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A conservation law is a first-order system of PDEs in divergence form

(1) ∂tU(x, t) + ∂xG(U(x, t)) = 0, t ≥ 0, x ∈ R,

describing the evolution of conserved quantities U ∈ Rn according to flux function G : Rn →
Rn. (Herein, we only consider the 1D case for brevity.) Solutions of (1) admit various kinds of
nonlinear and discontinuous waves. Numerical methods developed to accurately compute such
waves have significantly influenced developments in modern computational science. Methods
come in two forms: shock-fitting methods in which discontinuities are introduced explicitly in
the solution and shock-capturing methods in which numerical dissipation is used to capture
discontinuities within a few grid cells.

1. Classical Shock-Capturing Methods

Equation (1) is not valid in the classical pointwise sense for discontinuous solutions. In-
stead, we will work with the integral form of (1). Introducing the sliding average Ū(x, t) =

1
∆x

∫ x+∆x/2
x−∆x/2 U(ξ, t) dξ gives the system of evolution equations

(2) Ū(x, t+ ∆t) = Ū(x, t)− 1

∆x

∫ t+∆t

t

[
G
(
U(x+ ∆x

2 , τ)
)
−G

(
U(x− ∆x

2 , τ)
)]
dτ.

Next, we partition the physical domain Ω into a set of grid cells Ωi = [xi−1/2, xi+1/2] and set
tn = n∆t. This suggests a numerical scheme

(3) Un+1
i = Un

i − r
(
Gn

i+1/2 −G
n
i−1/2

)
, ri = ∆t/∆x,

where Un
i = Ūi(xi, t

n) are unknown cell averages and the numerical flux functions Gn
i±1/2 are

approximations to the average flux over each cell interface,

(4) Gn
i±1/2 ≈

1

∆t

∫ tn+1

tn
G
(
U(xi±1/2, τ)

)
dτ.

Because (1) has finite speed of propagation, the numerical fluxes are given in terms of neigh-
boring cell averages; i.e., Gn

i+1/2 = G(Un
i−p, . . . , U

n
i+q) = G(Un; i+ 1/2).

Schemes on the form (3) are called conservative. If a sequence of approximations computed
by a consistent and conservative scheme converges to some limit, then this limit is a weak
solution of the conservation law [4].
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Centered Schemes. Assume that U(x, tn) is piecewise constant and equals Un
i inside

Ωi. The integrand of (4) can then be approximated by 1
2(G(Un

i±1) + G(Un
i )). This yields

a centered scheme that unfortunately is notoriously unstable. To stabilize, we add artificial

diffusion, ∆x2

∆t ∂
2
xU discretized using standard centered differences and obtain the classical

first-order Lax–Friedrichs scheme [3]

(5) Un+1
i =

1

2

(
Un
i+1 + Un

i−1

)
− 1

2
r
[
G(Un

i+1)−G(Un
i−1)

]
which is very robust and will always converge, although sometimes painstakingly slow. To
see this, consider the trivial case of a stationary discontinuity satisfying ∂tU = 0. In this
case, (5) will simply compute Un+1

i as the arithmetic average of the cell averages in the two
neighboring cells. The Lax–Friedrichs scheme can be written in conservative form (3) using
the numerical flux

(6) G(Un; i+ 1/2) =
1

2r

(
Un
i − Un

i+1

)
+

1

2

[
G(Un

i ) +G(Un
i+1)

]
.

The second-order Lax–Wendroff scheme is obtained by using the midpoint rule to evaluate
(4), with midpoint values predicted by (5) with grid spacing 1

2∆x.

Upwind and Godunov Schemes. In the scalar case, we obtain a particularly simple
two-point scheme by using one-sided differences in the upwind direction from which the char-
acteristics are pointing; i.e., setting Gn

i+1/2 = G(Un
i ) if G′(U) ≥ 0, or Gn

i+1/2 = G(Un
i+1) if

G′(U) < 0.
Upwind differencing is the design principle underlying Godunov schemes [2]. If U(x, tn) :=

Un
i in each grid cell Ωi, the evolution of U can be decomposed into a set of local Riemann

problems

(7) ∂tV + ∂xG(V ) = 0, V (x, 0) =

{
Un
i , x < xi+1/2,

Un
i+1, x ≥ xi+1/2,

each which admits a self-similar solution V (x/t). Cell averages can now be correctly evolved
by (3) a time step ∆t if we use V (0), or a good approximation thereof, to evaluate G in (4).
The time step ∆t is restricted by the time it takes the fastest Riemann wave to cross a single
cell,

(8)
∆t

∆x
max

j
|λj | ≤ 1,

where λ1 ≤ · · · ≤ λn are the eigenvalues of the Jacobian matrix DG(U). The inequality (8) is
called the CFL condition, named after Courant, Friedrichs, and Lewy, who wrote one of the
first papers on finite difference methods in 1928 [1]. If ∆t satisfies (8), the numerical scheme
(3) will be stable. An alternative interpretation of (8) is that the domain of dependence for
the PDE should be contained within the domain of dependence for (3) so that all information
that will influence Un+1

i has time to travel into Ωi.

Example 1. Consider the advection of a scalar quantity in a periodic domain. Figure 1
shows the profile evolved for ten periods by the upwind, Lax–Friedrichs, and Lax–Wendroff
schemes. The first-order schemes smear the smooth and the discontinuous part of the ad-
vected profile. The second-order scheme preserves the smooth profile quite well, but introduces
spurious oscillations around the two discontinuities.
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upwind Lax–Friedrichs Lax–Wendroff
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Figure 1. Approximate solutions after ten periods of linear advection within
a periodic domain.

2. High-Resolution Schemes

High-resolution schemes are designed to have second order spatial accuracy or higher in
smooth parts and high accuracy around shocks and other discontinuities (i.e., a small number
of cells containing the wave). They use nonlinear dissipation mechanisms to provide solutions
without spurious oscillations.

Flux-Limiter Schemes. LetGL(Un; i+1/2) be a low-order flux (e.g., (6)) andGH(Un; i+
1/2) be a high-order flux (e.g., the Lax–Wendroff flux). Then, using the flux

(9) Gn
i+1/2 = GL(Un; i+ 1/2) + θni

[
GH(Un; i+ 1/2)−GL(Un; i+ 1/2)

]
in (3) gives a high-resolution scheme for an appropriate limiter function θni = θ(Un; i) that is
close to unity if U is smooth and close to zero if U is discontinuous.

Slope-Limiter Schemes. Shock-capturing schemes can be constructed using the general
REA algorithm:

(1) Starting from known cell averages Un
i , reconstruct a piecewise polynomial function

Û(x, tn) defined for all x. Constant reconstruction in each cell gives a first-order
scheme, linear gives second order, quadratic gives third order, etc.

(2) Next, we evolve the differential equation, exactly or approximately, using Û(x, tn)
as initial data.

(3) Finally, we average the evolved solution Û(x, tn+1) onto the grid again to obtain
new cell averages Un+1

i .

In the reconstruction, care must be taken to avoid introducing spurious oscillations. Using a
linear reconstruction [9],

Û(x, tn) = Un
i + Φ(Un

i − Un
i−1, U

n
i+1 − Un

i )
(x− xi)

∆x
, x ∈ Ωi,

one can ensure that the resulting scheme is total-variation diminishing (TVD) under certain
assumptions on the nonlinear slope limiter Φ. Likewise, higher-order reconstructions can be
designed to satisfy an essentially non-oscillatory (ENO) property.

For the averaging, there are two fundamentally different choices, see Figure 2. In up-
wind methods (x = xi), the temporal integrals in (2) are evaluated at points xi±1/2 where

Û(x, t) is discontinuous. Hence, one cannot apply standard integration and extrapolation
techniques. Instead, one must resolve the wave structure arising due to the discontinuity,
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Figure 2. Computation of sliding average for upwind methods (left) and
central methods (right).
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Figure 3. Linear advection problem computed by a second-order scheme with
two different limiters.

solving a Riemann problem or generalizations thereof. For central methods (x = xi+1/2), the
sliding average is computed over a staggered grid cell [xi, xi+1]. Under a CFL condition of
one half, the integrand will remain smooth so that standard integration and extrapolation
techniques can be applied.

Example 2. Figure 3 shows the advection problem from Example 1 computed by a second-
order non-oscillatory central scheme [6] with two different limiters. The dissipative minmod
limiter always chooses the lesser slope and thus behaves more like a first-order scheme. The
compressive superbee limiter picks steeper slopes and flattens the top of the smooth wave.

Computational Efficiency. Explicit high-resolution schemes are essentially stencil com-
putations that have an inherent parallelism that can be exploited to ensure computational
efficiency. Moreover, high arithmetic intensity (i.e., large number of computations per data
fetch) for high-order methods means that these methods can relatively easily exploit both
message-passing systems and many-core hardware accelerators (GPUS and alike).
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