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Petroleum resources are found within sedimentary rocks that have a sufficient intercon-
nected void space to store and transmit fluids. The actual flow of liquid and gas phases
occurs on a micrometer scale in the void space between rock grains. On the other hand, the
hydrocarbon is typically carried in rock zones that are a few tens of meters thick but extend
several kilometers in the lateral directions. The rock formations are typically heterogeneous
at all length scales in between and phenomena at all length scales can have a profound impact
on flow, making flow in subsurface reservoirs a true multiscale problem.

Observing dynamic fluid behavior and measuring the pertinent parameters of a subsur-
face reservoir is difficult. Predicting reservoir performance therefore has a large degree of
uncertainty attached. Simulation studies are usually performed to quantify this uncertainty.
Reservoir simulation is the means by which one uses a numerical model of the geological and
petrophysical characteristics of a hydrocarbon reservoir to analyze and predict fluid behavior
in the reservoir over time. In its basic form, a reservoir simulation model consists of three
parts: (i) a geological model in the form of a volumetric grid with cell/face properties that
describes the given porous rock formation; (ii) a flow model that describes how fluids flow in
a porous medium, typically given as a set of partial differential equations expressing conser-
vation of mass or volumes together with appropriate closure relations; and (iii) a well model
that describes the flow in and out of the reservoir, including a model for flow within the well
bore and any coupling to flow control devices or surface facilities.

Reservoir simulation is used for two main purposes: (i) to optimize development plans for
new fields; and (ii) assist with operational and investment decisions.. In particular, simulation
is used in inverse modeling to integrate static and dynamic (production) data. The role
and need for simulation depends greatly depend on the geological setting, the production
environment (onshore versus offshore), and field maturity.

1. Geological model

The first part of the reservoir model is a mathematical description of the reservoir and its
petrophysical properties. Herein, we will focus on macroscale models that rely on a continuum
hypothesis and the existence of representative elementary volumes (REV), see Figure 1. This
concept is based on the idea that petrophysical flow properties are constant on some ranges of
scale, and REVs, if they exist, mark transitions between scales of heterogeneity, and present
natural length scales for modeling.

Two petrophysical properties are fundamental in all models: the rock porosity, φ, is a
dimensionless quantity that denotes the void volume fraction of the medium available to be
filled by fluids. Porosity depends on the fluid pressure if the rock is compressible. The per-
meability, K, is a measure of the rock’s ability to transmit a single fluid at certain conditions.
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Figure 1. A representative elementary volume is the smallest volume over
which a measurement can be made and be representative of the whole, here
illustrated for porosity.

Although its SI-unit is m2, permeability is commonly represented in units Darcy1. Perme-
ability is often positively and strongly correlated to porosity, but because the orientation and
interconnection of pores are essential to flow, it is seldom a direct function of porosity. In
general, K is a tensor and we say that the medium is isotropic (as opposed to anisotropic) if
K can be represented as a scalar function. Moreover, due to transitions between different rock
types, the permeability may vary rapidly over several orders of magnitude, local variations in
the range 1 mD to 10 D are not unusual in a typical field.

This description of a reservoir and its petrophysical parameters is usually developed through
a complex workflow that involves a multitude of data sources that span a large variety of
spatial (and temporal) scales, from knowledge of the geologic history of the surrounding basin,
via seismic and electromagnetic surveys and study of geological analogues (rock outcrops),
to rock samples extracted from exploration and production wells. All this information is
accumulated and presented as input to the reservoir simulation in the form of a geo-cellular
model (volumetric grid) that describes the geometry of the reservoir rock. Each grid cell is
assumed to be an REV and provides the petrophysical properties that are needed as input to
the simulation model, primarily porosity and permeability. Hence, the grid is closely attached
to the parameter description and cannot be easily adjusted to provide a certain numerical
accuracy as it can in many other fluid dynamics applications.

Although rectilinear and curvilinear grids are sometimes used for reservoir simulation,
they are seldom sufficient to accurately describe the volumetric structures of a reservoir.
Instead, the industry standard is to use so-called stratigraphic grids that are designed to
reflect that reservoirs are usually formed through deposition of sediments and consist of stacks
of sedimentary beds with different mixtures of solid particles of varying sizes that extend in
the lateral direction. Because of differences in deposition and compaction, the thickness and
inclination of each bed will vary in the lateral directions. Parts of the beds may have been
weathered down or completely eroded away, and the layered structure of the beds may have
been disrupted due to geological activity, introducing fractures and faults. For the purpose

1The precise definition of 1 Darcy (≈ 0.987 · 10−12 m2) involves transmission of a fluid with viscosity 1 cp
through a homogeneous rock at a speed of 1 cm/s by a pressure gradient of 1 atm/cm.
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Volumetric extrusion of areal Voronoi
grid.

Eroded sedimentary layers in a bed model.

A corner-point reservoir model. Cross-section of corner-point grid with five
faults.

Figure 2. Examples of stratigraphic grids.

of reservoir simulation, fractures can be considered as cracks or breakage in the rock, across
which the layers in the rock have not been displaced. Faults are fractures with displacement.

A stratigraphic grid can be built by extruding 2D tessellations of geological layers in the
vertical direction or along inclined lines that follow major fault surfaces. The most popular
format, so-called corner-point grids, consists of a set of hexahedral cells that align so that the
cells can be numbered using a logical ijk index. Each cell has eight logical corner points that
are specified as pairs of depth-coordinates defined on four straight or curved pillars. One or
more corner-points may coincide, giving degenerate cells, and cells that are logical neighbors
need not have matching faces, which gives rise to unstructured connections. Increased areal
flexibility is obtained using PEBI grids, which are based upon extrusion of areal Voronoi
grids. Stratigraphic grids will usually have high aspect ratios and geometries that deviate far
from regular hexahedra; this poses challenges for both discretization methods and (non)linear
solvers. Further challenges are encountered as fully unstructured grids are becoming more
popular.

2. Flow models

The second part of a reservoir model is a mathematical model that describes the fluid flow.
In the following, we will describe the most common models for isothermal flow. For brevity,
we do not discuss thermal and coupled geomechanical-fluid models even though these are
sometimes necessary to represent first-order effects.
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Single-phase flow. The flow of a single fluid with density ρ through a porous medium is
described using the fundamental property of conservation of mass:

(1)
∂(ρφ)

∂t
+∇ · (ρ~v) = q.

Here, ~v is the superficial velocity and q denotes a fluid source/sink term used to model wells.
The velocity is related to the fluid pressure p through an empirical relation named after the
french engineer Henri Darcy:

(2) ~v = −K
µ

(
∇p− ρ~g

)
,

where K is the permeability, µ the fluid viscosity, and ~g the gravity vector. Introducing rock
and fluid compressibilities, cr = φ−1dφ/dp and cf = ρ−1dρ/dp, (1) and (2) can be combined
to a parabolic equation for the fluid pressure

(3) φρ
(
cr + cf

)∂p
∂t
−∇ ·

(
ρ
K

µ

(
∇p− ρ~g

))
= q.

In the special case of incompressible rock and fluid, (3) simplifies to a Poisson equation with
variable coefficients, −∇ · (K∇Φ) = qµ/ρ, for the fluid potential Φ = p− ρ|~g|z.

Two-phase flow. The void space in a reservoir will generally be filled by both hydrocarbons
and (salt) water. In addition, water is frequently injected to improve hydrocarbon recovery.
If the fluids are immiscible2 and separated by a sharp interface, they are referred to as phases.
A two-phase system is commonly divided into a wetting and a non-wetting phase, given by
the contact angle between the solid surface and the fluid-fluid interface on the microscale
(acute angle implies wetting phase). On the macroscale, the fluids are assumed to be present
at the same location, and the volume fraction occupied by each phase is called the saturation
of that phase; for a two-phase system the saturation of the wetting and non-wetting phases
therefore sum to unity, Sn + Sw = 1.

In the absence of phase transitions, the saturations change when one phase displaces the
other. During the displacement, the ability of one phase to move is affected by the interaction
with the other phase at the pore scale. In the macroscopic model, this effect is represented by
the relative permeability krα (α = w, n), which is a dimensionless scaling factor that depends
on the saturation and modifies the absolute permeability to account for the rock’s reduced
ability to transmit each fluid in the presence of the other. The multiphase extension of Darcy’s
law reads

(4) ~vα = −Kkrα
µα

(
∇pα − ρα~g

)
,

which together with the mass conservation of each phase

(5)
∂(ραSαφ)

∂t
+∇ · (ρα~vα) = qα

forms the basic equations. Because of interfacial tension, the pressure in the two phases will
differ. The pressure difference is called capillary pressure pcnw = pn − pw and is usually
assumed to be a function of saturation on macroscale.

2A phase is a physically distinctive form of solid, liquid, or gaseous states of ordinary matter. Two phases
are said to be miscible if they mix in all proportions to form a homogeneous solution. Conversely, two phases
are immiscible if they, in some proportion, do not form a solution.
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To better reveal the nature of the mathematical model, it is common to reformulate (4)
and (5) as a flow equation for fluid pressure and transport equations for saturations. A
straightforward manipulation leads to a system for one phase pressure and one saturation in
which the capillary pressure appears explicitly. The resulting equations are nonlinear and
strongly coupled. To reduce the coupling, one can introduce a global pressure p = pn − pc,
where the complementary pressure contains saturation-dependent terms and is defined as
∇pc = fw∇pcnw. The dimensionless fractional-flow function fw = λw/(λw + λn) measures
the fraction of the total flow that contains the wetting phase and is defined from the phase
mobilities λα = krα/µα. In the incompressible and immiscible case, (4) and (5) can now be
written in the so-called fractional form which consists of an elliptic pressure equation

(6) ∇ · ~v = q, ~v = −K
(
λn + λw

)
∇p+K

(
λwρw + λnρn

)
~g,

for the pressure and the total velocity ~v = ~vn + ~vw and a parabolic saturation equation

(7) φ
∂Sw
∂t

+∇ · fw(Sw)
[
~v +Kλn(ρw − ρn)~g +Kλn∇pcnw

)]
=
qw
ρw

for the saturation Sw of the wetting phase. The capillary pressure can often be neglected on
a sufficiently large scale, in which case (7) becomes hyperbolic.

To solve the system (6) and (7) numerically, it common to use a sequential solution pro-
cedure. First, (6) is solved to determine the pressure and velocity, which are then held fixed
while advancing the saturation a time step ∆t, and so on.

Multiphase, multicomponent flow. Extending the equations describing two-phase flow
to immiscible flow of more than two phases is straightforward mathematically, but defining
parameters such as relative permeability becomes more challenging. In addition, each phase
will consist of more than one chemical species, which are typically grouped into fluid compo-
nents. Because fluid components may transfer between phases (and change composition), the
basic conservation laws are expressed for each component `

(8)
∂

∂t

(
φ
∑
α

c`αραSα

)
+∇ ·

(∑
α

c`αρα~vα

)
=
∑
α

c`αqα,

Here, c`α denotes the mass fraction of component ` in phase α, ρα is the density of phase
α, ~vα is phase velocity, and qα is phase source. As above, the velocities are modeled using
the multiphase extension of Darcy’s law (4). The system consisting of (8) and (4) is just
the starting point of modeling and must be further manipulated and supplied with closure
relations (PVT models, phase equilibrium conditions, etc) for specific fluid systems. Different
choices for closure relationships are appropriate for different reservoirs and different recovery
mechanisms and lead to different levels of model complexity.

The black-oil model. The flow model that is used most within reservoir simulation is
the black-oil model. The model uses a simple PVT description in which the hydrocarbon
chemical species are lumped together to form two components at surface conditions: a heavy
hydrocarbon component called “oil” and a light hydrocarbon component called “gas”, for
which the chemical composition remains constant for all times. At reservoir conditions, the
gas component may be partially or completely dissolved in the oil phase, forming one or two
phases (liquid and vapor) that do not dissolve in the water phase. In more general models, oil
can be dissolved in the gas phase, the hydrocarbon components are allowed to be dissolved in
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the water (aqueous) phase, and the water component may be dissolved in the two hydrocarbon
phases.

The black-oil model is often formulated as conservation of volumes at standard conditions
rather than conservation of component masses [10] by introducing formation volume factors
Bα = Vα/Vαs (Vα and Vαs are volumes occupied by a bulk of component α at reservoir and
surface conditions) and a gas solubility factor Rso = Vgs/Vos, which is the volume of gas,
measured at standard conditions, dissolved at reservoir conditions in a unit of stock-tank oil
(at surface conditions). The resulting conservation laws read

∂

∂t

(φραs
Bα

S`

)
+∇ ·

( ραs
Bα

~v`

)
= qα, α = o, w

∂

∂t

(φρgs
Bg

Sg +
φRsoρ

g
s

Bo
S`

)
+∇ ·

( ρgs
Bg
~vg +

Rsoρ
g
s

Bo
~v`

)
= qg.

(9)

Commercial simulators typically use a fully implicit discretization to solve the nonlinear
system (9). However, there are also several sequential methods that vary in the choice of
primary unknowns and the manipulations, linearization, temporal and spatial discretization,
and the order in which these operations are applied to derive a set of discrete equations. As
an example, the IMPES (implicit pressure, explicit saturation) method starts by a temporal
discretization of the balance equations (9) and then eliminates the volume factors to derive
a pressure equation that is solved implicitly to obtain pressure and fluxes. These are then
used to update the volumes (or saturations) in an explicit time step. Improved stability can
be obtained by a sequential implicit method [12] that also treats the saturation equation
implicitly.

3. Well models

In its simplest form, a well is a vertical, open hole through which fluid can flow in and out of
the reservoir. More advanced wells are cemented and then perforated along specific intervals
along a path that may stretch kilometers along the reservoir in the horizontal direction.
Production wells are designed to extract hydrocarbons, whereas injection wells can be used
for disposal of produced water/gas, to maintain reservoir pressure, or to displace hydrocarbons
towards production wells. The injection and production of fluids is controlled through surface
facilities, but wells may also contain (advanced) down-hole control devices.

The main purpose of a well model is to accurately represent the flow in the wellbore and
provide equations that can be used to compute injection or production rates when the flowing
bottom hole pressure is known, or compute the pressure for a given well rate. When the
flow equations presented above are discretized using a volumetric grid, the wellbore pressure
will be significantly different from the average pressure in the perforated grid blocks. The
diameter of the wellbore is small compared to the size of the blocks, which implies that
large pressure gradients appear in a small region inside the perforated blocks. Modeling
injection and production of fluids using point sources gives singularities in the flow field and
is seldom used in practice. Instead, one uses an analytical or semi-analytical solution of the
form −q = WI(pb − pwb) to relate the wellbore pressure pwb to the numerically computed
pressure pb inside the perforated blocks. Here, the well index WI accounts for the geometric
characteristics of the well and the properties of the surrounding rock.

The first, and still most used model was developed by Peaceman [8]. Assuming steady-
state radial flow and a 7-point finite-difference discretization, the well index for an isotropic
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medium with permeability K represented on a Cartesian grid with cell ∆x×∆y×∆z reads,

(10) WI =
2πK∆z

ln(r0/rw)
, r0 = 0.14(∆x2 + ∆y2)

1
2 .

Here, rw is the radius of the well and r0 is the effective block radius at which the steady-state
pressure equals the computed block pressure. The Peaceman model has later been extended to
multiphase flows, anisotropic media, horizontal wells, non-square grids, and other discretiza-
tion schemes, as well as to incorporate gravity effects, changes in near-well permeability (skin),
and non-Darcy effects. More advanced models also describe the flow inside the wellbore and
how this flow is coupled to surface control and processing facilities.

4. Bridging scales (upscaling)

Describing all pertinent flow processes with a single model is impossible. Flow simulation
is therefore divided according to physical scales and performed on a hierarchy of models: flow
in core samples (cm scale), bed models (meter scale), sector models, and field models (km
scale). These models must be calibrated against static and dynamic data of very different
spatial (and temporal) resolution: thin sections, core samples, well logs, geological outcrops,
seismic surveys, well tests, production data, core flooding and other laboratory experiments,
etc. Moreover, use of geostatistical methods tends to produce geo-cellular models having
significantly more detail than conventional reservoir simulation tools can handle. For all
these reasons, upscaling is inevitable to perform model reduction and transfer parameters and
effective properties up in the model hierarchy. A proper coarse-scale reservoir model should
ideally capture the impact of heterogeneous structures at all scales that are not resolved by
the coarse grid used for flow simulation.

The simplest type of upscaling is single-phase upscaling: assuming incompressible flow
modeled by −∇ ·K∇p = q, we seek an effective K∗ inside each coarse grid block B such that
K∗
∫
B∇p dx =

∫
BK(x)∇p dx. Upscaling methods range from simple averaging techniques

to sophisticated methods that employ a combination of local and global computations [5].

Power averaging techniques, K∗ =
(

1
|B|
∫
BK(x)r dx

)1/r
, −1 ≤ r ≤ 1, give correct upscal-

ing in special cases3, but tend to perform poorly in practice since the averages do not reflect
the structure or orientation of the heterogeneous structures.

In flow-based upscaling, one solves a set of homogeneous pressure equations, −∇·K∇p = 0,
for each grid block with prescribed boundary conditions that induce a desired flow pattern.
Methods differ in the way boundary conditions are prescribed. A popular choice is to consec-
utively impose a pressure drop in each coordinate direction, giving three flow rates for each
grid block, from which an effective diagonal permeability tensor can be computed. Another
popular option is to impose periodic boundary conditions. Alternatively, one may look at the
discretized flow equation, vij = Tij(pi − pj), where vij denotes the flux from block Bi to Bj ,
and upscale the transmissibility Tij directly by solving a flow problem in Bi ∪Bj .

What is the best average in a specific case depends both on the heterogeneity and the flow
process (flow direction, boundary conditions, etc). More sophisticated methods therefore
use extended local domains to lessen the impact of the boundary conditions, or rely on
bootstrapping methods that combine the solution of local and (generic or the full) global flow
problems. Moreover, single-phase upscaling alone is often not sufficient to capture large-scale

3The arithmetic average (r = 1) is correct for flow parallel to isotropic, layered media, whereas the harmonic
average (r = −1) is correct for flow perpendicular to isotropic, layered media.
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heterogeneity effects in a multi-phase system. The macroscopic effect of relative permeabilities
and capillary pressures are captured in terms of pseudo functions, i.e., effective functions that
are used in coarse-scale transport equations to model unresolved subscale effects.

Recently, research on simulation is moving in the direction of so-called multiscale methods
[6] in which the solution of local flow problems is embedded in coarse-scale approximation
spaces consisting of a set of multiscale basis functions which have fine-scale subresolution
that is consistent with the local properties of the differential operator(s). The multiscale
basis functions can be coupled through a global coarse-scale formulation to produce flow
solutions that are conservative both on the coarse and the fine scale. Performing a single
multiscale flow solve will typically be as expensive as performing flow-based upscaling or
computing a single fine-scale flow solution. However, for subsequent updates to the flow
field, multiscale methods offer a significant gain in computational efficiency by systematically
reusing computations from the previous flow solves (i.e., reusing the basis functions).
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