscillatory (WENO) schemes, is that these introduce strong nonlinearities that
can be difficult to linearize correctly. To overcome this challenge, we herein propose to use automatic
differentiation, e.g., as implemented in the open-source MRST software (Krogstad et al., 2015; Lie,
2015; MRST, 2015b). This ensures that no analytical derivatives have to be programmed explicitly, and
this tool is important for implicit methods since it both reduces implementation time and risk of errors.

In this work, we first review several high-resolution spatial discretizations and discuss how these can be
combined with sequential explicit and fully-implicit time stepping. Through a series of idealized test
cases we then compare and contrast the resulting high-order schemes with standard first-order schemes
based on upstream mobility weighting. We also argue why implicit discretization is beneficial and
generally required. In particular, we show that using a second-order reconstruction (and improved spatial
quadrature) will counteract the numerical dissipation imposed by the temporal discretization in a fully-
implicit setting and ensure that we can maintain displacement profiles that are significantly sharper than
what can be computed with a first order scheme. When the dissipation introduced by the numerical
scheme is larger than the physical diffusion, grid-orientation errors will occur. This has been discussed
by several authors, see e.g., Chen et al. (1993). Using a high-resolution spatial discretization significantly
diminish these errors.
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Mathematical Model

Polymer flooding is described by an immiscible, two-phase model with three fluid components (oil,
water and polymer) that incorporates many of the fluid effects found in contemporary commercial simu-
lators. This includes adsorption of polymer onto the reservoir rock, reduction in permeability, mixing of
polymer in water, and compressibility of fluids and rock. Inaccessible pore space is left out for brevity,
but could have easily been included. Moreover, we do not model pseudoplastic effects of the diluted
polymer solution which may cause shear-thinning or shear-thickening behavior.

The conservation equations for oil, water, and polymer are given by

∂

∂ t

(
ραφsα

)
+∇ ·

(
ραuα

)
= 0, α = o,w (1a)

∂

∂ t

[
ρwφswc+ρr(1−φref)ā

]
+∇ ·

(
cρwuwp

)
= 0. (1b)

Here, ρα , sα , and uα denote density, saturation, and velocity of phase α , whereas c is the polymer
concentration. For simplicity, we assume that capillary pressure can be neglected so that we henceforth
can write po = pw = p and use p as a primary unknown along with s = sw and c. The function ā models
the amount of polymer adsorbed onto the rock, φ is the porosity, φref and ρr are the reference porosity and
reference density of the rock. Simple PVT behavior is commonly modeled through inverse formation-
volume factors bα(p) = bαρS

α , where ρS
α is the surface density of phase α . To avoid overloading the

notations, we will not insert those in the equations.

To form a complete model, we also assume that oil and water occupy the entire pore space, so + sw = 1,
and use Darcy’s law to relate the phase velocities uα of oil and water, and the velocity uwp of water
containing polymer, to gradients of pressure. For oil, this reads

uo =−K
kro(so)

µo

(
∇p−ρog∇z

)
, (2)

where K is the absolute rock permeability, kro and µo are the relative permeability and the viscosity
of oil, g is the gravitational constant, and z is the coordinate in the vertical direction. The adsorption
of polymer onto the rock will introduce a resistance to flow that reduces the effective permeability
experienced by water containing diluted polymer. This is modeled by dividing the absolute permeability
by a non-decreasing function Rk(c). Pure water and water containing diluted polymer are in general
not fully miscible but we will not model in detail this behavior and rather use the Todd and Longstaff
(1972) model that upscales the complex patterns of viscous fingers and models the viscosity change of
the mixture in terms of effective viscosities. Whereas the viscosity of oil is assumed to be constant, the
viscosity of the other two fluid components is assumed to depend upon the polymer concentration. This
gives us Darcy equations of the form,

uw =− krw(sw)

µw,eff(c)Rk(c)︸ ︷︷ ︸
λw(s,c)

K
(
∇p−ρwg∇z

)︸ ︷︷ ︸
vw(p)

, uwp =−
krw(sw)

µp,eff(c)Rk(c)︸ ︷︷ ︸
λwp(s,c)

K
(
∇p−ρwg∇z

)︸ ︷︷ ︸
vw(p)

, (3)

where we assume that the pressure and density are independent of polymer, and that the relative perme-
ability does not depend on mixing.

The degree of mixing of polymer into water comes in through the mixing parameter w ∈ [0,1] that
generally depends on the heterogeneity of the porous medium, the displacement scenario, etc. Let
µm = µm(c) be the viscosity of a fully mixed polymer solution, then the effective polymer viscosity is
defined as

µp,eff = µm(c)w
µ

1−w
p , (4)

where µp = µm(cmax). Furthermore, the viscosity of the partially mixed water is given by

µw,e = µm(c)w
µ

1−w
w .
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Finally, the effective water viscosity is found by interpolating linearly between the inverse of the effective
polymer viscosity and the partially mixed water viscosity

1
µw,eff

=
1− c/cmax

µw,e
+

c/cmax

µp,eff
. (5)

Numerical Discretization

To find a numerical approximation of s, c and p, the spatial domain is subdivided into a finite number
of finite volumes. In the following, we only consider regular Cartesian grids in two spatial dimensions,
and use the integral form of the conservation equations (1) to compute approximations to the discrete
cell averages,

qi(t) =
1
|Ωi|

∫∫
Ωi

q(x1,x2, t)dx. (6)

Here, q denotes one of the primary variables p, s, or c and Ωi = [(i1 − 1
2)∆x1,(i1 + 1

2)∆x1]× [(i2 −
1
2)∆x2,(i2 + 1

2)∆x2] is the grid cell number i = (i1, i2). Let Γi j denote the interface between cells i and
j having normal vector ni, j pointing from Ωi to Ω j. If we pick the water equation, for instance, the
discretized equation can be written in compact form as[

ρw(pi)φ(pi)si
]n+1

=
[
ρw(pi)φ(pi)si

]n− ∆t
|Ωi| ∑

|i− j|=1

∫
Γi j

[
ρw(p)λw(s,c)

]m
i j

(
vm

w ·n
)

i, j ds. (7)

Here, using |i− j| = |i1− j1|+ |i2− j2| = 1 ensures that the sum only runs over neighbors that share
a common face. The temporal discretization is specified by setting m = n for an explicit scheme and
m= n+1 for an implicit scheme. The integrand denotes the mass flux evaluated at the interface and how
to compute this term will be the focus for most of the following discussion. For brevity, we henceforth
drop the subscript w and superscript m.

First-order schemes

In our discretization of the mass flux, we treat pressure differently from saturation and concentration.
The pressure is assumed to be constant within each grid cell and to find the density at the interface Γi j,
we use a simple average, so that ρi j =

1
2(ρ(pi)+ρ(p j)). Likewise, for the flux vi, j = vi j ·ni, j, we use a

standard two-point approximation; that is, we write

vi, j ≈
[
T−1

i, j +T−1
j,i

]−1(
pi− pk), Ti, j =

Ki(xi j−xi) ·ni, j

|xi j−xi|2
, (8)

where xi = (xi1 ,xi2) denotes the centroid of cell Ωi and xi j is the centroid on Γi j. Summarizing, we have
introduced the following approximation of the pressure-dependence∫

Γi j

ρi j(p)λi, j(s,c)
(
v ·n

)
i, j ds≈ 1

2

[
ρ(pi)+ρ(p j)

]
vi, j

∫
Γi j

λ (s,c)ds. (9)

To evaluate the remaining integral, we need to make three different choices that will determine our
numerical scheme: (i) which quadrature rule to use for the integral in (9), (ii) how to reconstruct the
necessary point values at the quadrature points from the cell-averages si and ci, and (iii) how to ap-
proximate the mobility given point values that generally are different on opposite sides of the interface
Γi j.

To get a first-order scheme, it is sufficient to use the midpoint rule for the integral and assume a constant
reconstruction so that we get one-sided point values s−i, j = si and s+j,i = s j, and similarly for the concen-
tration. Given these values, there are several ways we can evaluate the integrand. Herein, we use simple
upstream evaluation for all our schemes, i.e.,

λi, j(s,c) =

{
λ (si,ci), if vi, j ≥ 0,
λ (s j,c j), otherwise.

(10)
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Solving the discretized systems

If we now plug (9) and (10) into (7), and repeat the same derivation with the obvious modifications for
the oil and the polymer equations, we end up with a system that can be written on residual form as

F(y) = 0, (11)

where y = [p,s,c] contains all the unknown cell-averaged values for pressure, saturation, and concentra-
tion for the new time-step. Even if we use an explicit time integration, this system is nonlinear because of
the fluid and rock compressibilities. To solve the system, we use a standard Newton–Raphson method:
Assume that we have an initial guess y0, we write y = y0 +δy and solve

0≈ F(y0)+Jδy, (12)

where J = dF/dy, to determine the increment δy. This process is repeated until the residual F or the
increment δy is sufficiently small in some suitable norm. This process exhibits quadratic convergence
under certain requirements on the smoothness and differentiability of F. These requirements cannot be
satisfied for an arbitrary time step ∆t. For the explicit time discretization, the scheme is only stable if the
time step satisfies a standard CFL condition. Likewise, it is common to introduce some mechanism in
the implicit scheme that cuts the time step until a satisfactory convergence is achieved; we will return to
this discussion in the numerical experiments. Another practical challenge with (12) is how to compute
the Jacobian matrix J, which may contain quite intricate nonlinear dependencies, in particular when
the scheme is extended to higher order. Analytical derivation and subsequent coding of the Jacobian
can be very time-consuming and prone to human errors. To alleviate this problem, we propose to use
automatic differentiation as implemented in the open-source MRST software (Krogstad et al., 2015; Lie,
2015). The key idea of automatic differentiation is that the computation of the residual F can be broken
down to a (nested) sequence of elementary function evaluations. Each elementary function evaluation is
simple to differentiate analytically and can easily be coded into a software using operator overloading
so that the overloaded function evaluation computes the function value and its derivative(s). Nested
function evaluations are taken care of by using the chain rule. As a result, all we need to do is to code
the evaluation of the residual, and then the software calculates J automatically. We will therefore not
discuss the structure and computation of J in more detail for any of the schemes.

Second-order slope-limiter schemes

We start by introducing the following fourth-order Gaussian quadrature rule to evaluate the edge integral
in (9),

1/2∫
−1/2

λ (x)dx =
1
2

[
λ

(
−1

2
√

3

)
+λ

(
1

2
√

3

)]
. (13)

Then, the only remaining part is to describe how to reconstruct the necessary one-sided point values. Us-
ing a piecewise linear reconstruction gives second-order formal accuracy on smooth solutions, quadratic
gives third-order, and so on. Most reconstructions found in the literature are introduced for a scalar
entity, and it is tacitly assumed that they can be extended in a component-wise manner to vector-valued
entities. Another question is which quantities to reconstruct. Herein, we have chosen to reconstruct the
primary physical variables s and c in the integration points and then use these to evaluate the mobility at
the interface.

For a second-order scheme, a linear reconstruction is given by

q̃(x) = qi +σ
1
i (x1− xi1)+σ

2
i (x2− xi2), (14)

where the slopes σ1
i and σ2

i can be estimated from the discrete difference in cell-average values be-
tween neighboring cells. To avoid creating spurious oscillations near discontinuities, the slopes σi must
be limited through a nonlinear dissipation mechanism that adds stabilizing numerical diffusion near
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discontinuities while preserving formal order on smooth parts. This is achieved through so-called slope-
limiters that were first introduced in a series of papers by van Leer (1974, 1977). Let Φ be a nonlinear
averaging function that is capable of choosing the slope. This function is called a limiter and is applied
independently in each spatial direction. Given Φ, the slope σ1

1 is set to

∆x1σ
1
i = Φ

(
qi−qi−(1,0),qi+(1,0)−qi

)
. (15)

Herein, we will consider three different limiters,

Φ
mm(a,b) =

1
2
(
sgn(a)+ sgn(b)

)
min
(
|a|, |b|

)
, (16)

Φ
sb(a,b) =

1
2
(
sgn(a)+ sgn(b)

)
max

(
min(θ |a|, |b|), min(|a|,θ |b|)

)
, (17)

Φ
vL(a,b) =

(
b+a

|b|
|a|
)
/
(
1+
|b|
|a|
)
. (18)

The minmod limiter Φmm compares the upwind and downwind slopes and chooses the one that is smaller
in magnitude. If the slopes have different signs, the slope is set to zero. This gives a robust limiter that
adds as much numerical dissipation as possible, while keeping second-order accuracy (Sweby, 1984).
The superbee limiter Φsb (Roe, 1986) represents the other extreme end in the sense that it chooses the
slope to be as steep as possible and hence introduces very little numerical dissipation. When used as
part of an implicit discretization, both limiters have the disadvantage that they are not smooth functions
of their arguments: Φmm has one kink, whereas Φsb has three. These kinks will adversely affect the
Newton–Raphson solver used to solve the system of discrete equations. As a third alternative, we have
therefore included the smooth van Leer limiter ΦvL, which reconstructs steeper slopes than the minmod
limiter but gentler slopes than the superbee limiter.

WENO schemes

The main design principle behind the slope-limiter technology is to ensure that the resulting schemes
give approximate solutions having diminishing total variation when applied to a scalar equation. This
principle cannot be extended beyond second order and instead one tries to construct an essentially non-
oscillatory (ENO) solution, i.e., a solution in which oscillations do not grow significantly with time.
To understand the key idea, we will look at a simplified example. Assume that we want to reconstruct
a function q(x) inside a cell i based on cell averages qi−1, qi and qi+1. To this end, we define two
linear polynomials q±(x) based on qi and qi±1 and a quadratic polynomial qc(x) based on all three cell
averages. The classical ENO idea (Harten et al., 1987) is to choose the one of the three polynomials that
gives the least oscillatory solution. To aid this choice, the method uses a measure of local smoothness
of the given data that is based on divided differences. Whereas this switching of stencils seems to work
well for explicit schemes, it introduces discontinuity in the Jacobian matrix for implicit schemes and
may cause severe flip-flopping and general lack of convergence in the nonlinear iterations (Knudsen,
2014). In the so-called weighted ENO (WENO) schemes (Liu et al., 1994), the key idea is to instead use
a convex combinations of the three polynomials w−q−(x)+wcqc(x)+w+q+(x), where w−+wc+w+ =
1. The weights w are designed such that they reproduce the optimal polygonal approximation if the
solution is smooth inside the overall stencil, but tends to zero if the corresponding local stencil contains
a discontinuity.

Herein, we use a simplified version of the WENO idea based on four linear reconstructions, which gives
a scheme that is formally only second-order accurate. To this end, let us define a polynomial

qNE(x) = qi +σ
E
i (x1− xi1)+σ

N
i (x2− xi2), σ

E
i =

qi+(1,0)−qi

∆x1
, σ

N
i =

qi+(0,1)−qi

∆x2
, (19)

and a corresponding smoothness indicator,

β
NE
i = 1

4

[(
∆x1σ

E
i
)p

+
(
∆x2σ

N
i
)p

+ ε
]−`

, (20)
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where ε is a suitable small parameter. Here, we set ε = 10−7 and ` = 2. Similar polynomials and
smoothness indicators are defined for NW, SE, and SW. Then we can define the weights as wNE =
β NE/(β NE + β NW + β SE + β SW ), and use the following polynomial to reconstruct point values at the
integration points,

qi(x) = ∑
ν=NE,NW,SE,SW

wνqν(x). (21)

In our implicit schemes, we have chosen to define the nonlinear weights based on the unknown solution
at time n+1. This contributes to enhance the nonlinearity of the resulting scheme. An alternative, and
possibly more efficient, approach would be to define the nonlinear weights based on the previous iterate
or the values from the previous time step; see e.g., Gottlieb et al. (2006).

Numerical Experiments

In this section, some numerical experiments are performed to compare and contrast the various schemes
described above. Unless stated otherwise, we assume a homogeneous, isotropic permeability, which has
been quite arbitrarily set to 100 md and the porosity is taken to be 0.2. In all test cases below, we use the
fluid data described in Figure 1. The densities of oil and water are taken to be 962 and 1080 kg/m3, the oil
and water viscosity are 5 and 0.48 cP, and a Todd–Longstaff mixing parameter of w = 1 corresponding
to full mixing is used in all experiments. Reduction in permeability proved to have a small effect on our
numerical experiments, and without lack of generality, we have therefore set Rk(c) = 1 for simplicity
in (3). In some of the examples, we report computational times to indicate the computational cost of
the various schemes. These numbers are likely afflicted by many artifacts resulting from our relatively
simple implementation in MATLAB and should therefore merely be interpreted as rough estimates of
relative performance.

Viscosity multiplier
c µm(c)/µw
0 1
0.5 3
1.0 6
1.5 12
2.0 24
3.0 48

Adsorption
c ā(c)
0 0
0.25 0.000012
0.50 0.000016
0.75 0.000019
1.00 0.000020
1.25 0.000021
1.50 0.000023
1.75 0.000025
3.00 0.000025

Compressibility
Phase Value [bar−1]
rock 3.00 ·10−5

water 4.28 ·10−5

oil 6.65 ·10−5
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

s

krα

krw
kro

Figure 1 Fluid parameter used for the numerical experiments. The relative permeabilities krα are
formed by linear interpolation of tabulated data.

1D example with high porosity contrast

We start by considering a simple one-dimensional case to illustrate key ideas and motivate the use
of implicit discretization. Water with polymer is injected at a given rate from the left (x = 0) and
pressure is imposed on the right (x = L). The grid has 100 equally spaced cells. By using a 1D model
and neglecting compressibility, we can rewrite the flow equations in Buckeley–Leverett form, which
somewhat simplified reads

∂

∂ t

[
s

sc+a(c)

]
+

u
φ

∂

∂x

[
f (s,c)

m(c) f (s,c)

]
= 0, f (s,c) =

λw(s,c)
λw(s,c)+λo(s)

,
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Figure 2 On the left, illustration of the CFL number for the s-waves (solid lines) and c-waves (dashed
lines) as functions of saturation for two polymer concentrations, c= 0 and c= 1. The apparent piecewise
linearity of the CFL curve comes from the fact that our data parameters are tabulated. We observe that
there are several local extrema, meaning that we have a fractional flux function with several inflection
points. The left plot shows the fractional flow curve, where a higher polymer concentration results in a
translation of the curve to the right, so that water break-through is delayed and recovery improved.
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Figure 3 Plot the of saturation and concentration at the last time step, zoom on the front region, which
has reached half of the simulation domain. The values are plotted for three different time discretization
step, ∆t equal to 0.01 days (solid line), 1 day (dash-dot), and 3 days (dashed)

where the total flux u is constant and m(c) denotes the ratio µw,eff/µp,eff. This hyperbolic system, Qt +
u
φ

F(Q)x = 0, has two families of waves, an s-wave in which only the water saturation changes, and
a c-wave in which both water saturation and polymer concentration vary. Let rs and rc denote the
corresponding eigenvalues of F ′(Q). Then, we can estimate the CFL number of the wave families as
(see Figure 2)

,CFLs =
u∆t
φ∆x

rs(s,c), CFLc =
u∆t
φ∆x

rc(s,c).

Figure 3 reports approximate solutions computed by the explicit and implicit schemes with different
time steps. For the explicit scheme, a time step of three days exceeds the CFL limit by far and hence
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we get an unstable, oscillatory solution. A time step of one day is slightly above the CFL limit and
hence we get a slight instability near the water front but very sharp resolution of the polymer front. By
decreasing the time step further, we get rid of the instability but smear the polymer front. As expected,
no instabilities are observed for the implicit scheme. However, only the second-order accurate solver
captures the trailing polymer front.

Problems with uniform petrophysical variables are seldom encountered in real life, and to illustrate why
implicit discretization is more useful in practice, we consider a conceptual heterogeneous problem in
which the porosity is reduced by a factor M in the interval [0.1L,0.2L]. To analyse this case, we transform
to time-of-flight coordinates (τ, t), where τ = xφ/u, and henceforth assume that u = 1 without loss of
generality. To compare how the low-porosity region affects the explicit and implicit discretizations,
we consider a simple advective wave, qt + qτ = 0, for which the effective numerical equations for the
first-order schemes are given as qt +qτ =

1
2(∆τ±∆t)qττ , with positive sign for the implicit scheme and

negative sign for the explicit scheme. This means that a discontinuity propagating over a period t in
time will be smeared to a width O

(√
t(∆τ±∆t)). Using a hand-waving argument, we can say that the

total numerical smearing experienced by a linear discontinuity as it propagates through the domain is
proportional to

9φ

10
(
∆xφ ±∆t

)
︸ ︷︷ ︸
high-porosity region

+
φ

10M

(
∆xφ

M
±∆t

)
︸ ︷︷ ︸

low-porosity region

.

The numerical smearing is clearly dominated by the high-porosity region for both schemes. For the
explicit scheme, the time-step is restricted by the fast flow in the low-porosity region, i.e., ∆t ∝ φ∆x/M.
Reducing the porosity by a factor M means that we not only are forced to take M times as many time
steps, but also end up with significantly more numerical smearing. With implicit temporal discretization,
the numerical dissipation decreases with decreasing time step. However, since the overall smearing is
dominated by the high-porosity region, we can safely use a large CFL number in the low-porosity region
and instead choose time step so that we achieve acceptable smearing in the high-porosity region. This
will drastically reduce the number of time steps, and this gain in computational effort can enable us to
introduce high-resolution spatial discretization and/or improved spatial resolution.

In Figure 4, we consider a case with pure water flooding simulated with a stable time step and a larger
time step that is stable in the high-porosity region but exceeds the CFL condition in the low-porosity
region. As expected, oscillations appear in the latter case but disappear as time evolves, in part because
of the self-sharpening inherent in the non-convex flux function and in part because of the much stronger
numerical smearing experienced once the oscillations propagate into the high-porosity region. We hasten
to emphasize that a CFL number above the stability limit was used for illustration purposes only, and
that we by no means try to recommend this sort of dangerous practice. With the implicit scheme, we
get stable solutions for both time steps, as expected. Figure 4 also shows that the displacement profile is
somewhat sharper for smaller time step, but the improved resolution is hardly significant.

Increasing the order of the discretization naturally improves the solution. This is shown for the implicit
scheme in Figure 5 for a case of polymer flooding. In Table 1, we also report a comparison of the explicit
and implicit schemes in terms of performance. Since the explicit schemes need small time steps to satisfy
the CFL condition in the low-porosity region, they introduce a large amount of numerical dissipation in
the high-porosity regions. Hence, both implicit schemes give almost as sharp displacement fronts as the
explicit scheme, whereas the gain in computational cost is a factor five for the standard upwind method
and a factor two for the high-resolution method.

Quarter five-spot: time stepping

In the next example, we consider the classical quarter five-spot test problem, which consists of an injec-
tor and a producer placed diagonally opposite of each other in a square domain with no-flow conditions
set on all boundaries. Injection is modeled as a source term with constant injection rate and production
is modelled as a boundary condition with fixed pressure. Figure 6 shows solutions just after water break-
through computed with the first-order scheme (constant reconstruction) and with minmod, van Leer, su-

ECMOR XV – 15th European Conference on the Mathematics of Oil Recovery
29 August – 1 September 2016, Amsterdam, Netherlands



x

0

0.8

s
a
tu

ra
ti
o
n

Explicit Scheme

x

0

0.8
Implicit Scheme

t = T

t = 5T

t = 7.5T

0.1L 0.2L

t = T

t = 5T

t = 7.5T

0.1L 0.2L

Figure 4 Comparison plots for the case with two region with different porosity (φ = 0.01 for x ∈
[0.1L,0.2L] and φ = 0.2 otherwise). Two different time steps are used, ∆t = 0.01 day (solid lines)
and ∆t = 0.1 (dashed lines). For simplicity, no polymer is considered in this case
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Figure 5 Comparison between implicit high-order (red) and low-order (black) schemes for time steps
equal to ∆t = 0.1 day (solid line) and ∆t = 1 day (dashed line).

Table 1 Comparison between implicit and explicit methods for the case with two different porosities. We
give the total number of linear solves required for each simulation as well as the total simulation time.

Simulation case Linear solves CPU time
∆t = 0.1 (day), explicit, 1st order 15840 513s
∆t = 0.1 (day), explicit, 2nd order 16308 688s
∆t = 1 (day), implicit, 1st order 3018 117s
∆t = 1 (day), implicit, 2nd order 2529 326s
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constant: 145.8827 sec minmod: 178.2367 sec vanleer: 182.9717 sec superbee: 185.4237 sec weno: 226.972 sec

constant: 14.7116 sec minmod: 50.9718 sec vanleer: 63.5657 sec superbee: 109.0581 sec weno: 91.6855 sec

Figure 6 Comparison of saturation profiles on a quarter five-spot problem computed by explicit schemes
with 1600 time steps and implicit schemes with 50 time steps on a uniform Cartesian grid with 50×50
cells. Notice how the leading water front is sharper resolved than the trailing polymer front.

perbee, and WENO reconstructions. The explicit version uses 1600 equal time steps, which corresponds
roughly to a unit CFL number. In this scheme, the phase fluxes are computed based on saturation and
concentration values reconstructed at the beginning of the time step, whereas the pressure-dependence
of the total Darcy flux is treated implicitly. Our computational setup includes fluid compressibility and
thus we generally end up with nonlinear residual equations. In IMPES and other similar sequential so-
lution strategies, the pressure (and total Darcy fluxes) and the saturation/concentrations are computed in
sequence in separate steps. Here, we solve the fully coupled residual system directly using a Newton
method with a residual tolerance set to 10−3 times the maximum strength of the source sink. As a result,
the explicit schemes typically need to perform more than one nonlinear iteration in the first time steps
to account for the initial pressure transient. Figure 7 reports the number of iterations required by all five
schemes. The first-order scheme requires three iterations in the first step, two iterations in the next 28
steps, and a single iteration thereon. When second-order reconstructions are added, the overall system
becomes more nonlinear and coupled, and two iterations are required for a longer initial period. The
plots indicate that the sharper a scheme resolves discontinuities, the longer the period will be before
numerical diffusion makes the displacement profiles so smooth that the Newton iterations converge in
one iteration. The superbee limiter gives steeper slopes than van Leer, which in turn gives steeper slopes
than minmod. WENO will generally not construct very steep slopes at discontinuities unless we increase
the exponent ` in the smoothness indicator. (Notice that WENO→ ENO as `→ ∞.)

For the implicit schemes, we use a time-step control built into MRST. In its simplest form, this time-step
controller takes a set of time step targets (control steps) and desired number of nonlinear iterations as
input. Here, we have used five iterations as our target and a step target that consists of 50 equally spaced
time steps. To avoid a large initial error, the first implicit time step is replaced by a ( 1

32 ,
1

32 ,
1

16 ,
1
8 ,

1
4 ,

1
2 )

subdivision to form a gradual ramp-up. To stay within the upper limit of five nonlinear iterations, the
controller may reduce the time step so that any control step is chopped into several substeps. If several
substeps have been computed with less than five iterations, the controller will try to increase the time step
so that the iterations increase towards five again. Figure 8 reports the substeps and the corresponding
number of iterations for each of the five implicit schemes, whereas Figure 9 shows the corresponding
cumulative number of iterations. For the first-order scheme, the first step of the ramp-up sequence
requires five iterations, whereas the remaining steps only need three iterations or less. The scheme
is therefore able to complete all controls steps without any chopping. With the minmod limiter, we
get the same behavior for the first three ramp-up steps. In the fourth step, the number of iterations
increases to four and hence the fifth step is chopped slightly, giving a tiny substep that is hardly visible
on the figure. In the sixth and last ramp-up step we therefore get a succession of gradually larger
substeps. However, the scheme is not yet able to take the full control step and keeps chopping the
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Figure 7 Number of iterations during the first 100 time steps for the explicit schemes in Figure 6.
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Figure 9 Cumulative number of nonlinear iterations for the five implicit schemes from Figure 6.

control steps in two until we reach approximately two days. The WENO and van Leer schemes have
similar behavior; both are smoother than the minmod limiter (which has one kink) and hence require
less iterations throughout the simulation period, except in the last time step, where the van Leer scheme
fails to converge as water breaks through in the producer. For the highly compressive superbee limiter,
which has three kinks, the Newton solver struggles more and altogether requires 2.4 as many iterations
in total compared with the minmod limiter. The number of iterations, and the fact that computing a
second-order reconstruction is more expensive than the constant reconstruction, explains the difference
in runtimes for the first and second-order schemes. The high runtime for the WENO scheme is explained
by an inefficient implementation that contains a large number of redundant function evaluations.

Quarter five-spot: spatial and temporal convergence

Figure 6 confirms that using second-order reconstruction and improved spatial quadrature gives more
accurate solution profiles for the explicit schemes, as expected. For the implicit schemes, the improved
resolution is somewhat masked by increased numerical dissipation introduced by the large time steps,
but also in this case the leading water front and the following chemical front are resolved more sharply
by the second-order schemes. To investigate the spatial accuracy more systematically, Figure 10 shows
the result of a grid refinement study in which we compare the implicit first-order scheme with the corre-
sponding second-order scheme using the minmod limiter. The plots show that as a simple rule of thumb,
the second-order scheme provides (at least) as good resolution as we would get from the first-order
scheme on a 2× 2 refined grid with twice as many time steps. Figure 11 reports a similar refinement
study with respect to the time step. Here, we see that the implicit discretization contributes significantly
to numerical dissipation; compare the explicit solution with the implicit solution for CFL=1. We also see
that we can safely increase the CFL number for the implicit scheme to one order of magnitude beyond
the stability limit for the explicit scheme before the increased numerical dissipation causes a significant
widening of the computed displacement fronts.

Five spot: grid-orientation errors

The idealized quarter five-spot test case corresponds to an infinite reservoir produced by a symmetric
pattern consisting of four injectors surrounding a producer that is repeated to infinity in each direction
as illustrated in Figure 12. With a standard two-point spatial discretization, as used in the first-order
scheme, any displacement front will preferentially move along the axial directions of the grid and this
will introduce grid-orientation errors. To assess how increasing the order of the scheme affects these
errors, we compare solutions to the five-spot problem computed using the quarter five-spot and the
rotated five-spot setups shown Figure 12. To get comparable spatial resolution, the rotated grid is set to
have approximately twice as many grid cells, i.e.,

√
2 as many grid cells in each axial direction. In the

original setup, the preferential flow along the grid axes will tend to overestimate the frontal movement
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Figure 11 Convergence study for the implicit minmod scheme on a 50× 50 grid with decaying time
steps. The solutions are sampled along the x-axis and compared with a solution computed by the explicit
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Figure 12 Well setup for the five-spot test cases used to study grid-orientation errors.
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into stagnant regions and underestimate the movement of the displacement front in the high-flow zones
along the diagonal by smearing the tip of the finger. For the rotated setup, the preferential flow direction
is from injector to producer and hence the two-point scheme will tend to overestimate the movement of
the front in the high-flow zone and underestimate its movement towards the stagnant zones. Figure 13
confirms that using a second-order scheme counteracts these grid-orientation errors in the sense that
the solutions are almost identical for the original and rotated computational setups. Since the underlying
grids are uniform Cartesian, the solutions computed on the original and rotated geometries will converge
towards each other with increased spatial (and temporal) resolution.

Channelized medium

In the last test case, we consider a model of a channelized 500× 1000 m2 reservoir represented on
a uniform 100× 100 grid. Mock-up petrophysical data are generated by sub-sampling the “Strebelle
2002” training image from (Mariethoz and Caers, 2016) and assigning a porosity of 0.3 or 0.2 and a
isotropic permeability of 1 darcy or 100 md to the foreground and background cells, respectively. This
creates a mild heterogeneity effect so that the displacement front will move somewhat faster in the
channel than in the background. Water with polymer is injected at the south edge of the reservoir at a
rate proportional to the porosity in each cell and fluids are produced at the north edge.

Figure 14 shows approximate solutions computed by the implicit and explicit schemes with constant,
minmod, van Leer, and WENO reconstructions. For the explicit schemes we use a time step of 4 days to
get to the final simulation time of 5 years, and for the implicit schemes we used control step of 100 days
with a ramp-up as discussed above. Results are not shown for the superbee limiter since we were not
able to get converged solutions with the implicit version of this scheme unless the time step was chosen
close to the stability limit for its explicit counterpart.

First of all, we observe that using a second-order reconstruction gives better resolution for the implicit
scheme than for the first-order explicit scheme. For the implicit scheme it also worth noting that the
numerical smearing for a linear wave is proportional to the CFL number at which this wave propagates.
That is, whereas slow waves experience higher numerical smearing than fast waves in explicit schemes,
they experience lower numerical smearing than fast waves for implicit discretizations. This means that
the implicit schemes essentially will smear the polymer front more inside than outside the channel. The
case is the opposite for the explicit schemes. The water front, on the other hand, propagates faster
than the polymer front and should thus be most severely affected by numerical smearing for high CFL
numbers, but this front has (more) self-sharpening that tends to counteract the smearing.

Conclusions

In this work, we studied explicit and fully implicit schemes with second-order spatial accuracy applied
to polymer flooding. We found that it is (relatively) simple to implement such schemes using automatic
differentiation and that the resulting schemes work well with standard techniques for time-step control.
The use of a high-resolution spatial stencil improves the accuracy both for smooth and discontinuous
parts of the solution and reduces grid-orientation effects. We also presented a simple illustrative case,
as well as several numerical experiments, that all demonstrate that implicit time discretizations are more
suitable than explicit time integration. We expect that this will be even more evident for 3D cases with
strongly heterogeneous geology. To make high-resolution methods amenable for implicit discretiza-
tions, preference should be given to spatial stencils and nonlinear limiter functions that are as smooth as
possible to avoid exacerbating the nonlinearity of the implicit flow equations.
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borders, whereas the red dotted lines indicate the cross-sections shown in the lower half of the figure.
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