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Abstract

A Dirichlet–Neumann representation method (DNR) was recently proposed for upscaling and
simulating flow in reservoirs. The DNR method expresses coarse fluxes as linear functions of multi-
ple discrete pressure values along the boundary and at the center of each coarse block. The number
of coarse fluxes and pressure values at the boundary can be adjusted to improve the accuracy of
simulation results, and in particular to resolve important fine-scale details. Improvement over ex-
isting approaches is substantial especially for reservoirs that contain high permeability streaks or
channels. Recent multiscale methods provide an efficient means to obtain fine-scale fluxes or pres-
sures at the cost of solving a coarsened problem. However, these methods can also be utilized as
upscaling methods that are flexible with respect to geometry and topology of the coarsened grid. In
this work, we compare the multiscale mixed finite element (MsMFE) method and the DNR approach
for accurate upscaling. Both methods can be expressed in mixed form, with local stiffness matrices
obtained as inner products of numerically computed basis functions with fine-scale sub-resolution.
These basis functions are determined by solving local flow problems with piecewise linear Dirichlet
boundary conditions for the DNR method and piecewise constant Neumann conditions for MsMFE.
Adding discrete pressure points in the DNR method corresponds to subdividing coarse faces and
hence increasing the number of basis functions in the MsMFE method. The methods show similar
accuracy for 2D Cartesian cases, but the MsMFE method is more straightforward to formulate in 3D
and implement for general grids.



Introduction

Being able to understand and predict flow and transport processes is decisive to enhance the recovery
from hydrocarbon reservoirs. Porous rocks are typically highly heterogeneous and exhibit a multiscale
behavior in the sense that small-scale flow paths determine the overall displacement of fluids in a reser-
voir. Describing all pertinent flow processes with a single model is impossible and flow modeling is
therefore divided into separate steps according to physical scales: from rock models on the micro scale,
via facies models and geological models, to simulation models on the macro scale. Upscaling is in-
evitable to transfer parameters and effective properties up in the model hierarchy.

Our primary interest herein is the upscaling from geological models to simulation models. To accu-
rately model heterogeneous rock formations, geo-cellular grid models have very complex geometries
and topologies and may contain millions of cells. Even for models with a few tens or hundred thousand
cells, a typical forward simulation of a subsurface flow system will require hours of computer time.
Upscaling is therefore often a necessary step to reduce model sizes and reduce the turnaround time for
workflows used to assess different model assumptions, explore parameter space, and quantify the large
uncertainty that is usually associated with reservoir characterization. When geological models are coars-
ened to obtain simulation results faster, the cells in the resulting simulation model can be quite large and
may contain localized geological features. The upscaled models are obviously easier to simulate, but
are also only approximations of the original model. Errors introduced in the upscaling process may be
small when the flow field is relatively smooth, but could be large otherwise, in particular for models that
contain channels and high-permeability streaks. A critical technical challenge in upscaling is to be able
to coarsen geo-cellular models to reduce simulation times while maintaining a high degree of accuracy
for the simulation results.

To this end, several methods have been proposed. In the Dirichlet–Neumann representation method
[10], DNR for short, expressions are derived for flow rates as linear functions of the pressure value at
the center and multiple discrete pressure values along the of each coarse block. The number of pressure
values at the boundary is flexible and may be chosen to provide an adequate representation of pressure
profiles and flow distribution throughout a dynamical simulation. In the multiscale mixed finite-element
method [2], MsMFE for short, one constructs a set of special basis functions by which the effects of
the fine-scale heterogeneity can be incorporated into the discretized coarse-scale flow problem in a way
that is consistent with the local fine-scale properties of the differential operators. The basis functions are
computed by solving localized flow problems driven by source terms. The DNR and MsMFE methods
are similar in the sense that both allow straightforward reconstruction of fine-scale flow solutions and
can hence be used as part of a multiscale computational procedure. On the other hand, the methods
can also be seen as complementary: whereas the basis functions in the MsMFE method are localized
and determined by specifying Neumann boundary conditions on fluxes, the local flow solutions are
determined by specifying Dirichlet boundary conditions for the pressure in the DNR method.

The purpose of the paper is two-fold. First, we extend the DNR method from Cartesian to fully un-
structured grids. To this end, we borrow ideas from the MsMFE methods, write the DNR method on
mixed form, and notice that adding pressure points corresponds to subdividing coarse faces and hence
increasing the number of basis functions in the MsMFE methods. Second, we compare the accuracy
and robustness of the two methods and investigate how subdivision of interfaces between blocks in the
coarsened model can be utilized to reduce the error induced by the artificial boundary conditions used
to localize the computation of basis functions and Dirichlet–Neumann maps.

Grid and discretization

We consider the following single-phase flow problem

~v+K∇p = 0, ∇ ·~v = q, (1)
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for ~x ∈ Ω. Here, K is the permeability tensor, ~v is the fluid velocity, p is the fluid pressure, and q
represents sources and sinks. In addition, (1) needs to be augmented with boundary conditions on ∂Ω.

To discretize (1), we partition Ω into a set {Ωi} of NΩ non-overlapping polyhedral grid cells, each
of which have ni planar polyhedral faces {Γik}. We set N = ∑i ni. The set of polyhedral cells form a
conformal unstructured grid in the sense that each of the NΓ faces that is not part of the outer boundary is
shared by two grid cells. The parameters of (1) are constant on each grid cell. The discrete representation
of (1) on a single grid cell can be written on the form

vi = Ti(epi−πi), (2)

where vi denotes the vector of outward fluxes on Ωi, pi the pressure at the cell center, e the ni×1 vector
of ones, πi the vector of pressures at face centers, and the matrix Ti is the transmissibility matrix for cell
Ωi. Different choices of Ti results in different methods like the standard two-point flux approximation,
the mixed finite-element method, the related mimetic finite difference schemes, and (in a certain sense)
some multipoint flux approximations.

Given all transmissibility matrices {Ti}, the global system in mixed-hybrid form becomesT−1 C D
CT 0 0
DT 0 0

 v
−p

π

=

0
q
0

 , (3)

where v is the stacked vector of cell fluxes, p are the cell pressures, and π is the vector of pressures
for each interface. In the system matrix, T is the N×N block-diagonal matrix with blocks Ti; C is the
N×NΩ block-diagonal matrix in which each block is the ni× 1 vector e of ones; and D is the N×NΓ

matrix in which each row has a single unit entry that identifies the interface corresponding to the entry
in v.

In the following, we will operate on a coarse grid in which each grid block is formed by amalgamating
cells from an underlying fine grid. The interface between two coarse blocks may or may not have been
subdivided; either way, each coarse face consists of a (connected) set of cell faces from the underlying
grid. In other words, we keep the notation and let the coarse grid consist of NΩ coarse grid blocks {Ωi}
and NΓ coarse interfaces {Γ j}, defined so that each block Ωi is a simply connected set of (fine) grid cells
and each coarse interface Γ j is a connected set of fine-grid faces forming (part of) the interface between
two coarse blocks or (part of) the outer boundary of a single coarse block. Each coarse grid block, Ωi

has a boundary that is the union of ni coarse interfaces.

The Dirichlet–Neumann Method

The Dirichlet–Neumann representation method for computing flows in reservoirs is presented in [10]
for Cartesian grids in two spatial dimensions. In this section, we briefly review the method and present
a slight reformulation that simplifies the extension to unstructured grids in two and three spatial dimen-
sions.

For a coarse block Ωi with boundary ∂Ωi formed by ni coarse interfaces, we can compute a discrete
Dirichlet–Neumann map Mi = (m1, . . . ,mni) ∈ Rni×ni such that

vi = Miπi. (4)

Each column in Mi is a vector of interface fluxes computed from shape functions for flux ψik defined on
the fine grid restricted to Ωi. The ni shape functions are solutions of

~ψik +K∇φik = 0, ∇ ·~ψik = 0, (5)
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in Ωi with Dirichlet boundary conditions given on ∂Ωi. We will come back to the specification of
boundary conditions later.

Since each column of Mi in (4) is obtained from a solution of the homogeneous equation (5), eTMi is
the zero vector and the matrix Mi has rank ni−1. To represent flow in coarse blocks containing source
terms, (4) needs to be expanded by interface fluxes mi from a non-homogeneous shape function. We
compute the (approximate) effect of source terms in Ωi by solving

~ψi0 +K∇φi0 = 0, ∇ ·~ψi0 =

{
1/|Ωi|, if q = 0 in Ωi

q/
∫

Ωi
q, otherwise,

(6)

with homogeneous Dirichlet boundary conditions. The outward-directed fluxes on the interfaces of
∂Ωi are then evaluated to form the vector mi. When source terms are included, we get the expression
vi = Miπi +miqi for the out-fluxes of block Ωi, where qi =

∫
Ωi

q.

To approximate the solution of (1), we require continuity of the coarse flux across all coarse grid in-
terfaces. Let v be the N × 1 stacked vector of all outward-directed block interface fluxes vi, where
N = ∑

NΩ

i=1 ni. Furthermore, if we collect the Dirichlet–Neumann maps of each coarse block in a N×N
block-diagonal matrix M, the non-homogeneous flux vectors in an N×NΩ block-diagonal matrix m,
and let π be the vector of all coarse grid interface pressures, we may write the linear system as[

I −MD
DT 0

][
v
π

]
=

[
mq
0

]
, (7)

where q is the vector of block source terms. Each row in the N×NΓ matrix D has a single non-zero entry
equal one such that Dπ are the interface pressures in a block-wise ordering. This implies that DTv is the
vector of sums of the approximations to each interface flux. For internal interfaces, this sum should be
zero to ensure flux continuity on the coarse grid, whereas for outer interfaces the flux should either be
zero or equal any boundary conditions imposed on the flux. With a simple manipulation of (7), we get a
linear system for the interface pressures

DTMDπ =−DTmq. (8)

Mixed-Hybrid Formulation. Equation (7) can be written in mixed-hybrid form (3) if we define a
suitable interpretation of the coarse block pressure pi and the transmissibility matrix Ti so that (2)
is fulfilled for each block Ωi. In particular, by multiplying (2) from left by eT, we get qi = eTvi =
eTTi(epi−πi) and hence

pi =
1

eTTie

(
eTTiπi +qi

)
.

Substituting this expression back into (2), we obtain

vi =−
(

Ti−
1

eTTie
TieeTTi

)
︸ ︷︷ ︸

Mi

πi +
1

eTTie
Tie︸ ︷︷ ︸

mi

qi, (9)

where we have indicated which parts must be equal to Mi and mi, respectively, for the method to be
equivalent to the DNR method as defined above. By substitution and using the relations Mie=Mi

Te= 0
and eTmi = 1, it can be verified that

Ti =−Mi +
1
αi

miwi
T

represents a family of transmissibility matrices equivalent to the DNR method, where wi is a weighting
vector (eTwi = 1) and αi is a scaling parameter. For homogeneous media and blocks with planar faces,
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the resulting method will be consistent independently of α . However, in practice, it is important to keep
the condition number of Ti reasonable, and hence α can be used for this purpose; a good choice for α

dependens on the choice of units. For a given wi and αi, the relation between the block-pressure and
interface pressures is given by pi = wi

Tπi +αiqi. Herein, we will use wi = e/(eTe) or wi = mi and
α = 1/[darcy]≈ 1.0132 ·1012. Another natural choice for α is by setting it equal to the coarse (average)
block-pressure of the source shape function (6). This is justified by setting vi = mi and πi = 0 into (2),
to obtain mi = Tiepi =

1
αi

miwi
Tepi =

pi
αi

mi.

Boundary conditions in 2D. In flow-based upscaling, the choice of boundary conditions used to con-
struct local solutions of (1) can have a significant impact on the accuracy of the method. To construct a
discrete Dirichlet–Neumann map for a grid block Ωi with ni coarse interfaces, ni linearly independent
functions gk : ∂Ωi→ R are needed that will be used as Dirichlet conditions for (5). The DNR method
for upscaling [10] has been shown to produce quite accurate results when each gk is a piecewise linear
function in the curve length s measured along ∂Ωi (from some reference) with joints at ni points on
∂Ωi. These points are referred to as pressure points. The number and position of pressure points (and
coarse interfaces) may be used to improve the accuracy of the Dirichlet–Neumann representation for
heterogeneous models.

In [10], the authors specify pressure points along ∂Ωi according to a rule that takes into account per-
meability. A partition of ∂Ωi into a set of (non-overlapping) coarse-grid interfaces {Γ j} is then defined
such that there is one pressure point on each interface Γ j. Some technical conditions ensure that this
partition is uniquely defined. If we assume that the curve length s takes the value s j in the pressure
point of Γ j (i.e., the centroid of Γ j) we require that gk(s j) = δ jk. This ensures that the basis functions
{gk} forms a partition of unity on ∂Ωi, which is necessary for the Dirichlet–Neumann method to give
zero (coarse and fine) flux for constant-pressure solutions. Furthermore, by choosing the pressure in
each pressure point as degrees-of-freedom for the coarse-grid interface pressure, the matrix Mi is easily
constructed from the interface fluxes of each shape function.

Herein, we have chosen a different approach: we take the partition of ∂Ωi as given (say, from some
algorithm that takes permeability into account) and choose the centroid of a fine-grid face Γ

f
j ⊂ Γ j

in the middle of the coarse interface as the pressure point of interface Γ j. This enables the use of
grid amalgamation techniques (see e.g., [4]) to define the coarse interfaces in the coarse grid, which is
straightforward to extend to 3D.

Boundary Conditions in 3D. To make a direct extension to 3D of the boundary conditions used for
shape functions in 2D, we would need to construct piecewise linear functions in some parametrization
of the surface ∂Ωi of each coarse grid block Ωi. This is a fairly complicated process and would require
a triangulation of ∂Ωi in parameter space. We have therefore attempted a different approach.

As in 2D, to construct the Dirichlet–Neumann representation for a grid block Ωi whose outer surface
∂Ωi is the union of ni coarse-grid interfaces, we need ni functions whose values will be used as Dirichlet
boundary conditions in (5). The boundary conditions for (5) need only be given as piecewise constant
on the fine-grid faces Γ j ⊂ ∂Ωi, j ∈N = {1, · · · ,N}. We will therefore define n functions ĝi taking the
(local) face number as argument, ĝi : N → R, that are roughly hat-shaped with local support.

To this end, we need a set of n pressure points, one for each interface Γ j ⊂ ∂Ωi, that will position
the apex of the corresponding ĝi. We assume that each pressure point is the centroid of fine-grid faces
fi ∈F = { f1, · · · , fn}. The functions ĝi should fulfill

∑
i

ĝi( j) = 1 for j ∈ {1, · · · ,N} (partition of unity)

ĝi( j) = δi j for j ∈ { f1, · · · , fn} (local support).

In addition, we need to introduce a distance function dist(i, j) between any two fine-grid faces in ∂Ωi.
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Figure 1 The left plot shows two one-block MsMFE basis functions for a subdivided interface as well as
the sum of the two basis functions reproducing half of a Raviart–Tomas basis function, and hence linear
flux. The left plot shows two two-block MsMFE basis functions for a subdivided interface as well as the
sum of the two that fails to reproduce linear flux.

Then the boundary conditions are given by

ĝi( j) =
max(ri−dist( fi, j),0)

∑k max(rk−dist( fk, j),0)
, (10)

where ri = min{dist( fi, fk)| fk 6= fi, fk ∈F}. Herein, we have defined the distance function to be the
following graph distance: First, we construction the (fine-grid) surface grid over ∂Ωi and build a graph
G(V,E) in which each face f ∈ ∂Ωi is represented by a vertex in V and each edge between faces is
represented by an edge in E. With abuse of notation, the distance dist(i, j) is then defined as the shortest
graph distance between corresponding vertices in i, j ∈V .

The Multiscale Mixed Finite-Element Method

The main idea of the multiscale mixed finite-element method [2] is to construct a special approxima-
tion space defined over the coarse grid in which each basis function represents the flow between two
neighboring grid blocks and solves a local flow problem of the form (6), but with different boundary
conditions used for localization, as will be explained below. Unlike the DNR method, the MsMFE
method is designed to give conservative fluxes directly on the coarse and fine scale, as well as on any
intermediate scale, by using the fine-scale resolution of the basis functions.

One-block basis functions. A MsMFE basis function represents the flow over an interface or sub-
interface Γk between two neighboring blocks. Restricted to one block Ωi, the basis function ~ψik is
defined as the solution of

~ψik +K∇φik = 0, ∇ ·~ψik = ωi, (11)

in Ωi with Neumann boundary conditions ~ψik ·~n= νk on Γk and ~ψik ·~n= 0 on ∂Ωi\Γk with
∫

Ωi
ωi = 1 and∫

Γk
νk = 1. If global information is available as a previously computed flux field~v0, this is incorporated

in νk by setting νk =~v0 ·~nk/
∫

Γk
~v0 ·~nk ds. If no global information is available, we set νk = 1/Γk. If

more than one flux degree-of-freedom per interface is desired, this can be obtained by subdividing and
assigning one basis function to each sub-interface. The computation of each basis remains the same;
simply setting non-zero flux conditions on the sub-interface and zero flux conditions elsewhere. To the
left in Figure 1, we have depicted two basis functions corresponding to a subdivided interface (with
constant non-zero flux conditions) for a homogeneous domain. Taking the average of these functions we
obtain the basis function for the original non-divided interface.

Two-block basis functions. In the two-block approach, the basis function for an interface Γk between
blocks Ωi and Ω j is defined as the solution of

~ψk +K∇φk = 0, ∇ ·~ψk =

{
ωi, for~x ∈Ωi,

−ω j, for~x ∈Ω j
(12)
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in Ωi∪Ω j with zero Neumann boundary on ∂ (Ωi∪Ω j). Solving the two-block problem for a basis func-
tion corresponding to a sub-interface means that the remaining part of the interface (∂Ωi∩∂Ω j \Γk) is
considered as boundary and hence is shut through a zero Neumann condition. To the right in Figure 1,
we have depicted two basis functions corresponding to a subdivided interface for a homogeneous do-
main. Because of the inner boundary, the flux field experiences a peak (singularity) at the inner corner.
This means that the normal component of the flux over the open boundary is varying strongly and non-
linearly, and that the average of the two basis functions differs from the basis function defined for the
original non-divided interface.

The multiscale method. To approximate the solution of (1), we introduce the multiscale expansion

v f s = Ψv+ ũ f s, p f s = Ip+ p̃ f s, π f s = Jπ + π̃ f s. (13)

Here, v, p, and π denote unknowns associated with the coarse grid {Ωi}, whereas v f s, p f s, and π f s denote
the same quantities reconstructed on the fine grid. The matrix Ψ represents the fine-scale reconstruction
operator for fluxes and contains the flux basis functions ~ψik . The matrices I and J are simple prolongation
operators from coarse blocks and coarse faces to fine-grid cells and faces, respectively. Finally, ũ f s, p̃ f s,
and π̃ f s denote reminder terms defined on the fine grid. To form a global system on the coarse grid {Ωi},
we insert (13) into (3), multiply by the compression operator diag(ΨT,IT,JT) from the left, and drop
all remainder terms Ψ

TT−1Ψ Ψ
TCI Ψ

TDJ
ITCTΨ 0 0
JTDTΨ 0 0

 v
−p

π

=

 0
ITq

0

 . (14)

MsMFE as an upscaling method. To use MsMFE as an upscaling method, all we need to do is to com-
pute inverse transmissibility matrices T−1

i that consist of inner-products of the numerically computed
basis functions ~ψik on the corresponding coarse blocks Ωi. As above, the inverse transmissibility matrix
T−1

i describes the relation between the out-fluxes over the coarse interfaces of Ωi and the block and
interface pressures through (2). Given basis functions ~ψik , the (k, `) entry of matrix T−1

i is given by

T−1
i (k, `) =

∫
Ωi

~ψik ·K
−1~ψi` .

The elements of T−1
i can equivalently be derived from the computed pressure at the boundary ∂Ωi.

First, observe that the pressure φik in (11) is only defined up to a constant and we may therefore add the
condition

∫
Ωi

ωiφik = 0 to close the equation. Using Gauss–Green’s formula, we derive

T−1
i (k, `) =

∫
Ωi

~ψik ·K
−1~ψi` =−

∫
Ωi

~ψik ·∇φi` =−
∫

Ωi

∇ ·~ψik φi` +
∫

∂Ωi

φi`~ψik ·~n

=−
∫

Ωi

ωiφi` +
∫

Γk

φi`νk =
∫

Γk

φi`νk.
(15)

This means that T−1
i (k, `) is the (νk-weighted) average of the pressure basis φi` on interface k. In partic-

ular, T−1
i = [φi,1, . . . ,φi,ni ], where φi,k is the vector of average coarse interface pressures in the numerical

solution of (11).

Numerical experiments

In this section, we report the results of several numerical experiments that were conducted to verify,
validate, and compare the three numerical methods presented above (DNR, 1-block MsMFE, and 2-
block MsMFE). First, we discuss two basic properties, reproduction of linear flow and robustness with
respect to aspect ratios. Second, we use the SPE10 data set to investigate the robustness of the methods
and how subdivision of coarse-block interfaces affect the accuracy of the methods. Third, we discuss
how the accuracy of the methods can be improved by careful adaption of the coarse grid for high-contrast
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Boundary Reference DNR 2-block 1-block
East 9.869233e-07 9.689592e-07 9.404560e-07 9.869233e-07
West -9.869233e-07 -9.689592e-07 -9.404560e-07 -9.869233e-07
North -1.816886e-19 -1.475227e-19 2.309273e-15 -2.927903e-20
South -1.079967e-19 -1.278490e-19 2.309294e-15 1.943271e-21

Figure 2 Pressures and fluxes across the outer boundary for the linear flow example on a 5×5 coarse
grid in which all coarse faces have been subdivided into two segments of equal length.

media that contain barriers, high-flow channels, or combinations thereof. Finally, we show an example
of application to a real-life reservoir modeled using a complex, 3D unstructured grid. All experiments
are conducted using the MATLAB Reservoir Simulation Toolbox [7], Version 2011b.

Reproduction of linear flow is often used as a measurement for discretization methods. The DNR method
does not automatically reproduce linear flow unless the coarse-grid faces are subdivided in certain ways.
Likewise, the two-block version of the MsMFE method will not reproduce linear flow correctly if the
coarse-grid interfaces are subdivided, as was illustrated in Figure 1. On the other hand, the 1-block
version of MsMFE and the 2-block version with no face refinement will correctly reproduce linear flow.

Example 1 (Linear flow) We consider a 2D, horizontal reservoir that covers an area of 50× 50 m2

represented on a square grid with one meter resolution in each direction. Linear flow is specified by
imposing a pressure drop of 150 to 50 bar from the west to the east boundary and no-flow boundary
conditions on the north and south boundaries. Figure 2 shows the pressure for a homogeneous, isotropic
permeability field of 100 mD computed by the DNR and the two MsMFE methods on a 5×5 coarse grid
in which all coarse faces have been subdivided into two equal segments. The figure also reports the
computed fluxes out of the four boundaries, for which the relative errors are 1.82% (DNR), 4.71% (2-
block MsMFE), and 0 % (1-block MsMFE). It is obvious that both the DNR and the 2-block method
fail to reproduce linear flow. For the DNR method, however, there is a simple fix [10]: it can be shown
analytically that adding an extra segment with length equal one cell at the corners of each coarse block
will reproduce linear flow exactly. For short, we will refer to the method as DNR-c in the following.

To investigate the effect of face refinement, we also subdivided the coarse faces into five and ten seg-
ments; errors in the flux for the resulting computations are reported in Table 1. For comparison, the
table also reports the corresponding errors for a model with lognormal permeability for which neither
of the schemes will reproduce the correct flow unless refined to the fine grid. As expected, dividing the
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Table 1 Errors in coarse-scale fluxes measured in the relative L1 norm for linear flow in a 2D reservoir
with homogeneous or lognormal permeability represented on a 50×50 grid. The approximate solutions
are computed on a coarse 5× 5 grid in which each face is subdivided into n uniform segments, except
for the last row for which the faces are divided nonuniformly into three segments with a segment one cell
wide at each corner.

Homogeneous Lognormal
Segments bases DNR 2-block 1-block DNR 2-block 1-block

1 60 1.04e-01 1.50e-13 1.62e-13 9.68e-02 1.59e-02 4.66e-02
2 120 2.47e-02 9.01e-02 1.40e-13 2.51e-02 9.93e-02 5.38e-02
5 300 8.97e-02 3.16e-02 1.67e-13 8.87e-02 3.47e-02 2.28e-02

10 600 1.05e-13 6.25e-13 2.05e-13 6.51e-14 1.12e-12 3.41e-13
corner 180 7.96e-14 4.77e-02 1.60e-13 8.83e-03 5.72e-02 5.31e-02

faces into two or three segments gives a significant increase in the error for the 2-block MsMFE method.
On the other hand, although this method is not a consistent discretization, it produces (by far) the lowest
error when using no face refinement for the lognormal permeability. For the DNR method, we observe
that adding extra segments at the corners of the coarse grid reduces the error by one order of magnitude
for the cost of three times as many basis functions. Finally, the table verifies that all methods converge
as the coarse faces are fully refined using ten segments.

Real-life reservoir models often have high aspect ratios. In the next example, we will therefore investi-
gate how the accuracy of the DNR, DNR-c and the MsMFE methods is affected by increasing the aspect
ratio of the cells in the underlying fine grid.

Example 2 (Aspect ratio) We consider a 100× (100/L) m2 homogeneous reservoir subject to two dif-
ferent types of boundary conditions: linear flow making an angle θ with the x-axis or Dirichlet bound-
ary conditions with pressure p(x,y) = 1000sin(πx/L) on the north and east faces and zero pressure
otherwise. Table 2 reports errors for the DNR, DNR-c, and the two MsMFE methods for aspect ratios
L = 1,2,3,4,6,12. The DNR method has significantly larger errors than the other three methods and the
error increases with increasing aspect ratio. The error also increases for the MsMFE methods for the
analytic case, but this can mainly be attributed to inaccurate representation of the Dirichlet boundary
conditions; if subdivide all boundary faces, the error does not increase with increasing aspect ratio.
Overall, the DNR-c method is the most accurate, but also has three times as many basis functions as the
MsMFE methods.

Although not widely reported in the literature, the multiscale finite-volume method [5] is also known to
loose accuracy for increasing aspect ratios. We believe that the explanation is the following in the case of
Cartesian grids: In the MsMFE methods, the basis functions are constructed by considering flow in each

Table 2 Errors in coarse-scale fluxes measured in the relative L1 norm for a 2D reservoir of dimen-
sions 100× (100/L) with flow driven by two different boundary conditions. Approximate solutions are
computed on a 12×12 coarse grid overlying a fine 60×60 grid.

Linear, θ = π/3 Analytic
Ratio DNR DNR-c 2-block 1-block DNR DNR-c 2-block 1-block

1:1 8.46e-02 3.00e-13 1.63e-09 2.94e-13 8.71e-02 3.11e-03 4.95e-03 4.95e-03
2:1 2.53e-01 2.02e-13 1.32e-09 2.03e-13 2.30e-01 3.47e-03 7.71e-03 7.71e-03
3:1 3.29e-01 3.18e-13 1.10e-09 3.12e-13 3.05e-01 4.39e-03 1.03e-02 1.03e-02
4:1 3.66e-01 1.82e-13 9.15e-10 1.76e-13 3.45e-01 5.46e-03 1.31e-02 1.31e-02
6:1 4.02e-01 3.50e-13 6.70e-10 3.39e-13 3.90e-01 8.06e-03 1.79e-02 1.79e-02

12:1 4.40e-01 2.06e-13 3.60e-10 1.87e-13 4.41e-01 1.21e-02 2.60e-02 2.60e-02
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Figure 3 A [1 : 60]× [1 : 60]× [61 : 65] cut-out from the SPE10 model. The upper left plots show
approximate pressure solutions on a base case with a 6×6×5 coarse grid. The upper right plot shows
the number of coarse blocks involved in the computation of basis functions and L1 errors of the coarse-
scale fluxes for the face refinements shown in the lower plots: 2× 2 and 5× 5 uniform subdivision,
nonuniform coarsening using permeability values [4], and permeability thresholding with values 10,
100 and 1000 mD.

axial direction, which is represented by a separate basis function. In the MsFV and the DNR methods, on
the other hand, basis functions are constructed by imposing a unit pressure at one coarse-grid vertex and
zero pressures at the other vertices. Each basis function will therefore introduce a certain coupling of the
flow in the axial directions, and this effect may cause the error to increase significantly with increasing
aspect ratios. Introducing extra degrees of freedom at the corners (in the form of segments that are one
cell width wide) breaks the coupling and makes the DNR method robust with respect to aspect ratios.

Next, we study several cut-outs from Model 2 of the 10th SPE Comparative Solution Project [3] that
was designed to benchmark various upscaling methods and has later become one of the most popular
data sets to use when validating multiscale methods. In the literature, the most common test is to use
horizontal slices in which the permeability is isotropic. We have therefore conducted a systematic study
in which we have run all slices orthogonal to each of the axial directions using linear and analytic bound-
ary conditions as in the previous example. In all runs, we used two different types of face refinement:
uniform refinement of each coarse face into n segments or nonuniform refinement of each coarse face
based upon a two-bin segmentation of permeability values for a given threshold value. The only conclu-
sion we can draw from these experiments is that both the DNR and the 2-block MsMFE method are able
to exploit channelized or patchy patterns in the permeability in a relatively robust manner to produce
accurate flow field. Apart from that, the results are somewhat inconclusive. In some cases, the DNR
method is more accurate than the 2-block MsMFE method and vice versa. Likewise, using nonuniform
refinement of the block interfaces will give significant improvements in some cases and not in others.
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We have also run several 3D subsets of the full model using the two MsMFE methods, e.g., as shown
in Figure 3. With no face refinement, the 2-block method reproduces most of the qualitative features of
the fine-scale solutions although it sometimes exhibits certain numerical artifacts. The 1-block method,
on the other hand, will in many cases fail to resolve the fine-scale solution qualitatively. Introducing
various forms of face refinement improves the resolution of both methods but the improvements may
not be large enough to justify the increased computational cost induced by the extra basis functions.

In all simulations reported so far, the face refinement was imposed a priori, i.e., without using any
information about the flow pattern at all. In practice, it may be possible to adapt the coarse grids by
identifying regions or individual cells that are responsible for non-monotone and other erroneous behav-
ior. In some cases it may be possible to use a combination of experience and geological knowledge to
introduce a priori adaption in targeted regions. In other cases, one may have one or two global fine-scale
solutions available for diagnostics. Herein, we use a much simpler approach: knowing that the analytical
solution should be monotone, we can refine coarse faces and recompute the corresponding basis func-
tions in regions where the approximate solution falls outside the minimum and maximum values from
the prescribed boundary condition. The refinement can be introduced in several ways, e.g., as shown in
the next example.

Example 3 (SPE10: Adaption) To demonstrate the effect of a posteriori face adaption, we consider
sixty x-slices with 120×85 cells and 220 y-slices with 60×85 cells extracted from the SPE10 data. Flow
is driven by linear boundary conditions with p = 150 bar on the west and p = 50 bar on the east bound-
ary or by analytic boundary conditions with p(x,y) = 1000sin(πx/L) on the north and east boundaries
and zero pressure otherwise. As base cases, we will use a 6×5 coarse grid with 2D analogues of the first
two and the last three face refinements shown in Figure 3: coarse faces divided uniformly into one, two,
or five uniform segments and or divided nonuniformly based upon permeability thresholding with values
10, 100, and 1000 mD. We then pick all slices in which the relative L1 error exceeded unity and recom-
pute the approximate solution with three different strategies for refining faces: In the first approach, we
subdivide the coarse faces uniformly in all blocks in which the pressure computed from the coarse-scale
system falls outside the prescribed pressure range. For the base grids with uniform segments, we sub-
divide faces into ten segments, while for the base grids with nonuniform segments we subdivide coarse
faces into five segments. In the second approach, we subdivide the coarse faces uniformly, but only in
those cells (along the face) in which the reconstructed fine-scale pressure falls outside the prescribed
pressure range. In the third approach, we subdivide the coarse faces uniformly in all blocks in which a
certain percentage of the reconstructed fine-scale pressures fall outside the prescribed pressure range.

Figure 4 shows the corresponding reduction in L1 error and increase in the number of coarse blocks
involved in the computation of basis functions for y-slices with analytic boundary conditions for three
of the different base cases. For the 6× 5 base case, the only approach that seems to work is the third
approach using a zero percentage, i.e., refining in all cells that fall outside the pressure range. For the
other two base cases, all our three approaches for a posteriori adaption give significant improvements
in the error for most of the slices at the cost of less than a doubling of the number of blocks involved in
the computation of basis functions. However, it is worth noting that improved solutions are not obtained
in all cases even if the number of basis functions is increased. The adaptive methods can for this reason
not be considered as fully robust.

To investigate the efficiency of a posteriori adaption, we include an experiment in which we compare
the various a priori face refinements for a 6× 5 coarse grid with similar a posteriori face refinements
for a 3×3 coarse grid. As expected, the scatter plots in Figure 5 show that adding degrees-of-freedom
a posteriori to a relatively coarse basis grid gives significant improvements of the error (and hence the
robustness of the method).

Similar a posteriori adaption can of course be introduced for the MsMFE methods as well. Table 3
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Figure 4 Use of a posteriori face adaption for the DNR method on y-slices of the SPE10 data set. The
plots to the left show L1 errors of coarse fluxes, the plots to the right show the number of coarse blocks
used to compute basis functions. Each row corresponds to a different base grid that was used before
introducing the a posteriori adaption.
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Figure 5 The left column shows scatter plot of the L1 error on a set of 3×3 coarse grids with a posteriori
face refinement versus the L1 error on a 6× 5 coarse grid with a priori face refinement for y-slices of
SPE10 with analytic boundary conditions (upper row) and x-slices with linear boundary conditions.
The plots in the right column show the corresponding number of coarse blocks used in the calculation
of basis functions.

Table 3 Ratios in the relative L1 error and in the number of coarse blocks involved in computing basis
functions for simulations with and without a posteriori adaption in the 2-block MsMFE methods.

Model Boundary base case 2×2 5×5 10 mD 100 mD 1 D
condition err bf err bf err bf err bf err bf err bf

x-slice linear 0.34 9.12 0.49 3.36 0.73 1.45 0.85 1.28 1.02 1.17 0.92 1.69
x-slice analytic 0.36 8.71 0.44 3.20 0.60 1.47 0.86 1.25 1.08 1.13 0.94 1.60
y-slice linear 0.42 8.89 0.62 3.15 0.83 1.38 0.93 1.35 1.04 1.26 0.85 1.94
y-slice analytic 0.31 8.61 0.48 3.01 0.79 1.39 0.92 1.28 1.03 1.20 0.82 1.86
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reports the average reduction in error and corresponding increase in the number of basis functions
for the 2-block MsMFE method when we refine the faces of all blocks that have at least one fine-scale
pressure value outside the prescribed range. Results for the 1-block method are similar and hence not
reported.

Extensive numerical experiments have shown that although multiscale methods may provide high accu-
racy for media with very strong permeability contrasts (high-permeable streaks or barriers) [1, 9], one
can also easily construct cases where the methods fail to provide accurate solutions [1, 6]. Previous ex-
perience has show that adapting the coarse grid to barriers in the permeability field may give improved
resolution [1]. Whereas it is easy to implement support for arbitrarily shaped coarse grids in the MsMFE
methods, we have not yet found a good method to do so for the DNR method in 3D. In the following,
we will therefore only use the two MsMFE methods when considering 3D examples of high-contrast
media.

Example 4 (Multiple streaks) We consider a rectangular domain that contains several high or low-
permeable streaks described on a uniform 50×50×10 fine grid. Flow is driven by Dirichlet boundary
conditions equal 300 bar on the south side and 100 bar on the north side. To systematically study
the behavior of the two MsMFE methods, we generated three different permeability masks and run
cases with low-permeable barriers in a high-permeable background, or high-permeable streaks in a
low-permeable background. In both cases, we study the effect of increasing the contrast between the
background and the foreground permeability. In the barrier cases, the background permeability is held
fixed at Kb = 1 D while the foreground permeability of the barriers varies seven orders of magnitude,
K f = 10−3, . . . ,103 mD. In the high-flow channel cases, the channel permeability is held fixed at K f =
1 D, while the background permeability varies seven orders of magnitude, K f = 10−3, . . . ,103 mD.
Figure 6 reports the observed errors in coarse-scale fluxes for the 2-block method. Here, we can make
several interesting observations.

Starting with the barrier cases, we observe very large errors for the base case with a 5× 5× 1 coarse
grid when the media contrast spans five to seven orders of magnitude, in particular for the third mask.
Refining the coarse-grid faces reduces the error somewhat, and the reduction in error is almost the
same regardless of what type of face refinement is introduced. In all cases, the lowest number of basis
functions is obtained for the nonuniform face refinement, and this should therefore be our method of
choice. The biggest reduction of the error, however, is obtained when volumetric adaption to the barriers
is introduced for cases with strong media contrasts. On the other hand, as the media contrast decreases,
the error of the volumetric adaption increases because of numerical errors introduced by not using
rectangular coarse blocks. This is particularly evident for parameter K f = 1000 that corresponds to
a homogeneous medium, for which we clearly observe strong numerical artifacts also for grids having
more than a single basis function associated with each coarse interface. One possible source of this
error is that the 2-block does not reproduce uniform flow. The 1-block method, on the other hand,
reproduces uniform flow but has errors that are equal or larger for all media contrasts except for the
homogeneous case. This indicates that boundary conditions and geometrical complexity of the coarse
blocks may be more important sources of errors than the inability to produce uniform flow. The increase
in error is also most pronounced for the third mask, for which the streaks have the most complicated
geometry.

Moving on to the case with high-permeable streaks, we first of all observe that the volumetric subdivision
is clearly unsuitable. This is particularly evident for the second case in which the cells inside the streaks
in many places are only connected through edges (and not faces). This will result in a large number
of coarse blocks and an overall set of basis functions that does not produces the almost linear flow in
a good way. Secondly, it does not seem to matter much what type of face refinement one chooses for
the two first masks. For the third mask, subdividing faces according to foreground and background
permeability (denoted ’fNUC’ in the figure) gives surprising small improvement in the error and further
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Figure 6 Relative L1 error in coarse-scale fluxes for the 2-block MsMFE method for a set of cases with
barriers or high-permeable streaks. The small plots in the left column show the permeability masks with
black color denoting the foreground permeability and white color denoting the background permeability.
The lower plots show a zoom of the six different grids used: red color is foreground permeability, black
color is coarse-block faces before subdivision, and white color subdivision lines.
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Figure 7 L1 errors of the coarse-scale fluxes and the number of coarse blocks involved in the construction
of basis functions for a homogeneous medium with linear flow represented on a 2D PEBI grid. The
upper left plot shows results for an almost uniform 5×5 coarse grid with face refinement derived from
a 5n× 5n Cartesian grid. The upper right plot shows results for a 25-block coarse grid generated by
Metis with face refinement derived from a 25n-block Metis partition.

subdivision of the high-permeability streaks is needed to reduce the error.

In the next example, we apply the DNR and MsMFE methods to a 2D unstructured test case.

Example 5 (2D PEBI) Unstructured grids will naturally impose coarse faces that do not follow the
axial directions. To investigate the effect this has on the solution quality, we consider a square domain
with a homogeneous permeability field represented on a 2D unstructured PEBI grid. We consider two
different coarse grids: an almost uniform grid obtained by sampling from a 5× 5 Cartesian partition
and a k-way Metis partition [8] with 25 blocks. Figure 7 shows a convergence study of the errors in
coarse-scale fluxes obtained on a sequence of coarse grids with varying degree of face refinement for
the DNR and the two MsMFE methods. As should be expected, the errors of the DNR and the 1-block
methods decay with increasing face refinement. The error in the 1-block method is particularly high
because constant flux is imposed along coarse faces that do not align with the principal axis of flow. For
the 2-block method, the error increases significantly when the coarse faces are subdivided and we need
to introduce a quite fine partition before the error comes back to the level of the base case, in particular
with the uniform partition. Results for a set of lognormal permeabilities are qualitatively the same and
thus not reported.

Figure 8 reports a comparison of various face refinements for two high-contrast models: ’channels3’
from Figure 6 with high-permeable streaks on a low-permeable background or low-permeable barriers
in a high-permeable background. For the barrier cases, the highest accuracy is obtained if the faces
are adapted to fit the barrier exactly (denoted ’10 mD’ in the figure). The nonuniform method (’fNUC’
in the figure) segments permeability and then merges small blocks to generate a nonuniform volumetric
partition that has approximately the same number of blocks as the base case. The face partition is
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Figure 8 L1 errors of the coarse-scale fluxes and the number blocks involved in the computation of basis
functions for various types of face refinement on model ’channels3’ with linear flow.

then generated by intersecting the two volumetric partitions and will hence not necessarily capture the
barriers exactly, which explains why this method gives much smaller improvement in accuracy. For
high-permeable streaks, the 2-block method still has its lowest error when the grid is adapted to the
high-permeable streaks, whereas the DNR method has significantly lower error when using a refinement
that does not adapt to the structure of the permeability field.

Figure 9 reports a similar refinement study for two models: one with lognormal permeability and one
with lognormal permeability and low-permeable barriers. For the first model, we observe three interest-
ing trends: (i) uniform partitions systematically give higher accuracy than Metis partitions; (ii) whereas
a uniform face partition improves the DNR solutions, nonuniform partitions adapted to the permeability
do not; and (iii) all face refinements diminish the accuracy for the 2-block method. The flow pattern in
the second model will to a large extent be dictated by the low-permeable barriers and the best accuracy
is obtained if we add face refinement that adapts to the barriers using either a single threshold value of
10 mD or a partition of permeability into four levels.

As derived herein, the DNR method is in principle applicable to unstructured grids also in 3D. In prac-
tice, however, the method proved to be significantly more difficult to implement than the two MsMFE
methods. To build pressure boundary conditions, one must assume that coarse faces are connected
and do not have holes (in 3D). Both requirements are needed to generate approximate piecewise linear
boundary conditions with apex in a face centroid. This means that compared with the MsMFE meth-
ods, the DNR method requires more complex data structures and quite intricate algorithms to construct
coarse grids. In 2D, we have implemented methods that guarantee that both requirements are fulfilled.
In 3D, we have only been able to ensure that the requirements are fulfilled in certain special cases with
a fine grid. In the last example, we will therefore only use the two MsMFE methods.
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Figure 9 The left plot shows a comparison of face refinement for uniform and Metis partitions for a
model with lognormal permeability and linear flow. The right plot shows a similar lognormal model
with low-permeable barriers (0.01 mD) imposed according to mask ’channels3’.

Example 6 (Realistic model) We consider a realistic model of a deepwater environment that has been
generated using process simulation instead of a geostatistical method. The model is characterized by
a large number of small void spaces that are scattered throughout the reservoir volume, resulting in
poor vertical (and lateral) connection and making the model somewhat reminiscent of a danish pastry.
Altogether, the model contains 150 vertical layers, but many of the layers are very thin and have partially
been eroded away, resulting in increased geometrical complexity.

To partition the grid, we use a simple strategy (see Figure 10): first, we introduce a 6× 6 partition
in the lateral direction by using the centroids of the cells to sample from a 6× 6× 1 partition of the
model’s bounding box, followed by a simple majority-vote algorithm to ensure that each vertical stack
of cells is assigned to a single coarse block. Each coarse block is then post-processed into a set of
singly-connected blocks. In a similar way as in Example 3, we can introduce a posteriori grid adapting
by refining the faces of all blocks that contain cells in which the pressure does not fall inside the span
of the boundary values. The faces of all such blocks are subdivided by computing the face intersection
with a 3n×3n volumetric partition.

Figure 11 compares the fine-grid solution and the 2-block MsMFE solution for a 6× 6 partition with
and without face refinement. In both cases, there are 673 blocks and for a fine grid with 90467 cells
this gives an upscaling factor of 134. The corresponding number of blocks involved in the computation
of 2-block basis functions are 3164 and 5254, respectively. Introducing face refinement in some of the
blocks a posteriori improves the approximate solution, as can clearly be seen in the plot of pressure
discrepancy. Using face refinement, we can obtain (significantly) better resolution for the same number
of basis functions, especially for the pressure.

Concluding remarks

We have presented two new methodological developments. First, the Dirichlet–Neumann representation
(DNR) method [10] has been extended to 3D and fully unstructured grids. Second, the multiscale mixed
finite-element (MsMFE) method [2] has been extended to coarse grid having subdivided coarse faces
so that more than one basis function may be associated with each pair of coarse blocks. The 2-block
formulation of the MsMFE method, does not reproduce linear flow when coarse faces are subdivided.
Subdividing coarse faces will therefore not improve the error if the flow field has a dominant linear
component. Likewise, the DNR method only reproduces linear flow if extra segments one cell wide
are added at each vertex of the coarse grid. On the other hand, although reproduction of linear flow is
important for smooth heterogeneities, it may be less important for channelized and high-contrast media.
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a) lateral 6×6 partition: 35 blocks b) split lateral block into singly-connected blocks
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c) number of new blocks in each lateral block d) a priori partition: 673 blocks, 2255 faces

e) subdivision of faces using 3n×3n partition f) a posteriori partition: 673 blocks, 4361 faces

Figure 10 Grid partition of the real-life model based upon a 6×6 lateral partition.
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Figure 11 Fine-scale and 2-block MsMFE solutions (with and without face refinement) for the real-life
reservoir model subject to linear boundary conditions with the pressure drop making a π/4 angle with
the x-axis. The last row reports discrepancies in flux and pressure for a series of coarse grids based
upon a lateral n×n partition.
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Through a series of numerical experiments, of which a few have been reported herein, we have shown
that subdividing coarse faces to capture high-flow effects will increase the resolution of the DNR and
the MsMFE methods both for synthetic and realistic cases. Barriers and other no-flow effects, on the
other hand, are captured more accurately by using volumetric grid adaption. Altogether, the DNR and
MsMFE methods are quite robust and generally produce low errors compared with standard upscaling
methods. However, the methods will occasionally lead to large errors for specific combinations of coarse
grids and face refinements. One solution to cure this problem would be to use a posteriori adaption; a
simple approach in this direction was presented for subsets of the SPE10 data set.
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