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Abstract A Dirichlet–Neumann representation method was
recently proposed for upscaling and simulating flow in reser-
voirs. The DNR method expresses coarse fluxes as linear
functions of multiple pressure values along the boundary
and at the center of each coarse block. The number of flux
and pressure values at the boundary can be adjusted to im-
prove the accuracy of simulation results, and in particular to
resolve important fine-scale details. Improvement over ex-
isting approaches is substantial especially for reservoirs that
contain high permeability streaks or channels. As an alterna-
tive, the multiscale mixed finite-element (MsMFE) method
was designed to obtain fine-scale fluxes at the cost of solv-
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ing a coarsened problem, but can also be used as upscaling
methods that are flexible with respect to geometry and topol-
ogy of the coarsened grid. Both methods can be expressed
in mixed hybrid form, with local stiffness matrices obtained
as ’inner products’ of numerically computed basis functions
with fine-scale sub-resolution. These basis functions are de-
termined by solving local flow problems with piecewise lin-
ear Dirichlet boundary conditions for the DNR method and
piecewise constant Neumann conditions for MsMFE. Adding
discrete pressure points in the DNR method corresponds to
subdividing faces in the coarse grid and hence increasing
the number of basis functions in the MsMFE method. The
methods show similar accuracy for 2D Cartesian cases, but
the MsMFE method is more straightforward to formulate in
3D and implement for general grids.

Keywords Coarsening · upscaling · Dirichlet-Neumann
representation · multiscale mixed finite elements

1 Introduction

Being able to understand and predict flow and transport pro-
cesses is decisive to enhance the recovery from hydrocarbon
reservoirs. Porous rocks are typically highly heterogeneous
and exhibit a multiscale behavior in the sense that small-
scale flow paths determine the macro-scale displacement of
fluids in a reservoir. Describing all pertinent flow processes
with a single model is impossible. Flow modeling is there-
fore divided into separate steps according to physical scales:
from rock models on the micro scale, via facies models and
geological models, to simulation models on the macro scale.
Upscaling is inevitable to transfer parameters and effective
properties up in the model hierarchy.

Herein, we focus on upscaling from geological models
to simulation models. To accurately model heterogeneous
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rock formations, geo-cellular models typically have com-
plex geometries and topologies and may contain millions
of cells. Even for models with a few tens or hundred thou-
sand cells, a typical forward simulation will require hours
of computer time. Coarsening the grid and upscaling petro-
physical parameters is therefore a necessary step to reduce
model sizes and reduce the turnaround time for workflows
that utilize simulations. When geological models are coars-
ened, the blocks in the resulting simulation model can be
quite large and may encompass important geological varia-
tions. The upscaled models are obviously easier to simulate,
but are also only approximations of the original model. Er-
rors introduced in the upscaling process can be large, in par-
ticular for models that describe high-contrast media. A crit-
ical technical challenge is to reduce simulation times while
maintaining a high degree of accuracy for the simulations.

To this end, several methods have been proposed. In the
Dirichlet–Neumann representation (DNR) method [20], ex-
pressions for flow rates are derived as linear functions of the
pressure value at the center and at multiple discrete pres-
sure points along the faces of each coarse block. The num-
ber of pressure points at the boundary is flexible and may
be chosen to provide an adequate representation of pres-
sure profiles and flow distribution throughout a dynamical
simulation. In the multiscale mixed finite-element (MsMFE)
method [7], one constructs a set of special basis functions
that incorporate local effects of fine-scale heterogeneity into
a global coarse-scale flow problem. The basis functions are
computed by solving localized flow problems driven by source
terms. The DNR and MsMFE methods are similar in the
sense that both allow straightforward reconstruction of fine-
scale flow solutions and can hence be used as part of a multi-
scale computational procedure. On the other hand, the meth-
ods can be seen as complementary: whereas the basis func-
tions in the MsMFE method are localized and determined
by specifying Neumann boundary conditions on fluxes, the
local flow solutions in the DNR method are determined by
specifying Dirichlet boundary conditions for the pressure.

The purpose of the paper is two-fold. First, we extend
the DNR method from Cartesian to fully unstructured grids
in 2D; extension to simple 3D grids is discussed in [17].
To extend DNR, we borrow ideas from the MsMFE method,
write the DNR method on mixed hybrid form and notice that
adding pressure points corresponds to subdividing coarse
faces, and hence increasing the number of basis functions,
in a MsMFE method. Second, we compare the accuracy and
robustness of the DNR method and two versions of the MsMFE
method (the one-block and two-block formulation) and in-
vestigate how errors induced by the artificial boundary con-
ditions that localize the computation of basis functions and
Dirichlet–Neumann maps can be reduced by subdividing in-
terfaces between coarse blocks, e.g., to adapt to heterogeneities
in the permeability field. In particular, we investigate:

– if the methods can reproduce constant flow fields when
subdividing coarse faces, i.e., consistency;

– the sensitivity of the methods with respect to the aspect
ratio of grid cells;

– how the presence of different permeability contrasts af-
fects the precision of the methods; and

– if different strategies of a posteriori subdivisions of faces
in cells where the pressure maximum principle is not sat-
isfied can help improve the robustness of the methods.

2 Grid and discretization

We consider the following single-phase flow problem

v+K∇p = 0, ∇ · v = q, (1)

for x ∈ Ω . Here, K is the permeability tensor, v is the fluid
velocity, p is the fluid pressure, and q represents sources and
sinks. In addition, (1) needs to be augmented with boundary
conditions on ∂Ω .

To discretize (1), we partition Ω into a set of NΩ non-
overlapping polyhedral grid cells. Each cell Ωi has ni pla-
nar polyhedral faces Γik , and we set N = ∑i ni. The set of
polyhedral cells form a conformal unstructured grid in the
sense that each of the NΓ internal faces connects two grid
cells only. The parameters of (1) are constant on each grid
cell. Let vi denote the vector of outward fluxes on Ωi and pi
and πi the pressures at the cell and face centers, respectively.
Discretization methods used for (1) in reservoir simulation
are typically constructed to be locally conservative and ex-
act for linear solutions. Such schemes can be written in a
form that uses Darcys law to relate the three quantities vi,
pi, and π i through a matrix of one-sided transmissibilities
Ti associated with a single cell,

vi = Ti(epi−πi), (2)

where e is an ni × 1 vector of ones and Ti is assumed to
be positive definite. Different choices of Ti result in differ-
ent methods like the standard two-point flux-approximation
scheme, the mixed finite-element method, the related mimetic
finite difference schemes, and (in a certain sense) some mul-
tipoint flux approximations; this is discussed in more detail,
e.g., in [14,19]. For a two-point scheme, for instance, stan-
dard transmissibilities associated with the connection be-
tween two cells can be derived from (2) by assuming conti-
nuity of fluxes and face pressures, giving the relation vi j =

Ti j(pi− p j).
Extending (2) with flux continuity at cell faces and mass

conservation, we obtain the global system in mixed-hybrid
formT−1 C D

CT 0 0
DT 0 0

 v
−p

π

=

0
q
0

 . (3)
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Fig. 1 Two coarse blocks formed by amalgamation of
fine cells. In the right plot, the coarse interfaces have been
subdivided to better represent strong permeability con-
trasts, e.g., assuming that red color represents cells with
high permeability and blue color cells with low perme-
ability.

Here, v is the stacked vector of cell fluxes, p denotes the cell
pressures, and π is the vector of interface pressures with one
value per face. In the system matrix, T is the N×N matrix
diag(T1, . . . ,TNΩ

), C is the N×NΩ matrix diag(e1, . . . ,eNΩ
),

and D is the N×NΓ matrix with a single unit entry in each
row identifying the interface corresponding to the entry in v.
In Sections 3 and 4, we will see that the DNR and MsMFE
methods can be written in the form (3) on the coarse scale,
using basis functions to evaluate the entries in the T matrix.

In the following, we will operate on a coarse grid con-
sisting of blocks that are formed by amalgamating cells from
an underlying fine grid. The interface between two coarse
blocks may or may not have been subdivided into multiple
faces (see Figure 1); either way, each coarse face consists of
a (connected) set of cell faces from the underlying grid. To
simplify the presentation, we keep the notation from the fine
grid and let the coarse grid consist of NΩ coarse grid blocks
{Ωi} and NΓ coarse interfaces {Γj}, defined so that each
block Ωi is a simply connected set of (fine) grid cells and
each coarse interface Γj is a connected set of fine-grid faces
forming (part of) the interface between two coarse blocks or
(part of) the outer boundary of a single coarse block.

3 The Dirichlet–Neumann Representation Method

A Dirichlet–Neumann operator maps the values of a Dirich-
let (pressure) boundary condition of the solution of the ellip-
tic pressure equation (1) in a closed domain to the values of
a Neumann (flux) condition. To reduce the error induced by
artificial boundary conditions in traditional upscaling meth-
ods, [20] recently proposed to use such maps to derive fluxes
as linear functions of multiple discrete pressure values along
the boundary of each coarse block and pressure value at the
center of the block. The number of pressure values at a block
boundary can be varied, and by adapting the pressure points,
and adequate representation of pressure profiles and flux
distributions during simulation can be obtained by adapt-
ing the pressure points to features in the fine-scale geology.
Herein, we will extend the Dirichlet–Neumann Representa-
tion (DNR) method from 2D Cartesian to 2D unstructured
grids; extension to simple 3D grids are discussed in [17].

To define a discrete Dirichlet–Neumann map for a coarse
block Ωi with boundary ∂Ωi formed by ni coarse interfaces
Γik , one first introduces a partition of unity {gik} on the in-
terface and then computes a set of shape functions ψik de-

fined on the fine grid restricted to Ωi. Assuming that gik is
nonzero Dirichlet on a segment of ∂Ωi, the corresponding
shape function reads,

ψ ik +K∇φik = 0, ∇ ·ψ ik = 0, (4)

in Ωi with φik = gik on ∂Ωi. We will come back to how the
functions gik are defined later.

For each shape function ψ ik , we define a vector mk with
elements mk` =

∫
Γi`

ψ ik dS. Once all the local equation (4)
have been solved, the ni discrete shape functions can be col-
lected as columns in a matrix Mi = (m1, . . . ,mni) ∈ IRni×ni

such that

vi = Miπi. (5)

Since each column of Mi in (5) is obtained from a solution of
the homogeneous equation (4), eTMi is the zero vector and
the matrix Mi has rank ni− 1. To represent flow in coarse
blocks containing source terms, (5) needs to be expanded
by interface fluxes mi from a non-homogeneous shape func-
tion. We compute the effect of source terms in Ωi by solving

ψ i0 +K∇φi0 = 0, ∇ ·ψ i0 =

{
1/|Ωi|, if q = 0 in Ωi
q/
∫

Ωi
q, otherwise, (6)

with homogeneous Dirichlet boundary conditions. (For q =

0, one can use a different source term, e.g., as discussed in
[4]). The outward fluxes on the interfaces of ∂Ωi are then
evaluated to form the vector mi. When source terms are in-
cluded, we get the expression vi = Miπi +miqi for the out-
fluxes of block Ωi, where qi =

∫
Ωi

q.
To approximate the solution of (1), we require continu-

ity of the flux across all coarse-grid interfaces. Let v be the
N×1 stacked vector of all outward-directed block interface
fluxes vi, where N = ∑

NΩ

i=1 ni. Furthermore, if we collect the
Dirichlet–Neumann maps of all coarse blocks in a N ×N
block-diagonal matrix M, the non-homogeneous flux vec-
tors in an N×NΩ matrix m, and let π be the vector of all
coarse-grid interface pressures, we may write the linear sys-
tem as[

I −MD
DT 0

][
v
π

]
=

[
mq
0

]
, (7)

where q is the vector of source terms per block. Each row
in the N ×NΓ matrix D has a single non-zero entry equal
one such that Dπ are the interface pressures in a block-wise
ordering. This implies that DTv is the vector of sums of
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the approximations to each interface flux. For internal inter-
faces, this sum should be zero to ensure flux continuity on
the coarse grid, whereas for outer interfaces the flux should
either be zero or equal any Neumann conditions imposed
on the system. With a simple manipulation of (7), we get a
linear system for the interface pressures

DTMDπ =−DTmq. (8)

Mixed-Hybrid Formulation. Equation (7) can be writ-
ten in mixed-hybrid form (3) if we define a suitable inter-
pretation of the coarse pressure pi and the transmissibility
matrix Ti so that (2) is fulfilled for each block Ωi. In partic-
ular, by multiplying (2) from left by eT, we get qi = eTvi =

eTTi(epi−πi), from which we eliminate pi

pi =
1

eTTie
(
eTTiπi +qi

)
.

Substituting this expression back into (2), we obtain

vi =−
(

Ti−
1

eTTie
TieeTTi

)
︸ ︷︷ ︸

Mi

πi +
1

eTTie
Tie︸ ︷︷ ︸

mi

qi. (9)

Here, we have indicated which parts must be equal to Mi
and mi, respectively, for the method to be equivalent to the
DNR method as defined above. By substitution and using the
relations Mie = Mi

Te = 0 and eTmi = 1, it can be verified
that

Ti =−Mi +
1
αi

miwi
T

represents a family of transmissibility matrices equivalent to
the DNR method, where wi is a weighting vector (eTwi = 1)
and αi is a scaling parameter. For homogeneous media and
blocks with planar faces, the resulting method will be con-
sistent independently of αi. In practice, however, it is im-
portant to keep the condition number of Ti reasonable and
αi can be used for this purpose. A good choice for αi de-
pends on the choice of units. For a given wi and αi, the
relation between the block and interface pressures is given
by pi = wi

Tπi +αiqi. Herein, we will use wi = e/(eTe) or
wi = mi and αi = 1/[darcy]≈ 1.0132 ·1012. Another natural
choice for αi is by setting it equal to the average of Ψi0 from
(6). This is justified by setting vi = mi and πi = 0 into (2),
to obtain mi = Tiepi =

1
αi

miwi
Tepi =

pi
αi

mi.
Boundary conditions. The choice of boundary condi-

tions used to construct local solutions of (1) in flow-based
upscaling can have a significant impact on the accuracy. To
construct a discrete Dirichlet–Neumann map for a grid block
Ωi with ni coarse interfaces, we need ni linearly independent
functions gk : ∂Ωi → IR that will be used as Dirichlet con-
ditions for (4). In [20] it was shown that the DNR method
produces accurate results when each gk is a piecewise lin-
ear function in the curve length s measured along ∂Ωi (from

some reference) with joints at ni points on ∂Ωi. These points
are referred to as pressure points. In general, the accuracy of
the method can be improved by adjusting the number and
position of pressure points.

In [20], pressure points are specified along ∂Ωi accord-
ing to a rule that accounts for permeability variation and
partitions the boundary into a set of non-overlapping inter-
faces defined so that there is one pressure point on each in-
terface Γj. Some technical conditions ensure that this par-
tition is uniquely defined. Assuming that s j is the value of
the curve length in the pressure point (centroid) of Γj, we re-
quire that gk(s j) = δ jk to ensure that the basis functions {gk}
form a partition of unity on ∂Ωi, which is necessary for the
Dirichlet–Neumann method to give zero flux for constant-
pressure solutions. Furthermore, by choosing the pressure
points as degrees-of-freedom for the interface pressure, the
matrix Mi is easily constructed from the interface fluxes of
each shape function.

Herein, we have chosen a different approach: we take the
partition of ∂Ωi as given and choose the centroid of a fine-
grid face in the middle of the coarse interface as the pressure
point of interface Γj. This enables the use of grid amalgama-
tion techniques (see e.g., [9,10]) to define the interfaces in
the coarse grid, and is straightforward to extend to 3D. More
details are given in [17].

4 The Multiscale Mixed Finite-Element Method

The main idea of the MsMFE method [7,5] is to construct
a special approximation space defined over the coarse grid.
This is done by computing basis functions that represent the
flow between two neighboring grid blocks and solve a lo-
cal flow problem of the form (6), but with different bound-
ary conditions used for localization. Two types of bound-
ary conditions will be presented below, giving two MsMFE
methods with somewhat different behavior. Unlike the DNR
method, the MsMFE methods are designed to give conser-
vative fluxes directly on the coarse and fine grid, but conser-
vative fluxes can also be reconstructed on any intermediate
grid using the fine-scale resolution of the basis functions.

One-block basis. An MsMFE basis function represents
the flow over an interface or sub-interface Γk between two
neighboring blocks. Restricted to one block Ωi, the basis
function ψ ik is defined as the solution of

ψ ik +K∇φik = 0, ∇ ·ψ ik = ωi, (10)

with Neumann boundary conditions ψ ik ·n = νk on Γk and
ψ ik · n = 0 on ∂Ωi \Γk, see [2,3]. The basis functions are
normalized by requiring that

∫
Ωi

ωi = 1 and
∫

Γk
νk = 1. If

global information is available as a previously computed
flux field v0, this is incorporated in νk by setting νk = v0 ·
nk/

∫
Γk

v0 · nk ds. If no global information is available, we
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Fig. 2 The left plot shows two one-
block MsMFE basis functions for a
subdivided interface as well as the
sum of the two basis functions repro-
ducing half of a Raviart–Thomas ba-
sis function, and hence linear pres-
sure drop. The right plot shows two
two-block MsMFE basis functions
for a subdivided interface as well as
the sum of the two that fails to repro-
duce constant flow fields.

set νk = 1/|Γk|. Multiple degrees-of-freedom per interface
can be obtained by subdividing the interface and assigning
one basis function to each subface. The computation of each
basis remains the same: simply setting non-zero flux con-
ditions on the sub-interface and zero flux conditions else-
where. To the left in Figure 2, we have depicted two basis
functions corresponding to a subdivided interface (with con-
stant non-zero flux conditions) for a homogeneous domain.
Taking the average of these functions we obtain the basis
function for the original non-divided interface.

Two-block basis. In the two-block approach [1,4], the
basis function for an interface Γk between blocks Ωi and Ω j
is defined as the solution of

ψk +K∇φk = 0, ∇ ·ψk =

{
ωi, for x ∈Ωi,

−ω j, for x ∈Ω j
(11)

in Ωi ∪Ω j with zero Neumann boundary on ∂ (Ωi ∪Ω j). If
Γk is a subset of the interface between Ωi and Ω j, a zero
Neumann condition is imposed as an inner boundary condi-
tion on the remaining part of the interface (∂Ωi∩∂Ω j \Γk).
To the right in Figure 2, we have depicted two basis func-
tions corresponding to a subdivided interface for a homoge-
neous domain. Because of the inner boundary, the flux field
has a peak (singularity) at the inner corner. This means that
the normal component of the flux over the open boundary is
varying strongly and nonlinearly, and that the average of the
two basis functions differs from the basis function defined
for the original non-divided interface, and cannot represent
constant flow fields [6].

The multiscale method. To approximate the solution of
(1), we introduce the multiscale expansion

v f s =Ψv+ ũ f s, p f s = Ip+ p̃ f s, π f s = Jπ + π̃ f s. (12)

Here, (v,p,π) denote unknowns associated with the coarse
grid, whereas (v f s,p f s,π f s) denote the same quantities re-
constructed on the fine grid. The matrix Ψ represents the
fine-scale reconstruction operator for fluxes and contains the
basis functions ψ ik (or ψk). The matrices I and J are sim-
ple prolongation operators from coarse blocks and coarse
faces to cells and faces in the fine grid, respectively. Finally,
ũ f s, p̃ f s, and π̃ f s denote reminder terms defined on the fine
grid. To form a global system on the coarse grid {Ωi}, we

insert (12) into (3), multiply by the compression operator
diag(ΨT,IT,JT) from the left, and drop all remainder termsΨ

TT−1Ψ Ψ
TCI Ψ

TDJ
ITCTΨ 0 0
JTDTΨ 0 0

 v
−p

π

=

 0
ITq

0

 . (13)

MsMFE as an upscaling method. To use MsMFE as
an upscaling method, all we need to do is compute inverse
transmissibility matrices T−1

i that consist of ’inner prod-
ucts’ of the basis functions ψ ik on the corresponding coarse
blocks Ωi. As above, the inverse transmissibility matrix T−1

i
describes the relation between the fluxes and the block and
interface pressures through (2). Given basis functions ψ ik ,
the (k, `) entry of matrix T−1

i is given by

T−1
i (k, `) =

∫
Ωi

ψ ik ·K
−1

ψ i` .

The elements of T−1
i can equivalently be derived from the

computed pressure at the boundary ∂Ωi. First, observe that
the pressure φik in (10) is only defined up to a constant and
we therefore have to add a condition, such as e.g.,

∫
Ωi

ωiφik =

0, to close the equation. Using Gauss–Green’s formula, we
derive

T−1
i (k, `) =

∫
Ωi

ψ ik ·K
−1

ψ i` =−
∫

Ωi

ψ ik ·∇φi`

=−
∫

Ωi

∇ ·ψ ik φi` +
∫

∂Ωi

φi`ψ ik ·n

=−
∫

Ωi

ωiφi` +
∫

Γk

φi`νk =
∫

Γk

φi`νk.

(14)

This means that T−1
i (k, `) is the (νk-weighted) average of

the pressure basis φi` on interface k. In particular, T−1
i =

[φi,1, . . . ,φi,ni ], where φi,k is the vector of average interface
pressures in the numerical solution of (10).

5 Numerical experiments

In this section, we report the results of several numerical ex-
periments that were conducted to verify, validate, and com-
pare the three numerical methods presented above (DNR,
1-block MsMFE, and 2-block MsMFE). First, we discuss
two basic properties, reproduction of constant flow fields
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and sensitivity with respect to aspect ratios. Second, we use
the SPE10 data set to investigate the robustness of the meth-
ods and how subdivision of coarse-block interfaces affects
the accuracy of the methods. Third, we discuss how the ac-
curacy of the methods can be improved by carefully adapt-
ing the coarse grid to high-contrast media that contain barri-
ers, high-flow channels, or combinations thereof. All exper-
iments were conducted using the MATLAB Reservoir Sim-
ulation Toolbox [14,16].

5.1 Constant flow fields

Reproduction of constant flow fields is often used as a ba-
sic design principle for discretization and streamline-tracing
methods. By design, the DNR method does not automati-
cally reproduce constant flow unless the coarse-grid faces
are subdivided in certain ways. Likewise, the 2-block ver-
sion of the MsMFE method will not reproduce linear pres-
sure correctly if the coarse-grid interfaces are subdivided, as
was illustrated in Figure 2. On the other hand, the 1-block
version of MsMFE and the 2-block version with no face re-
finement will correctly reproduce constant flow for homoge-
neous, isotropic permeability.

1 segment 2 segments 5 segments 10 segments nonuniform

Fig. 3 Subdivision of a single coarse face in Example 1.

Example 1 (Cartesian grid) To investigate this in more de-
tail, we use a simple setup consisting of a square 50 m ×
50 m domain with a pressure drop from 150 to 50 bar from
the west to the east boundary, giving an analytical solution
p(x,y) = 150−2x. We consider a 50×50 Cartesian fine grid
partitioned uniformly into 5× 5 coarse blocks. Each inter-
face between two blocks is subdivided as shown in Figure 3.
Table 1 reports errors in the pressure for a homogeneous,
isotropic permeability computed by the DNR and the two
MsMFE methods. For comparison, the table also reports the
corresponding errors for a model with lognormal permeabil-
ity, for which neither of the schemes will reproduce the cor-
rect flow unless refined to the fine grid. Figure 4 plots ap-
proximate solutions in the homogeneous case computed on
a grid with two segments per coarse face. The figure also
lists the computed fluxes out of the four boundaries. It is ob-
vious that the DNR method fails to reproduce the constant
flow field in the homogeneous case. However, we observe
that adding extra segments at the corners of the coarse grid

Boundary Reference DNR 2-block 1-block
East 9.869233e-07 9.689592e-07 9.404560e-07 9.869233e-07
West -9.869233e-07 -9.689592e-07 -9.404560e-07 -9.869233e-07
North -1.816886e-19 -1.475227e-19 2.309273e-15 -2.927903e-20
South -1.079967e-19 -1.278490e-19 2.309294e-15 1.943271e-21
Rel.error 1.82% 4.71% 0.00%

Fig. 4 Pressures and fluxes across the outer boundary for the constant
flow example on a 5×5 coarse grid in which all coarse faces have been
subdivided into two segments of equal length. The dots signify the ends
of the face segments.

enables the method to reproduce constant flow in the homo-
geneous case, and reduces the error by one order of magni-
tude for the cost of three times as many basis functions for
the lognormal case. For short, we will use the term DNR-
c to refer to the method with this type of nonuniform sub-
division in the following. For isotropic permeabilities, the
2-block MsMFE method reproduces constant flow if coarse
faces are not subdivided. However, dividing the faces into
two or three segments gives a significant increase in the er-
ror, as expected. On the other hand, although this method is
not a consistent discretization, it produces (by far) the lowest
error when using no face refinement for the lognormal per-
meability. The 1-block method produces constant flow by
design in the homogeneous, isotropic case. Finally, we re-
mark that all three methods produce results to machine pre-
cision when the coarse faces (but not the blocks) are refined
down to the fine grid.

Unstructured grids will naturally impose coarse faces
that do not follow the axial directions. The next example
investigates what effect this has on the solution quality.

Example 2 (PEBI grid) We consider the exact same setup
as in the previous example, but now using a 2D unstructured
perpendicular bisector (PEBI) grid. We construct two differ-
ent coarse grids, an almost uniform grid obtained by sam-
pling from a 5×5 Cartesian partition and a k-way Metis par-
tition [15] with 25 blocks, and conduct a convergence study
on a sequence of increasing face refinements for the two
grids. Figure 5 shows four grids and reports errors in coarse-
scale fluxes computed by the DNR and the two MsMFE
methods. As should be expected, the errors of the DNR and
the 1-block methods decay with increasing face refinement.
The error in the 1-block method is particularly high because
the basis functions are constructed by imposing constant
flux along coarse faces that do not align with the princi-
pal axis of flow. For DNR, we do not apply the DNR-c fix
since partitions with obtuse angles have no natural corners,
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Table 1 Errors in coarse fluxes measured in the relative L1 norm for a pressure drop over a 2D reservoir with homogeneous or lognormal
permeability represented on a 50×50 grid. The approximate solutions are computed on a coarse 5×5 grid in which each face is subdivided into
n equal segment or three nonuniform segments with lengths one, eight, and one cells.

Homogeneous Lognormal
Segments bases DNR 2-block 1-block DNR 2-block 1-block

1 60 1.04e-01 1.50e-13 1.62e-13 9.68e-02 1.59e-02 4.66e-02
2 120 2.47e-02 9.01e-02 1.40e-13 2.51e-02 9.93e-02 5.38e-02
5 300 8.97e-02 3.16e-02 1.67e-13 8.87e-02 3.47e-02 2.28e-02

10 600 1.05e-13 6.25e-13 2.05e-13 6.51e-14 1.12e-12 3.41e-13
nonuniform 180 7.96e-14 4.77e-02 1.60e-13 8.83e-03 5.72e-02 5.31e-02
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Fig. 5 Constant flow for an unstructured PEBI grid for a homogeneous medium. The bar plots show L1 errors of the coarse-scale fluxes whereas
the line plots show the number of coarse blocks involved in the construction of basis functions. The left column shows results for an almost uniform
5×5 coarse grid with face refinement derived from a 5n×5n Cartesian grid. The right column shows results for a 25-block coarse grid generated
by Metis with face refinement derived from a 25n-block Metis partition.

as was the case in the previous example; see also the discus-
sion of wrap-around effects after Example 3. For the 2-block
method, the error increases significantly when the coarse
faces are subdivided and we need to introduce a quite fine
subdivision before the error comes back to the level of the
base case, in particular with the uniform partition. Results
for a set of lognormal permeabilities are qualitatively the
same and thus not reported.

5.2 Sensitivity to aspect ratio

Real-life reservoir models typically have grids with high and
large variations in aspect ratios. It is therefore important to

have a method that is robust to changes in aspect ratios. In
the next example, we therefore investigate how the accuracy
of the DNR, DNR-c and the two MsMFE methods is af-
fected by increasing the aspect ratio of the cells in the un-
derlying fine grid.

Example 3 (Aspect ratio) We consider a 100× (100/L) m2

domain with homogeneous permeability, subject to two dif-
ferent boundary conditions: linear pressure making a π/3
degree angle with the x-axis or Dirichlet boundary condi-
tions with pressure p(s)= 1000sin(πs) on the north and east
faces (assuming that these are parametrized by s∈ [0,1]) and
zero pressure otherwise. Table 2 reports errors for aspect ra-
tios L = 1,2,3,4,6,12. The DNR method has significantly
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Table 2 Errors in coarse-scale fluxes measured in the relative L1 norm for a 2D reservoir of dimensions 100× (100/L) with flow driven by two
different boundary conditions. Approximate solutions are computed on a 12×12 coarse grid overlying a fine 60×60 grid.

Linear, π/3 angle Analytic
Ratio DNR DNR-c 2-block 1-block DNR DNR-c 2-block 1-block

1:1 8.46e-02 3.00e-13 1.63e-09 2.94e-13 8.71e-02 3.11e-03 4.95e-03 4.95e-03
2:1 2.53e-01 2.02e-13 1.32e-09 2.03e-13 2.30e-01 3.47e-03 7.71e-03 7.71e-03
3:1 3.29e-01 3.18e-13 1.10e-09 3.12e-13 3.05e-01 4.39e-03 1.03e-02 1.03e-02
4:1 3.66e-01 1.82e-13 9.15e-10 1.76e-13 3.45e-01 5.46e-03 1.31e-02 1.31e-02
6:1 4.02e-01 3.50e-13 6.70e-10 3.39e-13 3.90e-01 8.06e-03 1.79e-02 1.79e-02

12:1 4.40e-01 2.06e-13 3.60e-10 1.87e-13 4.41e-01 1.21e-02 2.60e-02 2.60e-02

larger errors than the three other methods and the error in-
creases with increasing aspect ratio. The error also increases
for the MsMFE methods for analytic boundary conditions,
but this can mainly be attributed to inaccurate representa-
tion of the Dirichlet boundary conditions; if we subdivide all
boundary faces, the error does not increase with increasing
aspect ratio. Overall, the DNR-c method is the most accu-
rate, but also has three times as many basis functions as the
MsMFE methods.

Without subdivision of coarse-block faces, the Dirichlet–
Neumann maps in the DNR method are constructed by im-
posing a unit pressure at the midpoint of one coarse face
and zero pressures at the other face midpoints. For Carte-
sian grids, this gives a wrap-around effect at the coarse-grid
vertices. Since each map will be constructed based on a pres-
sure drop along both axial directions, one effectively intro-
duces a coupling of the flow in the axial directions. This
wrap-around effect causes the error to increase significantly
with increasing aspect ratios. Introducing extra degrees of
freedom at the corners (in the form of segments that are one
cell wide) breaks the coupling between the axial directions
and makes the DNR method robust with respect to aspect
ratios. We believe that this observation can also shed some
light into another method that has not been discussed herein:
In the multiscale finite-volume (MsFV) method [12], each
basis function is constructed much in the same way as in
DNR, by imposing a unit pressure at one vertex of a dual
coarse block and zero at the others. Hence, it is likely that
the loss of accuracy for increasing aspect ratios observed for
the MsFV method is caused by a similar wrap-around effect.

5.3 A posteriori subdivision

So far, we have only presented highly idealized test cases
that highlight certain features of the DNR and MsMFE meth-
ods. To get a more challenging, and somewhat more realistic
test case, we consider Model 2 from the 10th SPE Compara-
tive Solution Project [8], which was designed to benchmark
various upscaling methods and has later become a popu-
lar data set when validating multiscale methods. The most
common test in the literature is to use horizontal slices with

Fig. 6 Logarithm of permeability on vertical slices of the SPE10 data
set: x-slice shows lateral permeability, y-slice shows vertical perme-
ability.

isotropic permeability. We have performed systematic stud-
ies of slices extracted along all three axial directions, sub-
ject to linear and analytic conditions as discussed above. In
all simulations, face refinement is imposed a priori without
the use of information about flow patterns, either as a sub-
division into equal segments or as a nonuniform subdivision
that seeks to separate high and low permeability values into
different face segments, e.g., as illustrated in the right plot of
Figure 1, which we will refer to as permeability threshold-
ing. Altogether, the results are somewhat inconclusive and
cannot be used to claim that one method, or subdivision
strategy, is better than the other, but generally show that both
the DNR and the 2-block MsMFE methods are able to rep-
resent the subgrid effects of the strongly heterogeneous and
channelized permeability to produce accurate flow fields for
most slices. However, there are also isolated cases for which
the methods give quite high errors. As a possible remedy,
we consider a simple approach for a posteriori adaption:
Knowing that the analytical solution should be monotone,
we can refine coarse faces and recompute the corresponding
basis functions in regions where the approximate solution
falls outside the minimum and maximum values from the
prescribed boundary condition.

Example 4 (SPE10) To investigate the effect of a posteriori
face adaption as a possible remedy, we consider two types
of vertical slices from the SPE10 data set: 60 x-slices with
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120× 80 cells and 220 y-slices with 60× 80 cells. When
sampling vertical slices, correlations that mostly run in the
lateral direction of the model are cut off, giving very patchy
permeability fields, as can be seen in Figure 6. These chal-
lenging permeabilities have been selected on purpose to pro-
voke non-monotone behavior in our numerical methods. To
drive flow, we specify linear boundary conditions with p =

150 bar on the west and p = 50 bar on the east bound-
ary of each 2D slice or analytic boundary conditions with
p(s) = 1000sin(πs) on the north and east boundaries (as-
suming these are parametrized by s ∈ [0,1]) and zero pres-
sure otherwise. As base cases before refinement, we use a
6× 8 grid for the x-slices or a 12× 8 grid for the y-slices.
To these base grids, we apply five different types of a priori
refinement of each face:

– subdivision in two or three segments;
– subdivision using permeability threshold values 10, 100,

or 1000 mD.

After an approximate fine-scale solution has been computed
on any of these grids, we use the following three different
strategies to impose a posteriori refinement of faces (illus-
trated in Figure 7):

block: refine the coarse faces down to the fine grid for all
blocks that have a coarse-scale pressure outside the range
of the prescribed boundary conditions;

cell: add extra faces for those cells along the boundary that
have reconstructed fine-scale pressure outside the pre-
scribed range;

>n%: refine coarse faces down to the fine grid for all blocks
in which more than n% of the cells have reconstructed
pressures outside the prescribed pressure range.

In the following we will use the relative L1 error of the
coarse fluxes as a measure of solution quality for approxi-
mate solutions computed by the DNR method. The left col-
umn of Figure 8 shows errors after a priori face refinement
for each layer versus the error on the corresponding base
grid (without face refinement). For dots below the line y = x,
the a priori face refinement has lowered the error, and in
most cases to less than unity. However, we notice that in a
few cases the refinement increases the error, in particular
if faces are subdivided into three segments. The middle col-
umn shows similar plots of errors obtained by also including
a posteriori refinement. Here, we notice that introducing a
posteriori refinements directly on the base grid will in most
cases not reduce the error significantly (and hence the black
points are clustered around the line y = x). However, if we
first do an a priori face refinement and then an a posteri-
ori refinement, the error is reduced and below unity in most
cases. In the right column, we compare the efficiency of
the different approaches by plotting the mean error over all
slices as a function of the mean number of basis functions.

For both the x and y-slices, using either an a priori subdivi-
sion into two equal segments, or a permeability threshold of
100 mD, are the two most efficient strategies. Moreover, us-
ing an a posterior refinement indicator based on cells gives
lower error, but also more basis functions, than using an in-
dicator based on blocks. Similar results were observed for x-
slices with linear pressure and y-slices with analytic bound-
ary conditions. Finally, we notice that a posteriori adaption
can, of course, also be introduced in a similar manner for the
MsMFE methods.

5.4 High contrast media

Extensive numerical experiments show that even though mul-
tiscale methods may provide high accuracy for media with
strong permeability contrasts (barriers or streaks with high
permeability) [4,18], one can also easily construct cases for
which the methods fail to provide accurate solutions [13,4].
Previous experience has shown that adapting the coarse grid
to barriers in the permeability field may give improved res-
olution [4].

Example 5 (Barrier/high-flow cases) In this example, we
consider a rectangular domain that either contains barriers
in a high-permeable background, or high-permeable streaks
in a low-permeable background. Three-dimensional perme-
ability realizations are generated by extruding three different
50×50 background/foreground masks to ten vertical layers:

Mask 1: isloated objects representing barriers or streaks on
a constant background; each object is at least three cells
wide.

Mask 2: isolated objects that are so thin that many of the
internal connections within the object is across vertices
rather than faces in the 2D mask.

Mask 3: objects that cross each other and hence form longer
barrier/high-flow regions; each object is at least two cells
wide.

The three masks are shown in the left column of Figure 9.
To study the effect of permeability contrasts on the 2-

block MsMFE method, we keep the high-permeable feature
in each problem fixed at 1 D and vary the low permeability
seven orders of magnitude, 10−6, . . . ,1 D. Flow is driven by
Dirichlet boundary conditions equal 300 bar on the south
side and 100 bar on the north side. Altogether, this gives 2×
3× 7 different flow cases. For each flow case, we consider
six different grids,

– a uniform 5×5×1 coarse grid (base grid);
– a volumetric refinement of the base grid in which con-

tiguous regions of foreground permeability form extra
blocks (denoted ’vNUC’);
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a priori: 3 segments a posteriori: cell a posteriori: > 5% Fig. 7 A posteriori refinement
of grid. The left figure shows the
initial grid, with cells that vio-
late the pressure conditions out-
lined with thin lines. The mid-
dle and right plots show a pos-
teriori refinement using two dif-
ferent strategies, with the end-
points of new intervals marked
in white.
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Fig. 8 Comparison of L1 error in coarse fluxes computed by DNR for x-slices of SPE10 with analytic boundary conditions (upper row) and y
slices with linear pressure boundary conditions (lower row). The left column shows cross-plots of grids with different a priori refinement versus
the base unrefined grid, whereas the middle column shows similar plots for grids created by combining a priori and a posteriori refinements. In
the plots, colors signify a priori refinement type, whereas markers give a posteriori refinement type. The plots in the right column show the mean
error over all slices versus the corresponding mean number of basis functions for each grid type derived by combining different a priori and a
posteriori face refinements.

– the base grid with faces subdivided into subfaces accord-
ing to foreground and background permeability (denoted
’fNUC’);

– the base grid with a 2×2, 5×5, or 10×10 subdivision
of each face introduced only in cells that represent the
foreground.

All six grids are illustrated at the bottom of Figure 9.
For the barrier cases (Kb fixed, K f varying, left column

in Figure 9), we observe very large errors for the base case
(5×5×1 coarse grid) when the media contrast spans five to
seven orders of magnitude, in particular for Mask 3. Refin-
ing the faces reduces the error somewhat, and the reduction
in error is almost the same regardless of what type of face
refinement is introduced. In all cases, the lowest number of
basis functions is obtained with nonuniform refinement, and
this should therefore be our method of choice. For the high-

est media contrasts, the error is reduced significantly more
if we instead perform a volumetric refinement so that the
blocks adapt to the barriers. On the other hand, as the me-
dia contrast decreases, the error of the volumetric adaption
increases because of numerical errors introduced by non-
rectangular coarse blocks. This is particularly evident for
parameter K f = 1000, which corresponds to a homogeneous
medium. Here, we clearly observe strong numerical artifacts
also for grids having more than a single basis function asso-
ciated with each coarse interface. One possible source of this
error is that the 2-block does not reproduce uniform flow.
The 1-block method, on the other hand, reproduces uniform
flow but has errors that are equal or larger for all media con-
trasts except for the homogeneous case. (Note that the 1-
block method will give lower errors if basis functions are
constructed using global boundary conditions). This indi-
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cates that boundary conditions and geometrical complexity
of the coarse blocks may be more important sources of er-
rors than the inability to produce uniform flow. The increase
in error is also most pronounced for Mask 3, for which the
streaks have the most complicated geometry.

Moving on to the case with high-permeable streaks (right
column in Figure 9), we first of all observe that the volu-
metric subdivision is clearly unsuitable. This is particularly
evident for Mask 2, in which the cells inside the streaks
in many places are only connected through edges (and not
faces). This will result in a large number of coarse blocks
and an overall set of basis functions that does not produces
the almost linear pressure in a good way. Secondly, it does
not seem to matter much what type of face refinement one
chooses for the two first masks. For Mask 3, subdividing
faces according to foreground and background permeability
gives surprising small reduction in the error and further sub-
division of the high-permeability streaks is needed to reduce
the error.

We have not yet been able to implement the DNR method
with arbitrarily shaped subface partitions, and hence we were
not able to run the method for the setup discussed in this ex-
ample.

Example 6 (2D PEBI) In this example, we will consider bar-
riers and high-permeable streaks modeled on a 2D unstruc-
tured perpendicular bisector (PEBI) grid supplied with four
different permeability realizations:

– barrier configuration as in the previous example using
Mask 3 with K f = 1 mD and Kb = 1 D;

– high-permeable streak using Mask 3 with Kb = f D and
Kb = 1 mD;

– lognormal permeability;
– lognormal permeability with low-permeable barriers from

Mask 3 (K f = 0.01 mD).

A linear pressure drop from 500 to 100 bar is specified at the
outer boundaries. The grid is partitioned as in Example 2: (i)
an almost uniform grid obtained by sampling from a 5× 5
Cartesian partition, and (ii) a k-way Metis partition [15] with
25 blocks. In addition, three types of face refinements are
applied:

– face refinement obtained by intersecting the 5× 5 base
grid by a 10×10 and a 20×20 grid;

– face refinement obtained by intersecting the 25 block
Metis partition by a 50 block and a 100 block Metis par-
tition, respectively;

– using a permeability threshold of 100 mD to subdivide
coarse faces.

Figure 10 reports a comparison of various face refine-
ments for the barrier and streak cases. For the barrier cases,
the lowest error is obtained if the faces are adapted to fit the
barrier exactly (’100 mD’ in the figure). For high-permeable

streaks, the 2-block method still has its lowest error when
the grid is adapted to the high-permeable streaks, whereas
the DNR method has the lowest error for refinements that
do not adapt to the structure of the permeability field.

Figure 11 reports a similar refinement study for the last
two permeability models. Here, we also use two new types
of face refinement:

– face refinement by intersecting the coarse grid with an-
other ’flow-adapted’ coarse grid coarse grid [9] with per-
meability as flow indicator (’fNUC’);

– subdividing coarse faces by grouping the permeabilities
into four bins using threshold values 10, 100, 1000 mD.

With only lognormal permeability, we observe three in-
teresting trends: (i) uniform partitions systematically give
higher accuracy than Metis partitions; (ii) whereas a uniform
face partition improves the DNR solutions, nonuniform par-
titions adapted to the permeability do not; and (iii) all face
refinements increase the error for the 2-block method. If bar-
riers are added, the flow will to a large extent be dictated
by the low-permeable barriers and the best accuracy is ob-
tained if we add face refinement that adapts to the barriers
using either a single threshold value of 10 mD or a partition
of permeability into four levels.

6 Concluding remarks

We have presented two new methodological developments.
First, the Dirichlet–Neumann representation (DNR) method
[20] has been extended to fully unstructured grids in 2D.
Second, the MsMFE method [7] has been extended to coarse
grid with subdivided faces so that more than one basis func-
tion may be associated with each pair of coarse blocks. The
2-block formulation of the MsMFE method does not repro-
duce constant flow when coarse faces are subdivided. Sub-
dividing coarse faces will therefore not improve the error if
the flow field has a dominant linear component. Likewise,
the DNR method only reproduces constant flow if extra seg-
ments one cell wide are added at each vertex of the coarse
grid. The 1-block MsMFE method reproduces constant flow
by design, which is important for smooth heterogeneities,
but may be less important for channelized and high-contrast
media. However, we believe that essential features of the fix
for constant flow should be reflected when extending the
DNR method to 3D. In particular, face pressure boundary
conditions should not form global smooth functions over
non-manifold coarse cell boundaries.

We have performed an extensive series of numerical ex-
periments both for synthetic and realistic cases; a few have
been reported herein and more results can be found in [17,
11]. In summary, the results show that subdividing coarse
faces to capture high-flow effects will increase the resolu-
tion of the DNR and the MsMFE methods for cases with
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Fig. 10 Barriers and high-
permeable streaks for Mask 3
modeled on a 2D PEBI grid.
The bars show L1 errors for
the coarse-scale fluxes and
the lines with markers show
the number of blocks involved
in the computation of basis
functions for various types of
face refinement for the DNR and
the two MsMFE methods. In the
upper row, we use a 5×5 coarse
partition and in the lower row a
25 block Metis partition.
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Fig. 11 The left plot shows a
comparison of face refinement
for uniform and Metis partitions
for a model with lognormal per-
meability and linear pressure.
The right plot shows a simi-
lar lognormal model with low-
permeable barriers (0.01 mD)
imposed according to Mask 3.

flow across regions of strong contrasts. Barriers and other
no-flow effects, on the other hand, where the flow is con-
fined by media contrasts, are captured more accurately by
using volumetric grid adaption. Altogether, the DNR and 2-
block MsMFE methods are quite robust and generally pro-
duce low errors compared with standard upscaling methods.
The 1-block MsMFE method with local boundary condi-
tions is less accurate than the other two methods, but will
generally be more robust and accurate if global boundaries
are used to compute basis functions. All three methods will
occasionally lead to large errors for specific coarse grids,
possibly in combination with face refinements. One solution
to cure this problem would be to use a posteriori adaption; a
simple approach in this direction was presented for subsets
of the SPE10 data set. In practice, it may be possible to use
a combination of user experience and/or geological knowl-
edge to introduce adaption in targeted areas only. Likewise,
global fine-scale information (e.g., based on generic bound-
ary conditions) may be available and can be used to guide

the subdivision of faces or to set global boundary conditions
for the 1-block MsMFE method.

The results reported herein complements previous com-
parisons of multiscale and upscaling methods, e.g., as re-
ported in [13], and shows that it is generally difficult to pick
one particular multiscale-type method or griding approach
that is more robust than others. In our experience, one can al-
ways construct cases for which a particular method performs
better or worse than a set of alternative methods. Neverthe-
less, we have tried to summarize the experience we have
gained by running a large number of cases of the type re-
ported herein in the following guidelines:

– use volumetric refinement for flows that mostly take place
with high-permeable (or low-permeable) regions;

– use face refinement when there is much flow across high
permeability contrasts;

– perform simulations on more than one coarse grid; both
the DNR and the MsMFE method may give large errors
for specific coarse grids;
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– a posteriori refinement of blocks or block faces can have
a modest cost and will improve accuracy in many cases.

The guidelines are admittedly not very precise. In our expe-
rience, picking the right method and designing the best grid,
which is optimal with respect to both accuracy and runtime,
is more an art than a precise science with the current state-
of-the-art.
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