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Abstract

Discrete fracture models, in which fractures are represented individually as lower-
dimensional objects, are beginning to appear in simulators for porous media flow. Here we
present a discontinuous Galerkin method for computing time-of-flight in discrete-fracture
models of fracture-fault systems. Isocontours of time-of-flight are time-lines of porous-
media flow and give information about flow patterns, in particular for single-phase flow.

Recent numerical results show that the discontinuous Galerkin (dG) method is efficient
and accurate for solving the time-of-flight equation. In this paper, we use two simplified
grid models to examine various approaches for the dG discretisation in fractured regions
of the porous medium. Comparing the numerical results of the dG approximation with
those from a streamline simulator, we demonstrate the importance of a sufficient grid
resolution across the fractures, even though the widths of the fractures are very small
compared to typical length scales of the unfractured parts of the reservoir.

1. INTRODUCTION

In recent years, advanced drilling techniques and enhances in seismic and geological
characterisation of petroleum reservoirs have emerged. Consequently, there is an increased
need for more detailed understanding of how local reservoir heterogeneities, such as frac-
tures, affect the oil and gas recovery. A naturally fractured reservoir can be defined as a
reservoir containing planar discontinuities created by natural processes like diastrophism
and volume shrinkage. Due to the complex geometries and potentially large variations
in parameter values, fractures will often have a significant impact on the flow charac-
teristics of a porous medium, and fractured reservoirs represent a challenge for reservoir
characterisation, modelling, and simulation.

The traditional way of simulating flow in a fractured medium is by the use of dual-
porosity models, where the matrix (unfractured rock) and fractures are treated as two co-
existing porous media. Although such models are efficient in some cases, they generally fail
to deliver sufficient resolution of the complex flow patterns that develop when a fractured
medium is produced. In recent years, several approaches have been taken to describe
fracture-fault systems more accurately. These approaches rely a discrete description of
individual fractures, using complex (unstructured) gridding schemes in which each fracture
is represented explicitly by lower-dimensional objects at cell faces.
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In a recent paper (Natvig et al., 2006), we presented a discontinuous Galerkin (dG)
method for computing single-phase transport in porous media. Here we present the first
step towards extending this method to discrete fracture systems. For simplicity, we only
consider conceptual 2D models consisting of a regular Cartesian grid representing the
matrix and extra lines at cell edges representing straight fractures. The aim of this first
step is to investigate how the dG discretisation is able to handle the geometries and sharp
variations in rock properties of fractured fields. In general, we use the same solution
procedure as in (Natvig et al., 2006), but due to the high contrasts and different length
scales of the rock matrix and the fractures, we investigate different dG approximation
strategies for the model equation in the fractures. A key point in our approach is an effi-
cient solution procedure for the resulting system of discrete flow equations. By exploiting
a priori knowledge of the directions of flow, we may arranging the elements in a suitable
sequence such that one does not need to assemble the full system and can compute the
solution extremely fast in an element-by-element fashion.

The outline of the paper is as follows: In Section 2, we introduce the time-of-flight for-
malism as a model for single-phase transport in porous media. In Section 3, we give a brief
outline of the dG method and present the variational formulation and discretisation of our
model problem, distinguishing between the discretisation in the rock matrix and in the
fractures. We also show how to solve the resulting linear system using an a prior reorder-
ing of the elements. Numerical examples are presented in Section 4; here, we compare
the accuracy of the solutions computed by the dG method to highly resolved solutions
obtained by pointwise integration of streamlines. Finally, we draw some conclusions and
indicate further work.

2. GOVERNING EQUATIONS

We consider single-phase transport in porous media. The velocity field v is governed
by Darcy’s law, and for convenience we assume that v = v(x) is given and is nearly
irrotational and divergence free. The motion of the fluid is aligned with the velocity
field v; thus, all instantaneous transport occurs along integral curves (streamlines). A
streamline Ψ is the path traced out by a passive particle moving with the flow given by a
velocity field v such that the vector v is tangential to Ψ at every point. The time-of-flight
τ(x) is the time needed for a passive particle to travel along a streamline from the inflow
boundary to a given point x. Isocontours of τ(x) are the time-lines in the porous medium
and give information about the flow patterns, in particular for single-phase flow. The
time-of-flight can be defined by the following integral along a streamline Ψ:

τ(x) =

∫
Ψ

φ ds

|v(x(s))|
, (1)

where φ is the porosity of the porous medium. Hence, a simple model for convective
transport in v is the boundary-value problem for time-of-flight τ in Ω:

v · ∇τ = φ, τ = 0 in ∂Ω+; (2)

see (Datta-Gupta and King, 1995). Here, ∂Ω+ denotes the inflow boundary of the fluid.
Accurate solution of (2) is rather easy for smooth velocities, but the equation becomes
harder to solve when the vector field has large spatial variations and fine-scale details. In
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this paper, we will show the efficiency and accuracy of the dG method to simulate single-
phase transport in fractured porous media as described by (2); however, the solution
strategy also applies for slightly more general models of the same type; see (Natvig et al.,
2006). We refer to (Natvig and Lie, 2006) for an extension of the dG methodology in to
multiphase and multicomponent flow.

3. DISCONTINUOUS GALERKIN METHOD

The physical domain Ω consists of matrix and fractures. Since fractures exist on a much
smaller geometrical scale than the characteristic length scale of the matrix, we assume that
we have a discrete fracture model, where the fractures are modelled as one-dimensional
curves in a two-dimensional reservoir model. However, for the numerical calculations, we
let the fractures have a small width ε, so that both the matrix and the fracture are two
dimensional.

The domain is partitioned into a regular quadrilateral grid of N elements {Ei}N
i=1. More

precisely, we denote the M elements corresponding to the matrix by {Ki}M
i=1 and the

N −M elements describing the fractures by {Ii}N−M
i=1 . As quadrilateral corner-point grids

can be transformed to regular grids (Prévost et al., 2002), the method can be extended
to also handle more general partitions.

In the following, we describe the discretisation of the time-of-flight equation (2) using a
discontinuous Galerkin method (Reed and Hill, 1973), distinguishing between the discreti-
sation in the matrix and in the fracture elements. Thereafter, we explain the numerical
solution procedure. It is assumed that the fluid velocity v is a time-independent function
that is given in terms of fluxes across the element edges.

3.1. Approximation in the Matrix. Let V be the space of arbitrarily smooth test
functions. By multiplying (2) with a function ϕ ∈ V and integrating by parts over each
matrix element K, we obtain

−
∫

K

Tv · ∇ϕ dx +

∫
∂K

Tv · nϕ ds =

∫
K

φϕ dx ∀ϕ ∈ V, (3)

where n is the outer normal on the element boundary ∂K. We seek a solution in a finite-
dimensional subspace Vh ⊂ V , so we replace the exact solution and the test function by
Th ∈ Vh and ϕh ∈ Vh, respectively. The space Vh consists of functions that are smooth
inside each element, but may be discontinuous over the element boundaries. Since Th

may be discontinuous over the element boundaries, we must replace the flux term, Tv ·n,
by a consistent and conservative numerical flux function f̂ . This leads to the following
discrete variational formulation: Find Th such that

−
∫

K

(Thv) · ∇ϕh dx +

∫
∂K

f̂(Th, T
ext
h ,v · n)ϕh ds =

∫
K

φϕh dx ∀K, ∀ϕh ∈ Vh. (4)

For inner and outer approximations Th and T ext
h at the boundaries, the numerical flux f̂

is approximated by the upwind flux given by

f̂(Th, T
ext
h ,v · n) = Th max(v · n, 0) + T ext

h min(v · n, 0). (5)

The upwind approximation of the flux preserves the directional dependency that we will
later exploit to compute the solution element by element.
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The restriction ϕ|K of a function ϕ ∈ Vh on an element K is defined by ϕ|K ∈ Qn−1,

where Qn = span{xpyq : 0 ≤ p, q,≤ n}. Hence, for n = 1, V
(1)
h is the space of functions

that are elementwise constant in the unfractured domain and yields a scheme that is

formally first order; for n = 2, V
(2)
h is the space of elementwise bilinear functions on the

unfractured domain and yields a formally second order accurate scheme; and so on.

3.2. Approximation in the Fractures. Since it is assumed that the width ε of the
fractures is negligible compared to characteristic length scales of the reservoir, we first
consider a modification of the discretisation described above for the fracture elements,
{Ii}, by assuming that there is no variation in time-of-flight across the fracture. This is
consistent with the initial reservoir model, which assumes that the fractures have zero
width. Depending on the position of the fractures, the thin fracture elements {Ii} are
placed in either the x1-direction or the x2-direction.

∂Is
∂Ie

∂In∂Iw εnw
ns

ne

nn

Figure 1. Fracture element of width ε.

Assuming a constant solution across the fracture, and using the same framework as for
the discretisation in the matrix, we obtain the following discrete variational formulation
for a fracture element Ii placed in the x1-direction: Find Th such that for all ϕh ∈ Vh

−ε

∫
Ix1

(Thv) · ∇ϕ dx1 + εThϕhv · nw +

∫
∂Is

Thϕhv · ns dx1

+ εThϕhv · ne +

∫
∂In

Thϕhv · nn dx1 = ε

∫
Ix1

ϕh dx1.

(6)

For fracture elements located in the x2-direction, a discretisation is obtained in the same
manner, using that the solution is constant across the fractures in the x1-direction. To
compute the boundary integral we use the upwind flux function (5), where nw, ns, ne,
and nn denote the outer normals at each element boundaries. Additionally, we use that
∂I = ∂Iw ∪ ∂Is ∪ ∂Ie ∪ ∂In; see Figure 1. Since the order of the scheme is reduced to one
in the direction across the fractures, the discretisation is simplified compared with the
discretisation (4) in the matrix elements.

As an alternative, we may model the fractures as fully two-dimensional objects and
approximate the solution in fracture elements in exactly the same manner as for the
matrix elements. This can be motivated based on the fact that the flow changes rapidly
in the fractured regions. For this reason, it is also natural to consider a finer grid resolution
across the fracture (as opposed to only one element). The two alternative discretisations
are discussed further in Section 4 by the means of two numerical examples. See (Hoteit
and Firoozabadi, 2005) for a different dG approach.

3.3. Numerical Solution Procedure. The approximate solution and the test function
on an element Ei can be written as a linear expansion of basis functions. By substituting
this into the variational formulations (4) for the matrix elements and (6) for the fracture
elements and approximating the integrals using Gaussian quadrature, we get a set of
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linear equations for the degrees-of-freedom in each element. Let Ti denote the vector of
unknowns for element Ei. If n denotes the order of the scheme, the number of unknowns
per element using a dG method is n2 for matrix elements, and n for fracture elements if
the order reduction in the dG approximation across the fractures is applied.

Let us now examine the structure of the linear system. For convenience, we split
the coefficient matrix into the element stiffness matrix Ri and the coupling to the other
elements through the numerical flux integral Fi. The exact solution in Ei depends only
on the upwind points of the bundle of streamlines passing through Ei and is independent
of the solution elsewhere in the domain (Berre et al., 2005; Natvig et al., 2006). Using
the upwind flux (5) preserves this one-side domain of dependence. In other words, the
solution in Ei will only be influenced by elements that are intermediate neighbours in
the upwind direction. Let U(i) = {j |v · n < 0 on ∂Ei ∩ Ej} denote the indices of these
elements. Then, if F+

i denotes the flux out of element Ei and F−i the flux into element
Ei, we have

−RiTi + F+
i Ti = Bi − F−i TU(i), (7)

where TU(i) are the degrees-of-freedom for all neighbouring elements of Ei in the upwind
direction.

The key to obtaining a fast linear solver is to find an a prior reordering of the elements
that renders the system of equations (7) in block-triangular form. In other words, we seek
a reordering (p1, . . . , pN) of the N elements such that pj < pi if j ∈ U(i), which means
that it is possible to start at the inflow boundary and compute the solution element by
element. Such a reordering can be found in N operators if it exists. If a reordering does
not exist, there must be streamlines that pass through a grid cell more than once. If this
occurs, the mutually connected elements must be solved for simultaneously. Nevertheless,
the reordering still applies; the only difference is that we locally get a larger linear system
associated with the interconnected elements; see (Natvig et al., 2006).

4. NUMERICAL EXPERIMENTS

We now present numerical examples for two different test cases and discuss the dG
approximations for computing time-of-flight in fractured porous media.

We consider two test cases. For both, we assume no-flow boundaries and an injector
placed in the lower-left corner and a producer in the upper-right corner of the unit square
Ω = [0 1]× [0 1]. The fractures are of permeability 106 D and are located in an elsewhere
homogeneous reservoir of permeability 1D as illustrated in Figure 2. The fracture width is
set to 0.0001 length units. The velocity field v is given such that the flux v ·n is constant
over each element face.

We compare solutions obtained by the dG methods with a highly resolved streamline
(SL) reference solution. We have also calculated a “reference” solution using the dG
approximation of 7th order. For both reference solutions, we have used a grid consisting of
320×320 standard matrix elements in addition to the elements that result from discretising
the fractures with a resolution of eight elements in the direction across the fractures. The
streamline solutions are obtained by back-tracking streamlines from the cell centre of each
element.
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Figure 2. Fracture distribution in Case 1 (left) and Case 2 (right).

Case 1. In our first test case, a single fracture forms a staircase structure in the flow
direction in a elsewhere homogeneous reservoir; see Figure 2. The reference solutions
for this test case are shown in Figures 3(a) and 3(b). For all test examples, we have
considered a second-order dG approximation.

Figure 3(c) displays the result of the dG approximation with order reduction across
the fracture as described in Section 3.2. For this example, the fracture is resolved with
one element in the direction across the fracture, thus reflecting the fact that the fracture
initially is modelled as one-dimensional. As we can see, the breakthrough time at the
production well is highly inaccurate. Figure 3(f) shows the result for the same test
example, but without order reduction; that is, the same dG approximation is applied both
for the matrix and the fracture elements and in this respect, the fractures are considered as
fully two-dimensional. With this approximation, we observe instabilities in the solution,
resulting in negative time-of-flights in some regions. On the other hand, the breakthrough-
time is more correct than for the approximation displayed in Figure 3(c). To sum up, we
see that we faced with two problems: either we get a highly erroneous breakthrough time
at the producer, or we get negative values of time-of-flight.

Motivated by the fact that the transport is very rapid in the fractures, and our previous
experience with dG methods for obstacle problems (Natvig et al., 2006), we try to increase
the grid-resolution in the fractures. However, to avoid instabilities in the solution, we first
consider examples where the order reduction of the dG approximation in the fracture ele-
ments is kept in the direction across the fracture. The results are depicted in Figures 3(d)
and 3(e) for a resolution of four and eight elements across the fractures. Clearly, the
results are significantly improved. In Figures 3(g) and 3(h), we display the results for
refined fracture resolutions, but without order reduction of the dG approximation in the
fractures. For eight elements across the fractures, we obtain a solution that resembles the
SL reference solution, although one can still see small signs of instabilities.

Case 2. The fracture distribution in the second test case consists of four fractures in an
elsewhere homogeneous reservoir as depicted in Figure 2. Figures 4(a) and 4(b) show the
streamline reference solution and the solution obtained with the seventh-order dG method
on a fine grid.

Figures 4(c) and 4(d) show results for a second and fourth-order dG approximation
with order reduction and a resolution of eight elements across the fracture when order-
reduction is applied. As we can see, the solutions are stable, but fail to completely capture
the complex flow in the region near the upper-right fracture. Results for the same example,
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(a) SL reference solution. (b) dG reference solution.

(c) Order red., nf = 1. (d) Order red., nf = 4. (e) Order red., nf = 8.

(f) No order red., nf = 1. (g) No order red., nf = 4. (h) No order red., nf = 8.
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Figure 3. Second-order dG approximations with 80 × 80 standard ma-
trix elements in addition to the elements that result from discretising the
fracture by nf elements in the fracture width, with and without order re-
duction.
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(a) SL reference solution. (b) dG reference solution.

(c) Order red., n = 2. (d) Order red., n = 4.

(e) No red., n = 2 (f) No red., n = 4.

(g)
Frac-
ture
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Figure 4. Second and fourth-order dG approximations with and without
order reduction on a grid with 80 × 80 standard matrix elements in the
fracture width in addition to the elements that result from discretising the
fracture by eight elements in the fracture width. The right plot shows the
approximation with a subresolution of 25 × 25 points in each element for
the fracture from the upper-right part of the reservoir.
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but without order reduction, are displayed in Figures 4(e) and 4(f). Here, the solutions
are improved, but, as for Case 1, we can observe signs of instabilities in the solutions.

To further illustrate the necessity of a sufficient grid-resolution across the fractures, we
have plotted the time-of-flight computed with the streamline simulator in the upper-right
fracture element of Case 2 in Figure 4(g). This plot clearly demonstrates the complex
flow pattern in the fracture.

5. Concluding Remarks

In this paper, we have investigated an efficient discontinuous Galerkin method for com-
puting time-of-flight in fractured porous media. In particular, we have revealed the im-
portance of a sufficient grid-resolution across the fractures. This is necessary since the
time-of-flight is an integrated quantity that exhibits fine-scale details and contains large
spatial variation within the fractures (even though these may have been modelled as
lower-dimensional objects in the original grid model). To assure a stable solution, one
can apply order reduction of the dG approximation in the direction across the fractures.
This also results in a more efficient scheme due to a reduced number of unknowns for
fracture elements.

A crucial part of the methodology is an optimal reordering of unknowns, which is based
on prior information of the direction of flow. The result is an efficient method, which can
be a grid-based alternative to streamline methods. Extension of the methodology to
triangular and unstructured grids is currently in progress.
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