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Abstract

For the past 10 years or so, a number of so-called multiscale methods have been developed as
an alternative approach to upscaling and to accelerate reservoir simulation. The key idea of all these
methods is to construct a set of prolongation operators that map between unknowns associated with
cells in a fine grid holding the petrophysical properties of the geological reservoir model and un-
knowns on a coarser grid used for dynamic simulation. The prolongation operators are computed
numerically by solving localized flow problems, much in the same way as for flow-based upscaling
methods, and can be used to construct a reduced coarse-scale system of flow equations that describe
the macro-scale displacement driven by global forces. Unlike effective parameters, the multiscale
basis functions have subscale resolution, which ensures that fine-scale heterogeneity is correctly ac-
counted for in a systematic manner. Among all multiscale formulations discussed in the literature,
the multiscale restriction-smoothed basis (MsRSB) method has proved to be particularly promis-
ing. This method has been implemented in a commercially available simulator and has three main
advantages. First, the input grid and its coarse partition can have general polyhedral geometry and
unstructured topology. Secondly, MsRSB is accurate and robust when used as an approximate solver
and converges relatively fast when used as an iterative fine-scale solver. Finally, the method is for-
mulated on top of a cell-centered, conservative, finite-volume method and is applicable to any flow
model for which one can isolate a pressure equation. We discuss numerical challenges posed by
contemporary geomodels and report a number of validation cases showing that the MsRSB method
is an efficient, robust, and versatile method for simulating complex models of real reservoirs.



Introduction

The term ’multiscale method’ denotes a variety of methods that all try to model and simulate phenomena
that are governed by a wide range of spatial and/or temporal scales. Many engineering problems are
characterized by scale separation in the sense that one can easily identify fast, intermediate, and slow
processes and/or processes that take place on the macro, meso, and microscale. Multiscale formulations
have proved to be particularly efficient for this type of problem by offering a systematic framework
for incorporating subscale effects in a manner that is consistent with the physical models governing
the behavior on the unresolved scale. Multiphase flow in subsurface rock formations is an example
of multiscale processes that do not have apparent scale separation. Modeling processes without scale
separation is in many aspects more challenging than modeling problems with scale separation because
nonlocal information is needed to compute representative effective properties.

Large (local) variations in the characteristics of sedimentary rock formations are the primary cause of
multiscale behavior in reservoir modeling. These variations can be observed on all scales, from the
micrometer scale of individual pores and pore throats to the kilometer scale of reservoirs. Naturally,
a single model cannot include all scales. However, state-of-the-art methods for reservoir characteriza-
tion enable geologists and reservoir engineers to routinely generate complex, high-resolution geological
models having grid cells in the range from centimeters to decimeters in the vertical direction and meters
to tens of meters in the horizontal direction. This type of resolution is required to accurately account for
structural elements like faults, fractures, joints, and deformation bands and stratigraphic characteristics
like channels, clinoforms, lobes, shale and mud drapes, etc.

Thanks to a tremendous increase in computational power, which has been accompanied by a similar im-
provement in computational methods (massive parallelization, multilevel iterative solvers, precondition-
ing methods, etc.), it is today possible to routinely run reservoir simulations with millions of unknowns
(DeBaun et al., 2005; Fjerstad et al., 2007). However, direct simulation of high-resolution geological
models remains a challenge, and contemporary simulators are not yet fully able to utilize all static data
and the vast amount of dynamic data that gradually has become available. For many years, there has
therefore been a call for a radical change in simulation technology that could offer the computational
speedup necessary to enable the oil industry to make a step-change in its modeling processes.

In the following, we will discuss a set of novel two-level solvers designed especially to compute flow
and transport of one or more fluid phases in heterogeneous subsurface rock formations. The solvers are
called multiscale methods since they originally aimed to solve elliptic problems with variable coefficient
with multiscale heterogeneity. When these multiscale methods were first introduced a decade ago, they
were said to have the potential to bridge the gap in resolution between models used for characterization
and provide the scaling necessary for future model sizes and workflow applications.

The main purpose of the paper is to review the development of multiscale methods and demonstrate
that they, after more than a decade of research, now can handle the full complexity of industry-standard
reservoir models. In particular, we outline the state-of-the-art method that is implemented in a commer-
cial simulator, thereby updating the discussion of Kozlova et al. (2015). We also point out numerical
challenges encountered during the development and implementation and present a number of complex
test cases used to validate the efficiency, robustness, and utility of the multiscale simulator. Computa-
tional efficiency is not discussed herein, but our experiments indicate that for representative test cases,
the multiscale method may give an order-of-magnitude speedup, which is significant, but less than the
103 speedup factor that was indicated when these methods first emerged from academia.

Review of Major Developments

We start by reviewing in chronological order the key ideas that paved the road for what is currently con-
sidered state-of-the-art multiscale solvers. Somewhat simplified, the development from the early work
on multiscale methods and towards deployment in commercial simulators followed two main paths.
Whereas developers of multiscale finite-volume methods focused primarily on flow physics and sys-
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Figure 1 Definition of basis functions for the MsFV and the MsMFE methods.

tematic reduction of fine-scale residuals, the development of multiscale mixed finite-element methods
focused primarily on geological realism and applicability to general grids. Our discussion is therefore
divided into two chronological branches, one focusing on flow physics and systematic reduction of resid-
uals and one focusing on geology and support for general fine and coarse grids. To add context, we also
briefly mention methods developed within a more academic context.

Early development: a robust alternative to upscaling

The standard approach in industry to handle multiscale heterogeneity is to use a homogenization or
upscaling method to compute effective properties defined so that the flow equations are satisfied in an
averaged sense on a coarser grid (Christie, 1996; Renard and De Marsily, 1997; Barker and Thibeau,
1997; Farmer, 2002; Gerritsen and Durlofsky, 2005). Despite much research over the past three to four
decades, most upscaling methods still only give reliable results for a limited range of flow scenarios.
This is in part a result of inaccurate localization assumptions that limit upscaling of static and dynamic
properties and in part because of process dependence that reduces robustness of dynamic properties.

The family of multiscale methods discussed herein was first presented in a seminal paper by Hou and Wu
(1997), who proposed to use homogeneous solutions of the flow problem posed inside each element as
polynomial basis functions. Similar ideas had been introduced a decade earlier by Babuska and Osborn
(1983) and Babuska et al. (1994). The multiscale finite element (MsFE) method of Hou and Wu (1997)
soon spawned a family of related methods, including the numerical subgrid-upscaling method (Arbogast,
2000, 2002; Arbogast and Bryant, 2002; Arbogast, 2004), the mixed multiscale finite-element (MsMFE)
method (Chen and Hou, 2003; Aarnes, 2004; Aarnes et al., 2005), and the multiscale finite-volume
(MsFV) method (Jenny et al., 2003, 2004, 2006). All these methods use numerically computed basis
functions satisfying a local flow problem (see Figure 1) to systematically and consistently incorporate
the effect of fine-scale heterogeneity into coarse-scale flow equations that describe the macro-scale flow
patterns inside the reservoirs. Once the flow equations are solved on the coarse grid to account for wells,
aquifer support, and so on, the subgrid resolution of the basis functions can be used to prolongate the
approximate flow solutions back to define mass-conservative flow fields on the underlying fine grid.

Multiscale methods were initially presented as a more accurate and robust alternative to upscaling meth-
ods. The idea was that subresolution and a more natural way of coupling local and global flow effects
should improve consistency and reduce the tendency of introducing non-physical coarse-scale proper-
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ties. The main distinction between an upscaling method and a multiscale method is that whereas the
objective of the former is to generate effective properties that can be used to compute approximate
coarse-scale solutions, the objective of the latter is compute approximate fine-scale solutions. However,
the line of distinction is thin, in particular for so-called local-global upscaling methods (Chen et al.,
2003; Chen and Durlofsky, 2006; Chen et al., 2009, 2010), or when a suitable fine-scale reconstruction
procedure (Gautier et al., 1999; Audigane and Blunt, 2004; Babaei and King, 2012, 2013) is used much
in the same way as in the MsFV method (Jenny et al., 2003, 2004). The interested reader should consult
Kippe et al. (2008), which presents a comprehensive comparison of multiscale and upscaling methods.

Adaptivity and computational complexity

The theoretical operational count of a full multiscale solution procedure applied once (i.e., computing
basis functions, solving coarse-scale problem, reconstructing fine-scale approximation) is approximately
the same as when solving the same problem on the underlying fine grid with an efficient linear solver. So
what is the point of using a multiscale method? The primary gain comes from applying these methods
to multiphase pressure equations, which are generally time-dependent and need update the pressure
multiple times. Multiscale methods are designed to exploit the fact that temporal dependence of the flow
equations is moderate compared to the spatial variability and that temporal changes often are localized.
By reusing most of the basis functions from one global pressure update to the next, possibly updating
a few basis functions locally to account for mobility changes near displacement fronts (Tchelepi et al.,
2007), one can obtain qualitatively correct fine-scale solutions at a cost comparable to solving the flow
equations on the coarse grid (Kippe et al., 2008). Likewise, since basis functions are defined as localized
flow problems, the multiscale formulations offered a natural computational concurrency.

Adding more flow physics

The multiscale methods introduced above were all designed to compute the solution of a Poisson type
elliptic equation with a spatially and strongly variable coefficient without clear scale separation. This
meant that all effects not represented in the span of the basis functions could only be resolved on the
coarse scale. The first attempts to account more accurately for other physical effects introduced extra
basis functions or special correction functions1 to account for gravitational effects (Lunati and Jenny,
2006b), compressibility (Lunati and Jenny, 2006a; Hajibeygi and Jenny, 2009), and wells (Wolfsteiner
et al., 2006; Skaflestad and Krogstad, 2008; Jenny and Lunati, 2009). The formulations were also ex-
tended to (simplified versions) of the three-phase, black-oil equations (Lee et al., 2008; Krogstad et al.,
2009). Use of correction functions was later superseded by less sophisticated iterative procedures, as
will be discussed shortly.

Unphysical solutions

Extensive numerical tests (see e.g., Kippe et al. (2008)) had shown that multiscale methods are accurate
and robust compared with (local) upscaling methods, and in most cases, give solutions that are in good
agreement with solutions obtained from a fine-scale simulation. However, the tests also showed that
one generally cannot guarantee a low error and that it is relatively simple to define a pathological case
making a particular multiscale method loose its accuracy. This is particularly evident for the MsFV
method, which tends to produce solutions with large unphysical pressure oscillations and highly circular
velocity fields for cases with high aspect ratios or channelized media with strong permeability contrasts
(Kippe et al., 2008; Lunati and Jenny, 2007). This deficiency was further analyzed by Hesse et al. (2008);
Nordbotten et al. (2012); Wang et al. (2016), who explained the inability to provide accurate solutions
by inadequate localization assumptions, which introduces pronounced lack of monotonicity unless the
coarse-scale stencil is modified locally to be closer to the classic two-point scheme.

1Basis functions prolongate degrees-of-freedom from the coarse to the fine scale and can be thought of as homogeneous
solutions to the elliptic operator. Correction functions provide consistent fine-scale description of terms on the right hand side
and can be thought of as inhomogeneous or particulate solutions of the elliptic equation.
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Iterative formulation

Significant errors may be introduced near the interfaces between the coarse grid blocks for the MsFV
and other methods as a result of inaccurate boundary conditions that do not necessarily represent the
influence from global flow patterns in a good way. To diminish these errors and provide a system-
atic means of controlling the overall multiscale approximation, the i-MsFV method was proposed by
Hajibeygi et al. (2008) and Hajibeygi and Jenny (2009). This iterative method applies line relaxation
in each spatial direction to smooth the high-frequency error components and propagate the fine-scale
residual from the interfaces and into the coarse blocks. The smoothed solution is used to improve the
localization assumption. Then, one updates basis functions, computes a new global coarse-scale ap-
proximation, prolongates it back to the fine scale, and so on. To improve efficiency, iterations should be
applied adaptively and locally (Hajibeygi and Jenny, 2011). Although the i-MsFV method provided a
means for systematic error control and improved accuracy in many cases, both for elliptic and parabolic
flow equations, the approach was somewhat ad hoc and tied to rectilinear or curvilinear grid geometries.

Operator formulation and algebraic multiscale methods

Key contributions to the development of multiscale methods were made by Zhou and Tchelepi (2008)
and Lunati and Lee (2009), who introduced operator formulations to describe the MsFV method in
algebraic form. In this formulation, two operators are constructed. The prolongation operator P is
constructed by assembling the numerically computed basis functions into a matrix, one basis function
per column. The specific form of the restriction operator R depends on what coarse-scale discretization
one wants: the standard MsFV method (Jenny et al., 2003) is obtained if R constructs a coarse system
by summing all the fine-scale equations inside each coarse block, whereas a MsFE method is obtained
if R = PT (Bonfigli and Jenny, 2010). The coarse-scale flow equation is then derived algebraically by
introducing the multiscale prolongation p≈ p̃ = Ppc into the fine-scale problem Ap = q and multiplying
by the restriction operator from the right,

Ap = q −→ (RAP) pc = Rq. (1)

To get mass-conservative fluxes on the fine grid, a local flow problem is solved inside each primal
grid block with the fluxes derived from pc imposed as Neumann boundary conditions (Jenny et al.,
2003). This construction applies to both incompressible and compressible flow (Zhou and Tchelepi,
2008). Additional insight was provided by Nordbotten and Bjørstad (2008), who showed that the MsFV
method without correction functions can be interpreted as a special case of classic non-overlapping
domain-decomposition methods (Smith et al., 1996) and then used this interpretation to improve the
accuracy of the multiscale approximation.

Based on the operator formulation, Lunati et al. (2011) showed that the multiscale method could be used
as preconditioner in a Krylov subspace method like GMRES. Similarly, Zhou and Tchelepi (2012) intro-
duced a two-stage algebraic multiscale solver in which the first global stage is a MsFV or MsFE multi-
scale solution and the second stage uses a local preconditioner such as additive Schwarz or block incom-
plete lower-upper factorization (ILU). In another important contribution, Wang et al. (2012, 2014), ana-
lyze the algebraic multiscale solver in more detail and compare the efficiency and accuracy of Galerkin
and finite-volume restrictions combined with correction functions, block ILU, and ILU as local precon-
ditioners. Quite interesting, their conclusion is that the best overall performance is obtained by using
a Galerkin restriction operator combined with a local ILU(0) preconditioner. This will not give mass-
conservative fluxes, which can be ensured if one finite-volume update is performed at the end. See also
(Magri, 2015) for a comperehensive overview and analysis of multiscale preconditioning strategies.

The algebraic multiscale framework can, at least in principle, be used in any sequential solution proce-
dure that isolates a pressure equation. Algebraic multiscale solvers have already been applied to polymer
flooding with non-Newton fluid rheology (Hilden et al., 2016), discrete and embedded fracture models
(Sandve et al., 2013; Tene et al., 2015; Shah et al., 2016), and somewhat simplified compositional models
(Hajibeygi and Tchelepi, 2014). Work is in progress on extending the method to geomechanics (Castel-
letto et al., 2016) and more comprehensive compositional formulations. While promising, none of these
capabilities have yet been included in the commercial simulator.
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Figure 2 Developing the MsMFE method towards geological realism.

Geological realism and automated coarsening

Support for realistic geology and complex grids was primarily developed for the MsMFE method. Fig-
ure 2 outlines how the capabilities of this method were gradually developed towards handling the full
complexity of industry-standard stratigraphic grids (corner-point and unstructured Voronoi type grids).
As part of this work, the method was included in a streamline simulator during 2006–2008 as the first
commercial implementation of the multiscale technology (Natvig et al., 2011), and successfully used to
simulate high-resolution models of fracture corridors with multimillion cells.

The MsMFE method is very flexible with respect to grid geometry and topology and can be formulated
on any reasonable grid with unstructured topology and general polyhedral cell geometries. Likewise,
the only requirement on the coarse partitions is that each grid block consists of a connected set of grid
cells. (Reduced accuracy because of grid effects should be expected if the blocks become too irregular).
Because of this flexibility, it proved to be relatively simple to develop robust algorithms for automated
grid coarsening. Likewise, the accuracy of the method could in many cases be enhanced by adapting the
shape of the grid blocks to the geology and possibly also to preexisting flow solutions. Altogether, the
MsMFE method proved to work very well as an approximate solver for incompressible and slightly com-
pressible flow (Aarnes et al., 2005, 2008; Alpak et al., 2012; Pal et al., 2015). Attempts were also made
to extend the method to compressible flow by developing various iterative formulations (Krogstad, 2011;
Krogstad et al., 2012). Unfortunately, this work stranded on the lack of a fully robust mixed formulation
of the fine-scale flow equations. Such formulations have been reported in the literature (Bergamashi
et al., 1998; Chen, 2000), but the resulting linearizations are in our experience not sufficiently robust to
handle the many corner cases that tend to arise in models of real assets.

Forgoing the dual coarse grid for the algebraic multiscale method

Prior to 2011, all work on multiscale finite-volume methods had focused entirely on Cartesian grids in
rectangular domains, except for a study of some simple and conceptual fault models consisting of multi-
ple trapezoidal blocks with Cartesian topology (Hajibeygi et al., 2011). By utilizing the operator formu-
lation MsFV, Møyner (2012) and Møyner and Lie (2013, 2014a) were able to formulate and implement
the method for unstructured and stratigraphic grids. In principle, this should be straightforward, but in
practice, it turned out to be difficult to find algorithms for generating admissible primal–dual partitions.
The main challenge is that one needs to solve reduced-dimensional problems along the perimeter of the
dual blocks to set the boundary conditions that are used to localize the computation of basis functions.
This requires a certain connection and regularity of the faces and edges of the dual blocks. That is, cells
that are part of edges in the wirebasket ordering (light blue color in Figure 1) must form a contiguous
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Figure 3 Parts of a primal–dual partition for the Gullfaks field model. The left plot shows one block and
its eight face-neighbors. The outline of each coarse block is shown in wire-frame with a unique color,
whereas cells belonging to the dual edges are shown in the same color. The right plot shows edges inside
two coarse blocks, colored by permeability, which here spans seven orders of magnitude. Such extreme
contrasts are known to introduce localization errors and severe monotonicity problems.

chain that is connected through cell faces. Likewise, the cells that are characterized as faces in the wire-
basket ordering should be connected to their neighbors through cell faces. Cells that are only connected
through vertices and edges will have no transmissibility between them in the fine-scale discretization,
and such connections will thus act as internal no-flow boundaries in the reduced flow problems used to
provide localization.

For simple rectilinear, curvilinear, and triangular grids, the coarsening algorithms proposed in (Møyner,
2012; Møyner and Lie, 2014a) can be automated and will generally give dual blocks having edges and
faces with sufficient connection and regularity. However, sector and field-scale grid models tend to
be much more complicated because of inactive cells, degeneracy in grid cell geometry, non-matching
cell faces, and non-neighboring connections that are used to model pinchouts, erosion, faults, etc. It
is therefore very difficult to automate the generation of admissible primal–dual partitions for models
of real assets and, in particular, guarantee that the edges and faces of the dual blocks do not contain
high-contrast permeability streaks; see Figure 3. In our experience, the resolution and types of coarse
grids one can generate are very limited compared with the MsMFE method and one quickly runs into
special cases with degenerate cell geometries and complex local topologies that in the best case can
be manually partitioned by the user. With extensive visual support for grid interaction, this becomes
a tedious exercise and without, it is virtually impossible for large models. We have also encountered
numerous cases that we simply were not able to partition at all.

In an attempt to dispense with the requirement for admissible primal–dual grids, Møyner and Lie (2014b)
developed the multiscale two-point flux-approximation method. Borrowing ideas from transmissibility
upscaling and the MsMFE method, the authors proposed to first construct a set of elementary solutions,
one for each pair of coarse blocks sharing a common face. Then, these elementary functions were
multiplied by a set of partition-of-unity functions that each is associated with a single coarse interface
and carefully designed so that the resulting basis function will have compact support inside two grid
blocks only. This gives a coarse-scale stencil that is (almost) two-point and hence less prone to introduce
non-monotonicity in the coarse-scale solutions. Although the resulting method turned out to be flexible,
robust, and reasonably accurate, it has not been pursued further, at least not commercially. Instead, the
method provided new insight that led to the development of what we today consider as the state-of-the-
art multiscale method.

Basis functions computed by restricted smoothing

Even though the MsFV and the MsMFE methods had both been formulated in an algebraic form, all
prolongation operators considered in the literature were derived as basis functions constructed using ge-
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ometric arguments for the continuous flow equations and then subsequently reinterpreted algebraically.
In an algebraic multiscale formulation, however, the main purpose of the prolongation operator is to map
a coarse-scale pressure to the fine-scale grid in a non-oscillatory manner and efficiently reduce the low-
frequency components of the fine-scale residual in the same way as the coarse-level stages in a multigrid
method. Realizing this, Møyner and Lie (2015, 2016b) proposed to use a simple iterative smoother to
construct basis functions algebraically using a only primal coarse grid and a set of support regions that
each encompass a single coarse block. In the multiscale restriction-smoothed basis (MsRSB) method,
basis functions are set as constant inside the corresponding coarse blocks and then the local smoother is
applied to iterate each basis function so that it gradually becomes consistent with the local differential
operator. The iteration is extended with a simple lumping strategy, which ensures that the support of the
basis functions does not grow outside their individual support regions and together form a partition of
unity. Constructing the support regions is straightforward since we no longer need to solve a reduced
flow problem nor extrapolate pressure values along their perimeter. As a result, one regains the flexi-
bility of the MsMFE method. Møyner (2014) also shows that acceptable convergence can be obtained
using even simpler constant or linear prolongation operators. Prototype implementations of the MsRSB
method are available in an open-source framework (Krogstad et al., 2015; Lie, 2015).

Other developments

The literature on numerical methods for elliptic problems offers a great number of methods geared
toward solving problems with highly oscillatory coefficients. The multiscale CVD-MPFA method of
Parramore et al. (2016) uses a finite-volume formulation and appears to be applicable to a wide variety of
structured and unstructured grids. Rigorous error estimates are available both for variational multiscale
methods (Hughes et al., 1998; Larson and Målqvist, 2007; Juanes and Dub, 2008) and for multiscale
mortar mixed methods (Arbogast et al., 2007), but only for much more simplified problems than those
encountered in industry-grade simulations.

Much research has also been devoted to understanding and improving theoretical approximation proper-
ties of multiscale spaces. Efendiev et al. (2011) suggested using eigenvectors of local spectral problems
to systematically enrich the initial multiscale space of the MsFE method. Recently, Cortinovis and Jenny
(2014) used a similar Galerkin-type enrichment technique to add extra coarse-scale degrees of freedom
and thereby improve the convergence of the MsFV method for cases with long coherent structures with
large media contrasts. The generalized multiscale finite element method (Efendiev et al., 2013; Bush
et al., 2014; Chung et al., 2014) is an example of a more general framework that seeks to systematically
enrich the coarse approximation space. Computations are divided into an offline and an online stage. In
the offline stage, a series of representative snapshots are reduced to a small-dimensional space through
spectral decomposition. In the online stage, the offline space is used to generate new basis functions
for the particular parameter combinations encountered during the dynamic simulation. None of these
methods have, however, been developed yet to a stage where they are ready for commercial applications.

Multiscale Formulation Implemented in the Commercial Simulator

In this section, we outline the algebraic multiscale framework as implemented the research and proto-
typing branch of a commercial simulator. Several details have already been discussed by Kozlova et al.
(2015). We give an updated overview with special emphasis on new features that enable simulation of a
much broader spectrum of complex geological models.

Formulations and solution strategies

The commercial simulator is based on a fully implicit, compositional formulation discretized on general
unstructured grids. The simplified fluid description of a black-oil model fits naturally into this frame-
work, with molar densities and mole fractions written in terms of formation-volume factors and solubility
ratios, respectively. Cusini et al. (2015) discuss a multiscale preconditioning method for fully implicit
discretizations, but this formulation does in our experience not provide the computational speedup de-
sired for commercial applications. Our starting point is therefore a sequential solution strategy, in which
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Flow problem: ∇(K∇p) = q Discretization: Ap = q Fine-grid solution

Coarse partition Prolongation: p = Ppc AP pc = q Ac pc = qc Coarse solution pc

pms = Ppc

Support region

. . . . . . . . . . . .

Basis function Restriction: R (AP ) pc

Alternative iterative methods

1) Richardson iteration:

pν+1 = pν + ωνA−1ms(q − Apnu)
where A−1ms = P (RAP )−1R

2) Two-level method:

p∗ = pν + S(q − Apν)
pν+1 = p∗ + A−1ms(q − Ap∗)

where S is a local smoother, e.g., ILU(0)

3) A−1ms can also be used as preconditioner for GMRES

Figure 4 The algebraic multiscale framework with basis functions generated by restricted smoothing.

the algebraic multiscale method is applied to a pressure equation describing overall mass-balance of the
system to reduce its residual below a prescribed tolerance. After the pressure iteration has converged,
fine-scale pressures and fluxes are reconstructed locally on each coarse block, and then used to evolve
the nonlinear transport equations using a Schwarz overlapping method combined with an implicit up-
wind scheme on each coarse grid block. More details can be found in (Kozlova et al., 2015; Møyner and
Lie, 2016a). By adding an outer iteration on the pressure and transport steps, the sequential solver can
be made to converge to the solution that would be computed by a fully implicit discretization (Spillette
et al., 1973). To ensure efficient convergence toward a correct solution, it is important that linearization
of pressure, flux reconstruction, and transport, is consistent, e.g., as discussed in more detail by Møyner
and Lie (2016a). Moreover, in our experience, the way the sequential pressure equation is formulated in
the presence of appearing and disappearing phases, phase interfaces, and near wells can greatly influence
the performance by reducing the need for outer iterations to correct an inaccurate, first pressure solution.

Improved computational efficiency can be obtained by slacking the tolerance on the outer iteration and
the tolerances that determine how far the residual should be reduced and how often basis functions should
be recomputed in the multiscale solver. Likewise, computational costs can be reduced by increasing the
time step in the sequential formulation beyond that of a fully implicit discretization. Notice, however,
that sequential simulators have a lag in the evaluation of the mobility in well models and this may cause
large splitting errors for cases with large time steps and abrupt changes in mobility induced by gas in the
near-well region. In such cases, the time step needs to be reduced to ensure correct solutions. Generally,
it is more difficult to converge the transport equations than the pressure equation, and hence the simulator
has the ability to take several substeps in the transport solver for each pressure step. Moreover, work
is also in progress to investigate smoother and more robust spatial discretization schemes (Lee et al.,
2015), more efficient and robust nonlinear solvers (Li and Tchelepi, 2014; Møyner, 2016; Watanabe
et al., 2016), and improved strategies for concurrent computing (Manea et al., 2015; Kozlova et al.,
2016).

The algebraic multiscale solver

As discussed above, the algebraic multiscale framework is very flexible and can be used in several ways
to combine various local and global solvers. The commercial simulator initially implemented basis
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functions based on primal–dual grids as described by Lunati and Lee (2009) with parts of the Jacobian
from the nonlinear pressure equation as coefficient matrix for the basis functions (Kozlova et al., 2015).
For restriction, the simulator offers the MsFV operator, the MsFE operator, or a combination of the
two, i.e., first use MsFE to accelerate convergence and then use MsFV to ensure mass-conservative
fluxes. Then, ILU(0) is used as local preconditioner. We are also experimenting with other smoothers
in combination with the multiscale preconditioner, but we do not yet have definite results. Recently, we
also included the MsRSB method (Møyner and Lie, 2016b), which is more robust, at least as accurate,
and simpler to implement, and applicable to a much larger variety of complex stratigraphic grids than
the MsFV method. Figure 4 summarizes the key steps in the resulting solver.

For commercial use, the generation of a coarse partition should be automated and not require any expert
knowledge. (Users should be able to benefit from the reduced computational cost of a multiscale solver
without having to know its inner workings). As pointed out above, admissible primal–dual partitions
are generally cumbersome to construct, if possible at all, for highly heterogeneous models with complex
geometry and topology, and general and automated partitioning strategies seem to be far from reality, at
least at the moment. A primal coarse grid with support regions that extend between the centers of the
neighboring blocks, on the other hand, can easily be generated using one of the many grid partitioning
strategies that can be found in the literature. This concept also provides enough flexibility, so that expert
users can adapt and fine-tune the coarse partition (e.g., to features in the geological model) to optimize
performance. So far, however, we have primarily used rectilinear partitions in index space for simple
models, and a graph-portioning software (Karypis and Kumar, 1998) for more complex grid models.
When used with fine-scale transmissibilities as weights, the latter can generate coarse partitions that
adapt to the underlying geology.

Examples

In this section, we will present three different models that have been used to verify the accuracy and
assess the performance of the multiscale solver. The first model is a 2D conceptual model of fracture
corridors. The second model is a benchmark case published by the Heriot-Watt University, while the
third model is a real reservoir model of a giant oil and gas field from the Norwegian Continental Shelf.
Our examples focus on the multiscale solver’s ability to compute correct solutions for complex models;
computational efficiency is discussed in more detail by Kozlova et al. (2016).

Example 1: Fracture corridors

The first model is a simple one-layer model (60× 220× 1 cells), which is a simplification of a model
used in (Natvig et al., 2011; Montaron et al., 2007). The main purpose of this model is to illustrate
that the multiscale solver computes the correct solution for a case with skewed cell geometry and strong
media contrasts. The geology is homogeneous except for two explicitly modeled fracture corridors. The
permeability is 75 md in most of the layer but 50 darcy in the corridors. A Cartesian background grid
has been fitted to the corridors (and other features that have been ignored in the model). The process
generated a curvilinear grid with local unstructured features near the fracture corridors, as shown in
Figure 5. The model has one injector placed in the middle and four producers located in the corners.
Water is injected at a constant rate and the producers are set at constant bottom-hole pressure (BHP).
As can be seen in Figure 6 soon after the injection begins, the water moves into the fracture corridors
and after approximately 20 days appears close to the producers P1 and P3. These producers get water
breakthrough shortly thereafter. Later, P2 is approached by water due to fast flow in the corridor and
later by a second front that went via producer P1.

The simulation has been performed with both the fully implicit solution of the fully implicit (FI) solver
and the multiscale implementation within this simulator (MS). In Figure 6, we can see the water distri-
bution at 21 days and 60 days. It is difficult to see any difference in these results. However, when taking
the absolute value of the difference in saturation in each grid cell between the two simulation results at
60 days, we observe a small difference along the front in some locations; see Figure 6. Minor differences
can also be observed in the water cuts for the producers P1 to P4 in Figure 7, but altogether we find the
accuracy of the multiscale solver to be within what is considered as acceptable.
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Figure 5 Permeability, grid, and well positions for the fracture corridor test case. In the color plot, blue
color denotes background permeability of 75 md, whereas red color is the 50 darcy fracture corridors.

FI, 21 days MS, 21 days FI, 60 days MS, 60 days | FI - MS |

Figure 6 Water saturation computed by the fully implicit and multiscale simulators. The rightmost plot
shows the absolute difference between the solutions at 60 days.
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Figure 7 Water cuts for the fracture corridor model. Producer (P3) with the largest deviation between
the FI (green) and MS solution (red lines) is shown to the left and the other three wells to the right.

Example 2: The Watt field

The Watt field case (Arnold et al., 2013) is based on a combination of synthetic data and real data from a
North Sea oil field and was formulated to study how uncertainty in interpretation is integrated through a
reservoir modelling. Here, we will use a particular realization that was previously used as a benchmark
test by Møyner and Lie (2016a). The geological model represents a braided river system, with common
facies types including fluvial channel sands, overbank fine sands, and background shales. The model
spans a 12.5×2.5 km2 surface area and has a thickness of approximately 190 m, much of which is below
the water contact. We will consider a two-phase waterflooding scenario with 15 horizontal production
wells located across the central parts of the reservoir and 5 horizontal and 2 vertical injectors around the
edges.

The production scenario spans 22 years of oil production with water injected at an increasing rate to
maintain the oil production. The simulation is run with both the fully implicit (FI) solver and the se-
quential fully implicit multiscale (MS) solver. We use default settings for the time-step selection in the
fully implicit solver, which means that the time step may be reduced by the simulator. For the multiscale
solver, we use a fixed time-step size of 31 days. Figure 8 shows the average reservoir pressure and the
field-oil production rate for the two solvers. The solutions follow each other very closely. There are
slight discrepancies initially and at the end of the simulation, which are partly due to different lengths of
the time steps and partly to different criteria to measure convergence. Figure 9 shows the field pressure at
the end of the simulation, while Figure 10 shows water saturation and the difference in water saturation
between the two solvers. Except for a few outliers, the saturation difference is below 0.04 and close to
zero for most cells.

Example 3: The Gullfaks field

The Gullfaks is a mature giant oil and gas field located in the Norwegian sector of the North Sea.
Production started in December 1986, reached a peak production of 605 965 bbl/day, and was after that
in constant decline until 2001, when the production was stabilized. The main drive mechanism is water
injection, but pressure support is also achieved through gas and water-alternating-gas injection some
areas of the field. Current recovery rate is 59%, which operator Statoil has an ambition to increase to
62%.
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Figure 8 Average pressure and field oil-production rates for the Watt field computed by the multiscale
solver (green lines) and the fully implicit solver (red lines).

Figure 9 Field pressure at the end of simulation for the Watt field.
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Figure 10 Saturation at the end of simulation (left) and difference in saturation fields computed by the
FI and MS solvers (right).

In the following, we will compare the FI and MS simulators on a real field model dating back to
around the turn of the century. The Gullfaks geology consists of various reservoir zones, including
delta sandstones, shallow-marine sandstones, and fluvial-channel and delta-plain formations. The pro-
duction comes primarily from Brent sands, i.e., the same type of sedimentary environment as seen in
the SPE 10 model, which is used in some form as a test case in almost any paper describing multiscale
methods. The reservoir is located in rotated fault blocks in the west and a structural horst in the east,
with a highly faulted area in between. This gives a very complex structure consisting of a large number
of sloping faults with angles varying from 30 to 80◦ and throws from 0 and up to 300 m; see (Fossen and
Hesthammer, 1998) for a discussion of the structural geology. The field model shown in Figure 11 is
represented on a 80×100×19 grid, in which approximately one half of the cells are active. The many
faults introduce non-neighboring connection in between 40 and 50% of the active cells. This makes the
model very challenging for the original MsFV method. Although it is possible to generate primal–dual
partitions (see Figure 3), we have not been able to generate any that are admissible for the computation
of basis functions. In the following, we will therefore use MsRSB instead. Møyner and Lie (2016b)
have already shown that this method works well on the complex geology of a more refined version
of the same model. Assuming single-phase flow and a somewhat contrived well pattern to drive flow
through the whole model, they obtained reasonable convergence for simulations with 100 to 500 coarse
blocks, and even with an extreme coarsening up to 10 blocks, the MsRSB method managed to reduce
the residual eight orders of magnitude in one hundred iterations.

Herein, we will consider the full simulation model using a three-phase fluid description and historic
wells. Unfortunately, the field model is not detailed enough to provide accurate well-to-well predictions
because of the combination of complex structural architecture and multiple reservoir zones. We will
therefore only study field cumulative quantities, which are reported in Figure 12 for both the FI and
MS solvers. The maximum difference is observed in cumulative oil production and is less than 3%.
Figure 13 shows that discrepancies are located in only a few cells and do not exceed 0.04.

Conclusions

After more than a decade of active research, multiscale methods have been developed to a level where
they may be ready for commercial application. A large number of tests shows that multiscale methods
now can handle the full combination of realistic flow physics and highly heterogeneous geology with
complex topologies and rough cell geometries. The most important scientific steps to this end include
the development of: (i) an algebraic formulation that interprets the multiscale method in terms of prolon-
gation and restriction operators, (ii) iterative formulations in which multiscale solvers are used as global
preconditioners, and (iii) purely algebraic computation of basis functions with support regions derived
from a single coarse grid. However, to further improve the multiscale simulators, continued research is
needed on sequential formulations, robust spatial discretizations, efficient and robust nonlinear solvers,
and improved strategies for concurrent computing. Likewise, we believe that there is a large and un-
tapped potential in the use of multiscale methods as a means to accelerate various reservoir engineering
workflows such as uncertainty quantification, history matching, production optimization, etc.
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Figure 11 The Gullfaks model. The plot to the left shows initial saturation, the plot to the upper-right
shows the fault network, while the lower-right plot shows a zoom of grid cells near one of the major
faults.
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Figure 12 Field responses for the total simulation period computed by the multiscale (red lines) and the
fully implicit solver (green lines).
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Figure 13 Oil saturation at the end of simulation computed by the fully implicit solver (upper left) and
the multiscale solver (upper right). The lower plot shows the discrepancy between the multiscale and
fully implicit solutions at the end of simulation.
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