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Abstract

Upscaling of parameters involved in single and two-phase flow has been researched quite ex-
tensively, and several methods for performing upscaling are known and understood. Less work has
been done related to upscaling of enhanced oil recovery simulations. This is what we investigate,
and in particular, we consider upscaling of parameters related to polymer flooding, which is the pro-
cess in which large polymer molecules are added to the injected water to enhance its ability to push
hydrocarbons through the reservoir. Herein, the polymer flooding process is described as a two-
phase, immiscible system that in addition to a Todd–Longstaff mixing model includes permeability
reduction, polymer adsorption, and dead pore space.

Effective parameters are computed by running simulations until a steady-state is reached and
then performing upscaling based on the fluxes. This method is used by a major oil company as part
of an established work flow for single and two-phase upscaling, and it is therefore natural to try
to extend the method to polymer flooding. The upscaling is performed on the meter scale, where
the steady-state assumption best can be justified. The procedure involves first performing single-
phase upscaling of the absolute permeability, then two-phase upscaling of relative permeabilities,
and finally, upscaling of the parameters involved in polymer flooding. The new upscaling method is
verified against an analytical solution and validated on two synthetic models that include real data.

Results show that the permeability reduction factor, which only depends on polymer concentra-
tion in the fine-scale model, will generally also depend on water saturation in the upscaled model.
This introduces addition computational costs in the simulation, since the property evaluations now
require extensive use of lookup-tables and interpolation. We therefore suggest making simplifica-
tions in order to reduce the complexity.



Introduction

Upscaling of single and two-phase flow has been researched quite extensively, and several methods for
performing upscaling is known and understood (see e.g., Christie (2001) for an overview and an exten-
sive list of relevant references). Upscaling of enhanced oil recovery processes is much less researched.
Herein, we investigate upscaling of parameters related to polymer flooding. Polymer flooding is the
process in which water-soluble polymers are added to the water before it is injected into the reservoir.
The purpose of the polymer is to increase the viscosity of the water, which will lower the mobility of
the displacement front and thus increase sweep efficiency. Adsorption of polymer molecules onto the
rock surface will reduce the permeability, but also dilute the polymer concentration and reduce the EOR
effect. At the same time, smaller portions of the pore space may be inaccessible to the water-polymer
mixture since the polymer molecules are too large to enter small pore throats. See Lake (2010) for a
more thorough discussion.

The purpose of our work is to develop an upscaling method for polymer flow physics on the meter scale.
Steady-state upscaling relies on the assumption that the flow in the region of interest is close to a steady
state, which on the meter scale is a reasonable assumption away from wells. Steady-state methods are
already used by a major oil company as part of an established work flow for single and two-phase upscal-
ing, and it is therefore natural to try to extend this method to polymer flooding. Assuming steady state
will enable us to simplify the flow model by disregarding time-dependent terms and develop a simple,
sequential upscaling procedure that consists of first performing single-phase upscaling of absolute per-
meability, then two-phase upscaling of relative permeabilities, and finally, upscaling of the parameters
involved in polymer flooding.

Mathematical Model

The model considered is an extension of the black-oil model for oil and water, where in addition to the
oil and water saturations, so and sw, we have the concentration cp of polymer as a primary unknown. The
concentration is given in units of mass per volume of water. It is assumed that the presence of polymer
changes the water viscosity, but does not influence the oil phase. The conservation equations for oil,
water, and water with polymer are
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with the closing relation sw + so = 1 and fluxes given as

vo =−
kro

µo
K (∇po−ρog∇z) , (2a)

vw =− krw

µw,effRk
K (∇pw−ρwg∇z) , (2b)

vp =−
krw

µp,effRk
K (∇pw−ρwg∇z) . (2c)

The porosity φ , absolute permeability K, phase pressures pα , fluid densities ρα , and formation volume
factors Bα are familiar from the two-phase black-oil equations. In addition, there are parameters related
to the polymer: Rk is the relative-permeability reduction factor, sdpv denotes the dead pore space, ca is
the amount of polymer adsorbed on the rock face, ρr is the rock density, and φref a reference porosity.
The polymer effects are described in more detail below.

The effective viscosities of pure water and water with polymer are denoted µw,eff and µp,eff, respectively.
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These effective viscosities are defined using the Todd–Longstaff mixing model (Todd and Longstaff,
1972). The viscosity of a fully mixed solution of water and polymer is denoted µm(cp), and the effective
polymer viscosity is given by

µp,eff = µm(cp)
ω

µm(cp,max)
1−ω ,

where cp,max is the maximum possible polymer concentration, and ω ∈ [0,1] is the Todd–Longstaff
mixing parameter. The mixing parameter is equal one when the polymer solution and water are fully
mixed, whereas ω = 0 if the polymer solution is completely segregated from the water. In a similar way,
the viscosity of partially mixed water is defined as

µw,e = µm(cp)
ω

µ
1−ω
w .

The effective water viscosity µw,eff is then given by

1
µw,eff

=
1− cp/cp,max

µw,e
+

cp/cp,max

µp,eff
.

Polymer molecules are relatively large and a portion of the pore volume may therefore be inaccessible
to the polymer, which again may result in an accelerated polymer flow. This effect is modeled by the
dead pore space sdpv.

Adsorption is the effect of polymer molecules attaching to the rock surface. Adsorption will cause the
polymer concentration to decrease, and consequently so will the viscosity. The adsorption function
ca(cp) gives the relationship between the polymer concentration and the amount of adsorbed polymer.
The adsorption of polymer may reduce the relative permeability, which is modeled by the reduction
factor Rk, defined by

Rk(cp) = 1+(RRF−1)
ca(cp)

ca,max
, (3)

where RRF≥ 1 is called the residual resistance factor and ca,max is the maximum adsorption.

Equations at Steady State

In the following, we ignore compressibility to simplify notation, but this may easily be included without
changing the conclusions. At steady state, there is no time dependency in the system, and so (1) reduces
to the steady-state equations

∇ · vo = 0, ∇ · vw = 0, ∇ · (cpvp) = 0, (4)

where the fluxes are given by (2). By defining the function

f (cp) = cp
µw,eff

µp,eff
,

we have the relation cpvp = f (cp)vw. Then the polymer steady-state equation reads

∇ · (cpvp) = ∇ ·
(

f (cp)vw

)
=

(
∂ f (cp)

∂cp
∇cp

)
· vw + f (cp)

(
∇ · vw

)
= 0.

From (4) it follows that ∇ · vw = 0, and hence we are left with(
∂ f (cp)

∂cp
∇cp

)
· vw = 0. (5)

It can be shown that f ′(cp) > 0 for all cp ∈ [0,cp,max]. As the water flux at steady state in general will
be nonzero, Equation (5) implies that ∇cp = 0. That is, the polymer concentration is constant at steady
state. Notice, however, that this constant may jump to a different value across any interface with zero
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water flux that isolates parts of the global domain into separate flow systems. We will in the following
assume that there are no such interfaces in the interior of the domain during upscaling, and hence we can
take the polymer concentration to be constant at steady state. A consequence of this assumption, is that
the effective viscosities become proportional to the pure water viscosity. If the viscosity of a fully mixed
solution can be written as µm(cp) = µw,mult(cp)µw for some function µw,eff dependent on cp (this is the
input form used in a leading commercial simulator), then a constant polymer concentration implies

µp,eff = µm(cp)
ω

µm(cp,max)
1−ω =

[
µw,mult(cp)

ω
µw,mult(cp,max)

1−ω

]
µw

.
= αµw

where α is constant. Introducing the shorthand notation cp = cp/cp,max, the effective water viscosity is

1
µw,eff

=
1− cp

µw,e
+

cp

µp,eff
=

1− cp

µm(cp)ω µ
1−ω
w

+
cp

αµw
=

[
1− cp

µw,mult(cp)ω
+

cp

α

]
1

µw

.
=

1
β

1
µw

and so µw,eff = β µw, where β is constant. Inserting these relations for effective viscosities into the
steady-state equations (4), the water and polymer equations reduce to the same equation, and the system
becomes essentially a two-phase system

∇ ·
(

kro

Boµo
K (∇po−ρog∇z)

)
= 0, (6a)

∇ ·
(

k̃rw

Bwµw
K (∇pw−ρwg∇z)

)
= 0, (6b)

where the altered water relative permeability is k̃rw = krw/Rk, and Rk is given by (3).

Upscaling Methodology

Our upscaling procedure consists of sequentially applying single-phase upscaling of the absolute per-
meability, two-phase upscaling of relative permeabilities, before upscaling the parameters involved in
polymer flooding. The single and two-phase methods we use for upscaling are described in several pa-
pers, see e.g., (Christie, 2001; Pickup et al., 2000). In the following, we will let superscript ’∗’ denote
an upscaled value (which may be scalar or tensor), so that e.g., K∗ denotes the upscaled value of the
permeability field K.

Single-Phase Upscaling

Flow-based upscaling of permeability depends on the choice of boundary conditions applied. We con-
sider both fixed and periodic boundary conditions. Assume first that fixed boundary conditions are
applied. Consider a domain Ω of the fine grid that is to be upscaled to a single coarse grid block Ωc.
For each direction d = {x,y,z}, a pressure drop ∆p is applied across the domain Ω, and the pressure
equation

∇ · (K∇p) = 0

is solved to obtain the flux field vd . The average flux out of the domain is then

v̄d =
1

Ad

∫
∂Ωd

vd ·nd dA, where Ad =
∫

∂Ωd

dA,

and ∂Ωd denotes the boundary of Ω at the low pressure side in d-direction, and nd is the normal vector
to this boundary. The upscaled permeability in direction d is then given by

K∗,d =
Ld

∆p
v̄d =

Ld

∆pAd

∫
∂Ωd

vd ·nd dA, (7)

where Ld is a representative distance between the inflow and outflow boundaries. As this upscaling is
performed in turn for each direction, the upscaled (absolute) permeability becomes a diagonal tensor

K∗ = diag(K∗,x,K∗,y,K∗,z).
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If periodic boundary conditions are chosen instead, the upscaled permeability becomes a full upscaled
permeability tensor as cross-flow is included.

Capillary Limit Method

The assumptions of the capillary limit method is that the capillary forces have reached an equilibrium,
and that capillary forces dominate such that viscous and gravitational forces may be neglected. This
may be a valid assumption in regions of the reservoir in which the flow rate is very low. The method is
described in the following steps:

i) Select a value p̂cow of the capillary pressure.
ii) Invert the capillary pressure curve to obtain a saturation distribution ŝw = p−1

cow(p̂cow).
iii) Compute the average water saturation s∗w by pore volume averaging,

s∗w =

∫
Ω

φ ŝw dV∫
Ω

φ dV
. (8)

iv) Set the absolute permeability in the domain equal to the permeability K̃w = krw(ŝw)K of the water
phase. Then, for each direction d = {x,y,z}, perform a single-phase upscaling to obtain upscaled
(effective) phase permeabilities K̃∗,dw . In a similar fashion, obtain upscaled oil permeabilities K̃∗,do .

v) Compute the upscaled relative permeabilities from the equations

k∗,drw (s∗w) =
K̃∗,dw

K∗,d
and k∗,dro (s∗w) =

K̃∗,do

K∗,d
,

where K∗,d is the upscale absolute permeability in the d-direction as given by (7).

This process is repeated for different values p̂cow to obtain upscaled relative permeabilities for different
values of s∗w. As this upscaling is performed for each direction, we obtain an upscaled relative per-
meability curve for each of the three dimension. We do not consider full tensor upscaling of relative
permeabilities.

Viscous Limit Method

The viscous limit method assumes that viscous forces dominate, and that capillary and gravitational
forces may be neglected. This may be a valid assumption in regions of high flow. The basic steps of the
method are as follows:

i) Select a value f̂w of the fractional flow.
ii) Invert the fractional-flow curve to obtain a saturation distribution ŝw = f−1

w ( f̂w).
iii) Compute the average water saturation s∗w by pore volume averaging (8).
iv) Set the absolute permeability in the domain equal to the total mobility times the absolute perme-

ability, such that

K̃λ = λt(ŝw)K =

(
krw(ŝw)

µw
+

kro(ŝw)

µo

)
K,

and perform a single-phase upscaling for each direction d = {x,y,z} to obtain upscaled K̃∗,d
λ

.
v) Compute the upscaled relative permeabilities from the equations

k∗,drw (s∗w) = µw f̂w
K̃∗,d

λ

K∗,d
and k∗,dro (s∗w) = µo(1− f̂w)

K̃∗,d
λ

K∗,d
.

Similar to the capillary limit method, this process is repeated for different values of the fractional flow
f̂w to obtain upscaled relative permeabilities for different values of s∗w.
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Flow Simulation

Without assuming neither the capillary or viscous limit, the saturation distribution at steady state may
be found by performing a two-phase flow simulation. By applying a set of boundary conditions on the
domain, a simulation is run until the change in saturation is below some set threshold. This method is
obviously much more computationally expensive than the viscous and capillary limit methods. On the
other hand, no assumptions have to be made about the dominating forces in the system.

For each direction d = {x,y,z}, perform the following steps:

i) Select a water saturation ŝw, and initialize the domain with saturation equal to ŝw in all cells.
ii) Apply a pressure drop across the domain in the d-direction and run a two-phase simulation until

the saturation change is below some prescribed threshold (one may also use a threshold for the
fluxes).

iii) Compute the average water saturation s∗w by pore volume averaging (8).
iv) Perform single-phase upscaling of the phase permeabilities K̃w,d = krw(ŝw)K and K̃o,d = kro(ŝw)K.
v) Compute the upscaled relative permeabilities from the equations

k∗,drw (s∗w) =
K̃∗,dw

K∗,d
and k∗,dro (s∗w) =

K̃∗,do

K∗,d
.

These steps are then repeated for different values of the saturation ŝw. As for the two other methods, we
end up with a diagonal tensor representing the upscaled relative permeability for each phase.

Capillary Pressure Upscaling

In two phase flow, the capillary pressure also needs to be upscaled, in addition to the relative permeabil-
ities. For this upscaling, we use a volume averaging, such that

p∗cow(s
∗
w) =

∫
Ω

φ pcow(sw) dV∫
Ω

φ dV
.

Polymer Upscaling

If the polymer concentration is constant at steady state, the effective viscosities for water and water with
polymer are proportional to the pure water viscosity and factor out of the steady-state equations (4).
Hence, it is natural to neither perform an upscaling of µw,eff and µp,eff nor of the mixing parameter ω .
On the other hand, as the reduced steady-state equations (6) have an altered water relative permeability
k̃rw = krw/Rk, the reduction factor Rk is considered a better candidate for upscaling.

Because the steady-state equations for polymer reduce to a two-phase system, we can apply the two-
phase upscaling methods described above to achieve upscaled (effective) values for k̃∗rw and from these
compute upscaled R∗k . The upscaling procedure is described in the following:

i) Select a value ĉp for the polymer concentration.
ii) Set the water relative permeability equal to k̃rw = krw/Rk(ĉp).

iii) Apply a two-phase upscaling method to get upscaled relative-permeability curves k̃∗,drw for each
dimension d.

iv) Compute the upscaled R∗k from the equation

R∗,dk (s∗w,c
∗
p) =

k∗,drw (s∗w)

k̃∗,drw (s∗w)
,

where c∗p = ĉp, as the concentration is constant, and k∗,drw is the upscaled relative permeability for
water.
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These steps are repeated for different values of the polymer concentration ĉp.

The reduction factor Rk may vary with the rock types inside the coarse block Ω, and so the saturation
distribution found using two-phase upscaling of k̃rw = krw/Rk will in general be different from the one
found using krw. Because of this, the upscaled R∗k will also depend on the upscaled water saturation s∗w,
in addition to depending on c∗p. This happens even though the fine-scale Rk is only a function of cp.

The adsorption function ca(cp) is upscaled using standard volume averaging. As the amount of adsorbed
polymer is related to the surface area of the rock, which again is related to the mass of the rock, we use

c∗a(c
∗
p) =

∫
Ω

ρr(1−φ)ca(cp) dV∫
Ω

ρr(1−φ) dV
.

Numerical Experiments

The upscaling methods outlined above have been implemented using the Matlab Reservoir Simulation
Toolbox (MRST; Lie et al., 2012), which is an open source toolbox for rapid prototyping of new com-
putational methods for reservoir engineering. In our implementation, the dynamic flow simulations are
performed using a fully-implicit solver, which is based on automatic differentiation and comes as a sepa-
rate module for MRST. In this section, we verify and validate our upscaling strategy using three different
test cases: The first is a simple box geometry, for which an analytical steady-state upscaling is available.
The second case is a geologically realistic 3D stratigraphic model that will be upscaled to a single grid
cell in a simulation model. The third case is an idealized 2D cross-section of a field-scale model.

Verification: Layered Model

To verify the upscaling methods, we consider a simple model of size (Lx,Ly,Lz) that consists of three
stacked layers that are normal to the z-axis. The upper and the lower layers are of rock type one, while
the middle layer is of rock type two. The model is depicted Figure 1.

∆z1

∆z2

∆z1

Lx

Ly

Lz

K1, k1
rw, k1

ro

K2, k2
rw, k2

ro

K1, k1
rw, k1

ro

Rock 1
Rock 2

Figure 1: The simple layered model.

An analytic solution can be found if gravity and capillary pressure are neglected and we assume that both
rock and fluid are incompressible and that the medium is homogeneous and isotropic. For the two-phase
upscaling, it is further assumed that the relative-permeability curves are strictly monotonic functions of
the phase saturations. Finally, we define functions for the arithmetic and harmonic average

A(K1,K2) =
1
Lz

(
2∆z1K1 +∆z2K2

)
, H(K1,K2) = Lz

(
2∆z1

K1
+

∆z2

K2

)−1

.
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Using this notation, upscaled (absolute) permeability is found to be the diagonal matrix

K∗ = diag(K∗,x,K∗,y,K∗,z), where K∗,x = K∗,y = A(K1,K2), K∗,z = H(K1,K2).

The upscaled relative permeabilities for each phase α = {o,w} are given by

k∗,drα (s∗w) = A
(

k1
rα(sw)K1,k2

rα(sw)K2

)/
K∗,d , (9a)

for direction d = {x,y}, while for the z-direction, we have

k∗,zrα (s∗w) = H
(

k1
rα(s

1
w)K1,k2

rα(s
2
w)K2

)/
K∗,d . (9b)

With flow in the x- or y-direction, parallel to the layers, the upscaled water saturation will equal the
initial saturation, such that s∗w = sw. For flow in the z-direction, on the other hand, the water saturation
s1

w in rock type one, will (in general) be different from s2
w in rock type two. These water saturations are

found from the following expressions

k1
rw(s

1
w)

k1
ro(s1

w)
=

k2
rw(s

2
w)

k2
ro(s2

w)
, s∗w =

2s1
w∆z1 + s2

w∆z2

2∆z1 +∆z2
.

It is possible to solve for s1
w and s2

w in these equations as we have assumed that the relative permeabilities
are strictly monotonic functions.

Upscaling of the relative permeability factor Rk may also be computed analytically, by using the result
that the steady-state polymer equations reduce to the two-phase problem (6), with altered relative per-
meability k̃rw = krw/Rk. To find the upscaled R∗k , we first upscale k̃rw using (9a) and (9b). Then, the
upscaled relative permeability reduction factor is given by

R∗,dk (s∗w,c
∗
p) =

k∗,drw (s∗w)

k̃∗,drw (s∗w)
, d = {x,y,z}.

The upscaled saturation s∗w is the saturation from the upscaling of k̃∗,drw , and the upscaled concentration
will be equal to the initial concentration, such that c∗p = cp.

As a specific example, we set the height of the layers equal, ∆z1 = ∆z2. The permeabilities of rock type
one and two are set to 100 mD and 0.1 mD, respectively. The relative permeabilities of the two rocks
are shown in Figure 2, together with the upscaled curves using flow-based upscaled. Likewise, Figure 3
shows the upscaled relative permeability reduction factors along with the original curves of the two rock
types. For all curves, we see that there is a perfect match between the analytic and the numerical results.
As expected, the R∗k curves in the lateral directions do not depend on the average saturation. Moreover,
we see that the relative permeabilities in the z-direction no longer have monotone derivatives.
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Figure 2: Relative permeability curves for the simple layered model. The fine-scale curves are shown in
blue for rock type one and red for rock type two. The dashed black lines are analytic upscaling, while
circles denote numerical results using flow-based upscaling.
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Figure 3: Relative-permeability reduction factor Rk for the simple layered model. The fine-scale curves
are shown in blue for rock type one and red for rock type two. The solid yellow-to-green lines are
analyic upscaling, while the circles denote numerical results using flow-based upscaling. Note the water
saturation dependency of R∗k in the z-direction.
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Figure 4: (a) The permeability field of the SBED model shown on a log10 scale. The length unit of the
grid is meters. (b) The capillary pressure curves of the different rock types.

Validation: SBED Model

As a validation of our method, we consider the upscaling of a high-resolution, core-scale model of
realistic bedding structures to a single coarse block. So-called SBED models are geologically realistic
stratigraphic models at sub-seismic scale (cm to meter) that define facies, bedding, and boundary patterns
that impact fluid distribution. The models are used to propagate small-scale heterogeneities to large-scale
models by proper (multiphase) upscaling procedures, thereby improving geological modeling (Lerdahl
et al., 2005; Rustad et al., 2008). Over the past years, our group has developed multiphase, steady-
state upscaling tools for SBED models. Figure 4a shows one such high-resolution model. The model
has alternating layeres of high and low permeability, with a difference of approximately two orders of
magnitude in the permeability between these layers. The model consists of six different rock types that
each have their own relative permeability, capillary pressure, polymer adsorption, and residual resistance
factor. Thus, each rock also has a different relative permeability reduction curve Rk. The capillary
pressure curves for the different rock types are shown in Figure 4b.

We run the upscaling of this model in all three directions using the capillary and the viscous limit meth-
ods. The upscaled relative permeabilities are shown in Figure 5, together with the fine-scale curves for
the six rock types. The upscaled reduction curves Rk are shown in Figure 6. Also here, the upscaled Rk
depends on the water saturation, and in this case, we observe the R∗k vary more with the water saturation
in the viscous limit than in the capillary limit. Considering Figure 6c, it can be seen that R∗k is not a
monotonic function of water saturation for this particular upscaling.

Validation: Field-Scale Cross-Section

A particular challenge with simulating polymer flooding is that polymer fronts, unlike water fronts, are
not self-sharpening and therefore highly susceptible to numerical diffusion. If the grid resolution is too
low, a simulation will not be able to correctly predict the EOR effect of adding polymer because of
the smearing and directional bias introduced by the numerical diffusion. In this last example, we will
therefore try to shed some light into an important question for practical simulation: which error has the
largest impact on the simulation quality – the upscaling error or the numerical diffusion introduced by
going to a coarser grid?

The lateral resolution of a field-scale model will in many cases be approximately meters. As a conceptual
model, we therefore consider the two-dimensional cross-section shown in Figure 7. The model is 2000
meters in the horizontal x-direction, and 10 meters in the vertical z-direction. The fine-scale grid consists
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Figure 5: Relative permeability upscaling for the SBED model. The y-direction is not shown, but the
upscaling is almost identical to the x-upscaling.
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(d) Viscous limit, z-direction

Figure 6: Upscaling of the relative permeability reduction factor Rk for the SBED model. The fine-scale
Rk curves for the six different rock types are also shown. The y-direction is not shown, but the upscaling
is almost identical to the x-upscaling. The upscaled curves shown go from orange for the lowest s∗w
value, to green for the highest s∗w values.
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Figure 7: A conceptual model of a 2D cross-section from a field-scale model. The fine-scale rock types
are shown in blue (rock type one), and in red (rock type two). The coarse grid blocks are shown on top
with black lines.

of 400×10 cells, which we upscale to a uniform coarse grid of 20×2 cells. The model consists of two
different rock types. Rock type one has a uniform permeability of 300 mD, and is shown in blue in
Figure 7, while rock type two has a uniform permeability of 3 mD, and is shown in red. The two
rock types also have different relative permeability cures, and different adsorption curves. The residual
resistance factors are RRF1 = 1.3 and RRF2 = 1.8, respectively. The relative permeability curves and
the reduction factor Rk are shown in Figure 9, together with the upscaled curves for one of the coarse
grid blocks. The flow-based upscaling in this example is computed using periodic boundary conditions.

To compare the two sources of error, we will compare the result of three different simulation types:
(i) simulation of the fine-scale model, (ii) simulation of the upscaled, coarse-scale model, and (iii) a
fine-scale simulation using upscaled properties prolonged back to the original 400× 20 grid. In all
simulations, fluids are injected at a constant rate across the west boundary and extracted at the east
boundary. First, pure water is injected, before a slug of polymer, followed by continued water injection.

To illustrate the characteristics of the solutions, Figure 8 shows the water saturation for the three different
simulation types at the same time step. The coarse scale simulation is not able to capture the details of
the solution, but the global picture is still seen to be similar to the fine scale simulation.

Figure 10 shows the flux across the east boundary computed by all three simulations with the mixing
parameter set to ω = 1 (full mixing) and ω = 0.8 (partial mixing). Figures 10a and 10b show that the dif-
ference in results between the different upscaling methods is small compared to the difference between
the fine and coarse-scale simulations. In particular, the production curves obtained by the viscous-limit
and the flow-based methods are almost identical. Figures 10c and 10d show the fluxes obtained if we
map the upscaled model back onto the fine grid. Compared with the coarse-scale simulations, we see that
the error caused by the grid coarsening is much larger that the error caused by the upscaling of parame-
ters. If the cross-section was part of a real model, our results would suggest that the best approach would
be to use viscous-limit upscaling, which is significantly less expensive than the flow-based method, and
try to increase the lateral resolution of the simulation model, e.g., by using techniques discussed by Lie
et al. (2014).
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(b) Coarse scale solution with upscaled parameters.
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(c) Solution using upscaled parameters on the fine scale grid.

Figure 8: Water saturation for the field scale cross-section in the case where ω = 1. The solution for the
three different types of simulation considered are shown at the same simulation time.
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(b) Upscaled relative permeabilties in z-direction.
The capillary and flow curves overlap.
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Figure 9: Upscaled curves for the field scale cross-section model. The curves are only shown for one of
the coarse blocks where there are two different rock types on the fine scale.
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(a) Upscaling run on coarse grid, ω = 1.0
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(b) Upscaling run on coarse grid, ω = 0.8
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(c) Upscaling run on fine grid, ω = 1.0
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(d) Upscaling run on fine grid, ω = 0.8

Figure 10: Solutions for the field scale cross-section model. The oil flux out of the east side boundary is
shown (outlet flux). In the plots on top, upscaled parameters are used to run a simulation on the coarse
grid. In the bottom plots, simulations are run on the fine scale grid using the upscaled parameters. In all
plots, the fine-scale solution is shown in blue for comparison.
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Concluding Remarks

In the paper, we have demonstrated how a framework for steady-state upscaling of two-phase flow can
be extended to upscale the Rk factor that models permeability reduction in polymer flooding. In general,
the upscaled values of Rk will depend on the water saturation in addition to the dependence on polymer
concentration that is inherited from the underlying fine-scale model. This saturation dependency causes
the amount of upscaled data to grow and introduces the need for lookup-tables and 2D interpolations in
the coarse-scale simulation, which may potentially incur a high computational cost since Rk typically is
evaluated multiple times for each time step. To reduce the computational complexity, one could consider
fitting the upscaled Rk factors to a (nonlinear) parametric model.

From our preliminary experiments, we have also observed that the error introduced by coarsening the
grid may dominate the upscaling error at the scale we are interested in (i.e., field-scale models with
resolution of several tens to hundreds of meters). On one hand, this may indicate that it is possible
to use simple analytical techniques (viscous or capillary limit upscaling) and hence avoid the cost of
a flow-based method. On the other hand, the results also indicate that future research should focus on
developing effective parameters that diminish the effects of numerical diffusion.

Finally, since the polymer concentration will be constant at steady state, it does not seem possible to use
a steady-state method to upscale the mixing parameter ω . To be able to use this parameter to capture the
effects of small-scale fingering induced by unresolved heterogeneity, one should look into alternative
(dynamic) upscaling approaches.
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