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Abstract

This work extends the applicability of a class of flow-diagnostic computational tools for interac-
tive visualization and fast simulation approximations to also account for polymer mobility effects.
Flow diagnostics, as used here, employ simplifications to the reservoir flow equations to enable
computation of quantitative (and detailed) information about the flow behavior of full 3D reservoir
models within a few seconds.

Previously, we have utilized a linearized pressure equation and a corresponding set of time-
of-flight (TOF) and stationary tracer equations to compute dynamic heterogeneity measures that
correlate well with oil recovery for waterflooding scenarios. To also approximate the macroscopic
effect of EOR injection strategies, we suggest an implicit approach for flow diagnostics in which
polymer mobility effects are included approximately in the flow equation by linearizing the flux
functions. Although this linearization has a pronounced smearing effect on the water and polymer
fronts, we show that the heterogeneity of the total flux field is adequately represented. Subsequently
we (re)solve the transport equations accurately along a 1D TOF-grid for each well-pair region. A
recovery proxy is then obtained by accumulating each 1D solution weighted by a corresponding total
TOF-distribution function.

We apply our new approach to 2D and 3D reservoir simulation models, and observe close agree-
ments between the suggested single-step approximations and results obtained from full simulations.
Furthermore, we demonstrate that explicit versus implicit versions of the proxy can be utilized to
differentiate between macroscopic and microscopic sweep improvements resulting from polymer in-
jection. For the examples considered, we demonstrate that macroscopic sweep improvements alone
correlate better with measures for heterogeneity than the combined improvements.



Introduction

Modern reservoir simulators provide detailed forecasts of hydrocarbon recovery based on a description
of reservoir geology, flow physics, well controls, and couplings to surface facilities. To interpret these
simulations, it is common to study well profiles and 3D visualization of pressure, saturation, and com-
ponent distributions in the reservoir. However, this is seldom sufficient to develop an understanding
of how the reservoir reacts to changes in production strategies. A reservoir engineer will also want to
know which injection and production wells are in communication; what is the sweep and displacement
efficiency within a given drainage, sweep, or well-pair region; which regions of the reservoir are likely
to remain unswept, and so on. Likewise, one must understand how different parameters in the reservoir
model and their inherent sensitivity affect the recovery forecasts. Detailed simulations of field models
take hours or days, and this limits the ability to iteratively perturb simulation input to evaluate and build
cause and effect knowledge of the model. Rapid screening capability and simple, efficient, and interac-
tive tools that can be used to develop basic understanding of how the fluid flow is affected by reservoir
geology and how the flow patterns in the reservoir respond to engineering controls are needed to accel-
erate modelling workflows, make better use of time-consuming simulation runs, and provide better data
for decision support.

The term flow diagnostics, as used here, are simple and controlled numerical flow experiments run
to probe a reservoir model, establish connections and basic volume estimates, and quickly provide a
qualitative picture of the flow patterns in the reservoir, either as a standalone prescreening tool or to post-
process standard multiphase simulations (Shahvali et al., 2012; Møyner et al., 2014). Flow diagnostics
can also be used to compute quantitative information about the recovery process in settings somewhat
simpler than what would be encountered in an actual field, or be used to perform what-if and sensitivity
analyzes in a parameter region surrounding a preexisting simulation. As such, these methods offer a
computationally inexpensive alternative to the use of full-featured multiphase simulations to provide
flow information in various reservoir management workflows.

Two types of information are fundamental in flow diagnostics: time-of-flight and volumetric (tracer)
partitions. Time-of-flight τ denotes the time it takes a neutral particle to flow from the nearest inlet
to a given point in the reservoir and defines natural time lines that describe how displacement fronts
will propagate under prevailing flow conditions for an instantaneous flow field ~v. Time-of-flight has
traditionally been associated with streamline methods (Datta-Gupta and King, 2007; Thiele, 2005), but
can equally well be computed by a finite-volume method (Natvig et al., 2006, 2007). Using a finite-
volume formulation extends better to unstructured grids and provides more seamless integration with
standard modelling tools currently used in industry. On differential form, τ is given as

~v ·∇τ = φ , τ|inflow = 0, (1)

where φ is the porosity of the reservoir. Volumetric partitions and measures of to what extent each cell
in the reservoir is in communication with the different fluid sources and sinks can be determined by
studying numerical tracers, which can be though of as artificial tracer injections continued until time
infinity under steady flow conditions. Normalized tracer concentrations are given by simple advection
equations on the form

~v ·∇c = 0, c|inflow = 1. (2)

From time-of-flight and tracer distributions, one can derive various quantities that express volumet-
ric connections and flow patterns such as drainage and sweep regions, well-pair connections and flow
volumes, and well-allocation factors, which all are visually intuitive quantities giving enhanced under-
standing during pre- and post-processing (Møyner et al., 2014).

The ultimate goal of most reservoir simulation studies is to contribute to maximize profit given a set of
operational and economic constraints. To this end, one need to explore various production strategies and
perform a number of what-if and sensitivity analyzes. Sweep theory from classical reservoir engineering
includes a number of heterogeneity measures for the variation in petrophysical properties like flow and
storage capacity, the Lorenz and Dykstra–Parsons coefficients, etc. (Lake, 1989). It has been shown
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that time-of-flight can be used to generalize this theory to a dynamic setting to provide measures of the
heterogeneity in flow paths rather than in static reservoir properties. Heterogeneity measures like sweep
efficiency, Lorenz coefficient, and vorticity index have proved to correlate well with recovery (Izgec
et al., 2011; Rashid et al., 2012b; Møyner et al., 2014). These measures are all inexpensive to compute,
and with a finite-volume formulation it is also straightforward to develop adjoint equations to compute
gradients and parameter sensitivities which in turn can be utilized in effective optimization methods.
In previous research (Møyner et al., 2014), we have used this idea to develop efficient workflows for
optimizing well placement, drilling sequence, and production rates. We have also shown how effective
proxies for economic objectives like net-present value can be derived from time-of-flight and tracer par-
titions, and how these in turn can be used to formulate highly efficient optimization loops for suggesting
plausible sequences of rate targets which later can be slightly adjusted by a full-fledged simulation to
derive production schedules that fulfill multiphase well constraints. Often, it is more difficult to formu-
late the objective and economic and engineering constraints in a precise mathematical form than solving
the resulting problem. Exploring a large number of alternative formulations is usually prohibitive when
relying on full-fledged multiphase simulators. Various forms of flow diagnostics, on the other hand, are
inexpensive to compute and therefore ideal in the exploratory part of an optimization workflow.

The idea of using time-of-flight and tracer distributions to generate flow-based proxies for accelerating
reservoir management workflows is not new. Diagnostic tools formulated on top of streamline simulation
have been applied, e.g., in ranking and upscaling of geostatistical models (Idrobo et al., 2000; Ates et al.,
2005), to optimize well rates in water-flooding (Thiele and Batycky, 2003; Park and Datta-Gupta, 2011;
Izgec et al., 2011; Wen et al., 2014), for flood surveillance on a pattern-by-pattern basis (Batycky et al.,
2008), and to optimize fracture stages and horizontal well completions in tight gas reservoirs (Sehbi
et al., 2011).

Herein, we will discuss to what extent flow-diagnostic ideas developed for water-flooding scenarios can
be extended to polymer flooding. To this end, we first discuss alternative ways of computing the dis-
tribution of time-of-flight and residence times (i.e., the time a neutral particle spends traveling from an
inflow to an outflow point) that utilize ideas from tracer modelling (Shook and Forsmann, 2005; Huseby
et al., 2012). Then, we move on to discuss how to forecast the macroscopic effect of polymer flooding
and provide inexpensive forecasts of hydrocarbon recovery. Viscosity change due to polymer flooding
improves both the microscopic and macroscopic sweep efficiency (Sorbie, 1991; Lake, 1989). Polymers
increase the viscosity of the displacing fluid and hence increase the fractional flow of oil to the flow of
the displacing fluid, which in turn improves the microscopic sweep efficiency (Pope, 1980). This effect
is most pronounced when the waterflooding has an unfavorable mobility ratio. Polymers also improve
the macroscopic sweep by reducing channeling through heterogeneous reservoirs and through viscous
cross-flow between layers of different permeability (Clifford and Sorbie, 1985). Herein we will inves-
tigate polymer efficiency by comparing polymer flooding simulations to corresponding waterflooding
scenarios. As numerical examples we apply both single layers from the SPE 10 model 2 (Christie et al.,
2001) and the more complex Norne field model (IO Center, NTNU, 2012). By comparing an explicit
proxy that only accounts for the improved microscopic sweep along streamlines with an implicit calcu-
lation that also accounts for macroscopic effects, we can distinguish the microscopic and macroscopic
polymer effects. As the macroscopic effects are linked to viscous cross-flow and conformance, they
are expected to correlate with heterogeneity measures (Zhou et al., 2015). Correlation with the Lorenz
coefficient and the vorticity index (Rashid et al., 2012a) is explored for the models under consideration.

Time-of-flight and distributions of residence time

Time-of-flight can essentially be computed in three different ways for an instantaneous flow field~v. The
most obvious approach is to simply trace streamlines and compute time-of-flight τ in a pointwise sense
by integrating the interstitial velocity field along these streamlines (Datta-Gupta and King, 2007)

d~x
ds

=~v(~x), τ(r) =
∫ r

0

φ(~x(s))
|~v(~x)|

ds. (3)
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Using streamlines to compute τ gives high pointwise accuracy. Unfortunately, it is not always straight-
forward to trace streamlines in complex reservoir grids that may have polyhedral cell geometries and
all sorts of challenging degeneracies. In particular, it is challenging to reconstruct a consistent velocity
field ~v from the numerical fluxes that are typically available from a finite-volume reservoir simulator,
associate the correct flux to each flow path, etc. There are general and versatile methods available, see
e.g., Klausen et al. (2012), but these are relatively expensive for large and complex geological models.
Likewise, there are problems associated with distributing well fluxes to streamlines and ensuring mass
conservation, see e.g., (Kippe et al., 2007).

Alternatively, one can use a finite-volume discretization of (1), which approximates the volume-averaged
value of τ in each cell of the computational grid. Using a first-order finite-volume method with upwind
evaluation of fluxes preserves the causality of the underlying continuous equation (1) (all information
follows streamlines), and this ensures that the resulting linear system can be permuted to (block) trian-
gular form by performing a topological sort of the grid cells. Hence, (1) can be solved very efficiently
in O(n) operations for a grid with n cells, see Natvig et al. (2006, 2007); Møyner et al. (2014). This
solution procedure is also possible if one uses a higher-order discontinuous Galerkin discretization.

To shed more light into the finite-volume approach and its potential limitations, let us consider a discrete
incompressible flux field v and a grid cell i with total influx vi. Moreover, let

Aτ = Vφ and AT c(i) = eivi (4)

be the discrete TOF equation and the backward tracer-equation, respectively, for the case where a tracer
is injected in cell i and allowed to flow in the reverse direction of v. Here, Vφ is the vector of pore
volumes and ei is a unit vector equal one in cell i and zero elsewhere. For the TOF-value τi of cell i, we
then have the following:

τi = eT
i A−1Vφ =

1
vi

cT
(i)Vφ . (5)

Accordingly, τi equals the pore volume of the upstream region of cell i (i.e., the drainage region) divided
by the flux. For a highly heterogeneous drainage region, this means that τi will be the average of
a distribution of potentially large variance. This averaging introduces a systematic bias in dynamic
heterogeneity measures, which may be acceptable in some applications and can be somewhat reduced
by a higher-order spatial discretization (Rasmussen and Lie, 2014).

To provide EOR production forecasts, however, we need more accurate prediction of breakthrough time
and production profiles. To this end, we consider the distribution of τ for each grid cell and in particular
for cells containing production wells. At an outflow boundary, τ equals the residence time, i.e., the total
time a neutral particle has spent traveling from the inflow to the outlet. Distributions of residence times
are used e.g., in the study of chemical reactors and tracer tests (Shook and Forsmann, 2005; Huseby
et al., 2012). Let ~v be an incompressible flux field in a 3D domain Ω with ∇ · v = 0 inside the domain,
~v ·~n = qi on the inlet boundary Γi and ~v ·~n = qp on the outlet boundary Γp, and ~v ·~n = 0 elsewhere on
∂Ω. Consider the linear transport equation

φ
dc
dt

+~v ·∇c(t) = 0, c|Γi = δ (t), (6)

with c(x,0) = 0. Thus, (6) describes the transport of a unit pulse through Ω. For each point x, the
TOF-distribution px is simply the dirac function

px(t) = c(x, t) = δ
(
t− τ(x)

)
, (7)

while at the outlet, the (unit integral) TOF/residence-time distribution is given as

p(t) =

∫
Γp

c(t)~v ·~n ds∫
Γp
~v ·~n ds

. (8)
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Figure 1 Residence-time distributions for two different permeability fields in a left-to-right displacement
scenario. Note that the mean of the distributions (dashed red line) equals 1 PVI (pore volume injected).

To see the connection between (1) and (6), we consider the first-order moment m1 =
∫

∞

0 tc dt, which can
be obtained by multiplying (6) with t and taking the integral∫

∞

0

[
φ

dc
dt

t +~v ·∇(tc(t))
]

dt = φ
(
[tc]∞t=0−m0

)
+~v ·∇(m1) = 0. (9)

This equation simplifies to
~v ·∇m1 = φ , m1|Γi = 0, (10)

since m0 =
∫

∞

0 cdt = 1 and limt→∞ c(t) = 0. Accordingly, m1 equals τ as defined by (1). Equation (10) is
the first of a family of moment equations Leube et al. (2012), for which the higher-order (raw) moments
can be computed according to

~v ·∇mk = k φ mk−1, mk|Γi = 0. (11)

Note that by (7), for any point x, mk(x) = 0 for k ≥ 2, while this is not the case for residence time
distributions of the form (8).

Discretized equations for TOF/residence-time distributions

Analogous to (6), we may write the semi-discrete pulse-equation as a linear set of ODEs of the form

dc
dt

+Mc = 0, c(0) = c0 =
qi

Vφ

, (12)

where M is a discretization of the linear operator 1
φ
~v ·∇ and qi is the vector of injection source terms.

The discrete linear operator M is constructed using the standard upwind scheme (as is common in most
finite-volume based reservoir simulators). The solution of (12) is given in terms of matrix exponential
by c(t) = e−tMc0. Hence, the discrete counterparts of (7)–(8) can be represented by

pi(t) = eT
i e−tMc0 and pw(t) = qT

we−tMc0/qT
we, (13)

respectively, where qw is the vector of source terms in the producers (or fluid sinks) and e is the vector
of ones. In Figure 1, two residence-time distributions are depicted for two permeability fields with
distinctly different heterogeneity. The channelized field is seen to naturally have a sharp peak far left of
the mean.
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Analogous to (11), the moments mw,k of pw(t) for k ≥ 1 can be obtained by

mw,k =
qT

p mk

qT
p e

, Mmk = k mk−1, (14)

with m0 = e. We note that, given a residence time distribution pw(t), the flow capacity and storage
capacity curves are simply given as (Shook and Forsmann, 2005)

F(t) =
∫ t

0
pw(s) ds, Φ(t) =

∫ t

0
s pw(s) ds. (15)

For efficient computation of residence-time distributions we employ a rational Padé approximation to
evaluate the action of the matrix exponential, i.e.,

p(t +∆t) = e−∆tM p(t)≈ P(−∆tM)Q(−∆tM)−1 p(t), (16)

for suitable polynomials P and Q. Herein, we use first-order polynomials to reduce fill-in, i.e., P(x) =
1+ x/2 and Q(x) = 1− x/2. Accordingly, for each successive value of the distribution we compute, we
need to solve a linear system. However, for the problems we consider, the matrix M is triangular possibly
after permutation (Natvig et al., 2007), and hence each linear solve is highly efficient. We note that an
alternative approach is to solve the truncated moment problem, i.e., to compute the first n moments of
the distribution from (11), and then try to find a distribution sharing the same moments. One approach
towards this is the maximum entropy method (see e.g., Mead and Papanicolaou (1984)), which involves
solving a set of n non-linear equations. In our initial tests, however, we found that obtaining convergence
for these equations could be difficult, especially for distributions with long, slim tails towards infinity.
This is typically the case for residence-time distributions from highly heterogeneous permeability fields
like the one shown to the right in Figure 1.

A recovery proxy for polymer flooding

In the following, we will use the residence-time distribution to develop a proxy for evaluating the perfor-
mance of polymer flooding. The word ’proxy’ is often used to denote response surface models derived
from a series of full flow simulations. Herein, we will use the same word to denote a reduced model
with simplified flow physics that can approximate recovery curves.

To describe polymer flooding, we consider an immiscible, two-phase model with three fluid components
(oil, water, and polymer) on the form,

∂t(φboso)+∇ · (bo~vo)−boqo = 0, ~vo =−λoK(∇po−ρog∇z)
∂t(φbwsw)+∇ · (bw~vw)−bwqw = 0, ~vw =−λwK(∇pw−ρwg∇z)

∂t(φd pvbwswcp)+∂t(ρrca(1−φr))+∇ · (bwcpvp)−bwqp = 0, ~vp =−λpK(∇pw−ρwg∇z).
(17)

This model is sufficiently general to incorporate most of the fluid effects found in commercial simulators,
like adsorption of polymer onto the reservoir rock, reduction in permeability, inaccessible pore space,
mixing of polymer in water, compressibility of fluids and rock, as well as pseudoplastic effects of the
diluted polymer solution. As our multiphase reference, we will use an open-source simulator (Hilden
et al., 2016) that includes all these effects.

Capturing macroscopic sweep effects in a single step

The first goal of the current flow-diagnostics approach is to efficiently obtain a flux field taking into
account changing mobility effects originating from injection of polymer. Omitting adsorption, com-
pressibility, dead pore space, gravity, and pseudoplastic effects, (17) can be written in total flux form:

~v =−(λw +λo)K∇p, ∇~v = q,
∂t(φsw)+∇ · (~v fw) = qw, ∂t(φswcp)+∇ · (~v fpcp) = qwcinj,

(18)
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where~v=~vw+~vo, fw = λw/(λw+λo) and fp = λp/(λw+λo). Although the equations in (18) are greatly
simplified compared to (17), they are still highly nonlinear, and obtaining a flux field ~v at some finite
end time T requires a simulation. To be able to compute this solution within a single time-step ∆t = T ,
we linearize fw and fp between their endpoints. The fully-coupled system is still nonlinear, but using
linear flux functions improves the convergence of the Newton solver used to solve the nonlinear system.
(Using a trust-region solver, e.g., as discussed by Møyner (2016), could be an alternative to linearization
of the flux functions, but such solvers have not yet been developed for polymer flooding.) Obviously,
taking extremely long time steps like this will lead to severe smearing of the saturation and concentration
fronts, and hence the solution cannot be used to predict fluid production. However, in the next step of
the proxy, we reevaluate the saturation front based on the residence-time distributions for the flux field~v
obtained from (18).

Mapping 1D displacement fronts to residence time distributions

In the second part of the proxy, we partition the flux field in injector–producer interaction regions, and
solve representative 1D transport problems along τ for each region. The interaction regions are obtained
by solving (forward and backward) stationary tracer equations, see Møyner et al. (2014) for details. For
each interaction region, we then perform the following three steps:

1. Compute the TOF/residence-time distribution for the region.

2. Map the saturation/concentration fields of the region onto a 1D TOF-grid (s0(τ)) using a suitable
averaging procedure, and run a 1D simulation on the grid from time zero to horizon T . As a result,
we get the saturation changes as a function of τ , i.e., ∆s(τ) = s(τ)− s0(τ).

3. Estimate the total volume of produced oil for the region by integrating the product of the residence-
time distribution and cumulative volume of additional water along τ . That is, the produced volume
of oil ro from time 0 to time T for the region is estimated as

ro =
∫

∞

0
p(τ)

∫
τ

0
∆s(τ̃) dτ̃ dτ. (19)

The overall procedure is illustrated in Figure 2 and has obvious similarities with streamline simulation
(think of each region as a bundle of streamlines). If necessary, the proxy can be refined by computing
the volumetric partition based on well segments instead of individual wells.

Numerical examples

To validate the practical usefulness of flow diagnostics for EOR, the methods introduced above were
implemented as an enhancement to the diagnostics module from the open-source Matlab Reservoir
Simulation Toolbox (MRST, 2015b; Lie, 2015).

Horizontal layers from SPE 10

In our first numerical example, we consider the horizontal layers of the synthetic Brent model used
in the 10th SPE Comparative Solution Project (Christie et al., 2001). The full model consists of a
grid with 60× 220× 85 cells, where the top 35 layers represent the shallow-marine Tarbert formation,
which has a log-normal permeability distribution, while the lower 50 layers represent the fluvial Upper
Ness formation with distinct permeability distributions for the high-permeable channels and the lower-
permeable background. We consider a scenario with a single injector and a single producer, each well
perforating an entire side of the model (see Figure 3). The injector is controlled by a constant rate, while
the producer is controlled by a constant pressure. The reference simulations are run as follows

1. From t0 = 0, inject water only until the water cut in the producer reaches 0.9 (t1).

2. From t1, inject water with a polymer concentration 1kg/m3 until a total of 51000kg polymer has
been injected. For most layers this amounts to approximately 0.8 PVI (t2). For comparison, we
also simulate [t1, t2] injecting water only.
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Residence-time distribution

τ/PV I

1D displacement profile
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Figure 2 Illustration of the recovery proxy. The reservoir is partitioned into injector–producer regions.
Then, residence-time distributions and representative 1D displacement profiles are computed for each
region and convolved to compute the recovery proxy.

The middle and right plots in Figure 3 show the reference solution with and without polymer depicted
as solid and dashed lines, respectively, for one layer in each of the two different formations. Next, we
evaluate the proxy for all layers. For comparison and subsequent approximation of macroscopic versus
microscopic sweep improvements, we compute both an implicit (as previously described) and an explicit
version of the proxy. For the explicit version, we simply solve (18) with a zero time step, e.g., solve a
pressure equation based on the current state. Then, the flow pattern will be locked to the current state,
and not represent changes in streamlines due to mobility changes. This way, the explicit version will
only include the effect of improved microscopic sweep due to changes in fractional flow and not reflect
improved macroscopic sweep. We note that for evaluation purposes, results from the explicit proxy were
compared to results from a sequential simulator which was modified to use fixed velocity for all time
steps. This comparison (not reported here) showed close agreement between the proxy and modified
simulation. The proxies are run as follows:

1. For the first period [0, t1], we evaluate the explicit and implicit proxies for various time horizons
T <= t1.

2. For the second period [t1, t2], we evaluate the explicit and implicit proxies for various time horizons
T <= t2− t1 both with and without polymer injection.

Figure 3 shows the proxy predictions for Layers 23 and 75 for the first period (water only) and for
the second period (polymer or water only). As observed, there is little difference between explicit and
implicit during the first period, while for the polymer injection in the second period, the two proxies
differ substantially for the highly heterogeneous Upper Ness case (Layer 75), but only marginally for
the more homogeneous Tarbert case (Layer 23). This indicates that the recovery increase due to polymer
for Layer 23 is mainly due to microscopic sweep improvements, while for Layer 75 macroscopic sweep
improvement is dominating.

Figure 4 shows the correlation for all layers between recovery factors computed by the proxies and ref-
erence recovery factors obtained from full simulations. The upper row shows all proxy evaluations for
the water-flooding scenario. For the first period (upper right), a (slight) bias is observed for the longer
time steps. Note however, that the reservoir is almost completely flooded during this period (water cut
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Figure 3 Well setup for each layer of the SPE10 model (left), and reference and proxy output for Layer 23
(middle) and Layer 75 (right). Dashed black line is reference recovery factor without polymer injection,
solid black line is reference recovery for polymer injection starting at t1 (water cut 0.9). Red dots
(polymer injection) and circles (water injection) show proxy predictions for various time horizons using
the implicit proxy, while blue dots and circles correspond to explicit proxy.
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Figure 4 Correlation betwen recovery predicted by the proxy (y-axis) and by a full simulation (x-axis)
for all horizontal layers of the SPE 10 model. The proxy is run with different time-step sizes, varying
from short (blue) to the whole period (yellow).
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from zero to 0.9), so some discrepancies are expected. For the second period (upper left), the proxy
predictions are very well correlated with the reference. Note also that there are no significant differences
between the explicit and implicit proxies for these cases. In the lower-left plot, all implicit proxy eval-
uations for the polymer injection case are plotted versus reference values from full simulations. In this
case, the explicit proxy evaluations are omitted as they fail to give adequate predictions. Although the
implicit proxy correlates well with a full multiphase simulation, it has a tendency to overpredict recov-
ery for the shorter time steps (prior to polymer breakthrough). This effect becomes more pronounced
when we plot the predicted increase in oil recovery due to polymer, i.e., recovery from polymer injection
minus recovery from water only (lower-right plot).

Finally, we wish to isolate the macroscopic and microscopic sweep improvements by comparing the
implicit and explicit proxies. Since a standard simulator cannot give predictions of these quantities,
we rather compare them with measures of heterogeneity, i.e., the Lorenz coefficient and the vorticity
index. As above, we estimate the improvement in total recovery by comparing the implicit proxy for
polymer injection to the implicit proxy for pure water injection. We estimate the improved recovery
due to microscopic effects by comparing the explicit proxy for polymer injection to the implicit proxy
for pure water injection. And finally, we estimate the improved recovery due to macroscopic effect as
the difference between total improved recovery and recovery improved by microscopic effects. Figure 5
depicts the resulting improved recoveries for all layers. As expected, there is no apparent correlation
between heterogeneity and microscopic sweep improvements. The best correlation (for both measures)
is observed between heterogeneity and macroscopic improvements. Accordingly, these results illustrate
that the largest gain for polymer injection is obtained for high heterogeneity. We note that the line of
best fit for macroscopic improvements versus Lorenz coefficient does not pass trough the origin, hence
it appears that the relation is not linear even though they are strongly correlated.

The Norne field model

In this example we adapt a model of the Norne field (IO Center, NTNU (2012)), to test our suggested
proxy in a realistic setting with multiple wells (see Figure 6). Again, we consider a two-phase oil/water
model with subsequent polymer injection. Flow functions for water/oil/polymer are the same as in the
previous example. In this example, the entire reservoir is initially at residual water saturation. Water is
injected at constant rate for approximately 20 years, while producers are shut when a water-cut of 0.9
is reached. As a result, at the end of the first period, five of the nine producers have been closed due to
excess water-cut. In the second period, all wells are opened, and set to produce at a constant liquid rate
for about 40 years (about 0.8 PVI). As in the previous example, both pure water and polymer injection
is considered. In the polymer case, all six injectors are set to inject a mixture of concentration 1kg/m3.
The implicit and explicit proxies are run for time horizons of 10,20,30 and 40 years for both injection
scenarios. With six injectors and nine producers, there are potentially 54 interaction regions. However,
in the current scenarios there are 14 producer-injector pairs with zero or negligible communication,
and hence TOF-distributions and 1D displacement profiles are computed for 40 regions for each proxy
evaluation. In Figure 6 (right), the evolution of the overall recovery factor is shown. Similarly to the
previous example, the proxy for polymer injection slightly overestimates the recovery for the shortest
time horizon, but matches perfectly as the polymer mixture reaches most producers. We also observe
a considerable difference in explicit versus implicit proxy, suggesting macroscopic sweep improvement
due to polymer are present.

Since the proxy computes recovery for each (communicating) well-interaction region, we can also es-
timate recovery for each of the wells. Figure 7 reports cumulative recovery factors for four of the pro-
ducers. For wells D-1CH and B-1BH, we observe that the polymer injection has a somewhat marginal
effect, while the opposite is true for B-2H and D-2H. Note that the large improvements seen in these
plots not only come from improved sweep in the drainage regions, but also from the fact that the drainage
regions are enlarged.

Last, we look more closely at the recovery profile of producer B-2H (Figure 7, top-left) and decompose
it according to the communicating injectors. The three injectors contributing most to production in B-2H
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Figure 5 Plot of heterogeneity measure (Lorenz coefficient or vorticity index) versus estimated increase
in total (top), microscopic (middle), and marcroscopic (bottom) recovery due to polymer. Red dots cor-
respond to the fluvial Upper Ness layers, blue to log-normal permeability fields of the Tarbert formation.
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Figure 6 Grid and well positions for the Norne model (left), and evolution of total field recovery factors
from simulations and proxies (right).
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Figure 7 Estimated evolution of recovery (simulation and proxy) for four of the producers.
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Figure 8 Estimated evolution of partial recovery for producer B-2H from the three most contributing
injectors.
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(measured in total flux) are C-1H, F-2H and C-4AH. Recovery plots for the corresponding interaction
regions are shown in Figure 8. Since our multiphase simulator cannot provide us with recovery estimates
broken down to individual well-pair regions, only the proxy-values for the second period are plotted. We
observe that the polymer injection apparently has a large influence on the recovery from these regions.

Concluding remarks

We have presented a proxy for rapid evaluation of polymer injection scenarios in the framework of
flow-diagnostics computational tools. Although taking inspiration from streamline methods, the proxy
utilizes the same grid and discretization as a standard finite-volume based reservoir simulator. For the
examples considered, the implicit versions of the proxy appeared to approximate both water and polymer
flooding to a fair degree of accuracy. Thus it appears as a good candidate for optimization applications.

In addition, the explicit versus implicit versions of the proxy appeared to adequately differentiate be-
tween macroscopic and microscopic sweep improvements. This could be used to asses the impact of
reservoir heterogeneity on polymer efficiency.
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