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1 Introduction

In this paper, we consider efficient and accurate methods for a class of linear
equations on the form

v · ∇u = H(u,x), for x ∈ Ω,

u = h(x), for x ∈ ∂Ω−,
(1)

where v is a given (divergence-free) vector field and ∂Ω− denotes the inflow
boundary of Ω. Our motivation for studying this equation comes from trans-
port in porous media, where equations on this form are used as simple trans-
port models or arise as the result of a semi-discretisation of a more complex
transport equation. Accurate solution of (1) is of great importance in areas
such as oil recovery and groundwater hydrology because (1) reveals the trans-
port properties of v. Solving (1) is rather easy for smooth v, but becomes
much harder when the vector field has large spatial variations and exhibits
fine-scale details that are important for the global flow pattern.

In the following, we focus on convective transport in a porous medium com-
pletely filled with fluids of a single phase. To this end, we assume that the
fluid velocity v is a time-independent function that is given as the result of
a finite-volume or a (mixed) finite-element computation. In reservoir simula-
tion, for instance, it is common to use a low-order method to compute the
flux defined on a grid rather than the flow velocity v, meaning that v will be
given in terms of flux values that typically are constant on each element face
in the grid.

To discretise (1), we will use a discontinuous Galerkin (dG) method for the
operator v · ∇ in combination with an upwind approximation of the flux.
The discontinuous Galerkin method was introduced by Reed and Hill [17]
for the problem of neutron transport. LeSaint and Raviart [14] analysed the
method in this context and proved a rate of convergence of O(∆xn) for smooth
solutions on Cartesian grids. A number of researchers have made significant
contributions since then. Among others, Lin and Zhou [13] proved convergence
of the method for nonsmooth solutions. Moreover, Cockburn and Shu [2,3]
analysed and extended the original discontinuous Galerkin method to systems
of hyperbolic conservation laws and convection-dominated problems.

It is interesting to note that (1) can be interpreted as a stationary advection
equation with a source term, and it is therefore close to the original applica-
tion of Reed and Hill. However, the problem we address in this paper is the
resolution of advective transport when v varies many orders of magnitude,
whereas Reed and Hill consider a smooth velocity field.

The dG discretisation of (1) will lead to a large system of (non)linear equa-
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tions. However, due to the directional derivative v · ∇, the exact solution in
each grid cell K only depends on the set of points on the upstream side of
a bundle of streamlines passing through K and is independent of the solu-
tion elsewhere in the domain. Using an upwind flux in our dG discretisation
preserves this one-sided domain of dependence, and it is therefore possible to
compute the solution in one element at a time, from inflow to outflow bound-
aries, if we can find a sequence of elements so that element i appears after
element j in the sequence if i depend on j. Using arguments from graph theory,
we will show that such a sequence can be found in linear time by traversing
the grid and visiting each grid cell once. This optimal sequence of elements
can then be exploited to develop a very efficient (non)linear solver based on
a reordering of the unknowns giving a upper block-triangular system. This
way, the computational effort needed to solve (1) is reduced from solving a
large sparse (non)linear system involving all degrees-of-freedom in the domain,
to solving a sequence of smaller problems involving one or a few (non)linear
equations. In the linear case, this gives a direct solver that is not only sim-
ple to implement, but also fast and inexpensive in terms of storage. In the
nonlinear case, one has to apply an iterative solver for each subproblem. The
resulting solver will generally have better convergence than a corresponding
solver for the full system, since the iterations can be controlled independently
in each subproblem. We note that these ideas are not new. The reduction of a
matrix to block-triangular form by use of depth-first traversal of elements was
described in Duff et al. [7]. Similarly, Dennis et al. [6] explore the use of block-
triangular structures to construct effective Newton-type nonlinear solvers. As
far as we know, however, these ideas have not been used to compute transport
in porous media.

In this paper we will mainly focus on the case where H(u) is a linear function
of u. Extensions of the methodology to more general nonlinear equations of
the form v·∇F (u) = H(u,x) (arising e.g., from an implicit semi-discretization
of multiphase-multicomponent transport models) are discussed in a separate
paper [15]. In Section 2, we derive a few basic transport models on the form
(1). Our motivating examples will be two linear boundary-value problems,
one for the stationary distribution of tracers and one for the so-called time-
of-flight. Isocontours of time-of-flight represent the time-lines in a reservoir
and the corresponding differential equation exhibits all the difficulties seen in
more complex transport models due to nonsmooth spatial variations in the
forcing velocity field. The time-of-flight equation will therefore be our key
example used to develop the methodology. Solutions of the stationary tracer
equation have a much simpler structure and are only used herein as a means
to delineate reservoirs with multiple wells into (nearly) independent flow re-
gions. In Section 3, we introduce the discontinuous Galerkin method briefly
and present the variational formulation and discretisation of (1). Then, in
Section 4 we show how to solve the corresponding linear system efficiently
using a reordering strategy. In Section 5, we show how to compute the distri-
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bution of tracers from multiple wells in a single-phase reservoir. In Section 6,
we present some numerical examples for computation of time-of-flight from
(5) and compare the accuracy of our dG methods to highly resolved solutions
obtained by pointwise integration of streamlines. Finally, Section 7 contains
some concluding remarks.

2 Basic Transport Models

The flow of fluids through porous and heterogeneous media can be modelled
as a set of balance laws for the conservation of mass for each fluid component.
For a mixture of m fluid components separated into ` phases, we have

∑̀
i=1

(
∂t(φcαiρisi) +∇ · (cαiviρi)

)
=

∑̀
i=1

cαiqi, α = 1, . . . ,m, (2)

where φ is the porosity of the medium; ρi, si, vi, and qi are the density,
saturation (volume fraction), phase velocity, and volumetric source term of
the i’th phase; and cαi is the mass fraction of component α in phase i. In this
model gravity and capillary effects have been neglected.

If all fluids are of the same phase (i.e., ` = 1) and the flow is incompressible,
we can write down the equation for the bulk motion of the fluid components
in terms of the common fluid pressure p and the volumetric velocity field v:

∇ · v = q/ρ, v = −K

µ
∇p. (3)

Here K is the permeability of the medium and µ is the viscosity. The linear
relation between average fluid velocity and pressure gradients is called Darcy’s
law. For simplicity, we scale (3) such that µ = 1 and assume that q consists
of a set of point-sources modelling injection/production wells.

The indvidual distribution of the various components are now given in terms
of linear transport equations, ∂t(φcα)+∇·(cαv) = cαq/ρ. In other words, each
fluid component is transported according to the volumetric velocity field v. As
our first example of such a transport model, we consider the stationary distri-
bution of a set of passive tracers (α = 1, . . . ,m) and assume incompressible
flow. Equation (2) then simplifies to

v · ∇cα = 0.

We remark that gravity can be included these simple transport equations
by replacing Darcy’s law in (3) by v = −K(∇p − ρg)/µ. In Section 5 we
will use the stationary tracer tranport equation as a means for computing
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connectivity between sites for injecting and producing fluids, thereby deriving
reservoir compartmentalisation.

For flows with more than one phase, one can derive a pressure equation of the
form (3), where K/µ is replaced by Kλ(s) and λ(s) is a nonlinear function
accounting for the reduced mobility due to the presence of more than one
fluid phase. As for single-phase flow, the motion of fluids is, in the absence
of gravity, aligned with the velocity field v; thus, all instantaneous transport
occurs along integral curves Ψ of v.

Integral curves, or streamlines, Ψ are everywhere tangent to the velocity field
v. If we introduce the bistream functions ξ, η, given such that v = ∇ξ×∇η, the
integral curves of v map to straight lines (ξ =const, η =const) in the so-called
streamline coordinates (τ, ξ, η). Here τ takes the role of the spatial coordinate
along streamlines and is called the time-of-flight coordinate. Moreover, we
have the operator identity

v · ∇ = φ∂τ . (4)

The appearance of φ in this relation is convenient since φ rescales streamline
coordinate according to the pore volume the streamline passes through. For a
homogeneous medium, however, τ equals the standard curve length along Ψ
after an aproriate scaling (corresponding to setting φ = 1).

The simplest possible model of the form (1) for convective transport induced
by v, is the following boundary-value problem for time-of-flight τ in Ω,

v · ∇τ = φ, τ |x∈∂Ω− = 0. (5)

The equation follows trivially by applying the operator identity (4) to the
streamline coordinate τ . The time-of-flight τ(x) measures the time it takes a
passive particle released at the closest point on the inflow boundary to travel to
a given point x. Isocontours of τ(x) are the time-lines in the porous medium
and as such give vital information about the flow pattern, in particular for
single-phase flow. The time-of-flight is also a cornerstone in modern streamline
methods, see [5,11]. In a streamline setting, τ(x) is usually given by the integral

τ(x) =
∫
Ψ

φ ds

|v|
, (6)

evaluated along the streamline Ψ connecting x to the inflow boundary ∂Ω−.

Another interesting sub-case of (1) arises if we apply an implicit temporal
discretisation to the transport equations (2), giving equations of the form

un − un−1

∆t
+∇ · (vun) = q. (7)
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By using the product rule on the term ∇· (vun) and a discontinuous Galerkin
method for spatial discretisation of v · ∇un, we will get essentially the same
linear systems for each time step as for (5), but with a different right-hand
side.

3 Discontinuous Galerkin Discretisation

The discretisation in a discontinuous Galerkin method starts with a variational
formulation as in a standard Galerkin method, but allows for discontinuities
over the element edges. To get the variational formulation of (1), we partition
the domain into a collection of non-overlapping elements {K}. Let V be the
space of arbitrarily smooth test functions. By multiplying (1) with a function
v ∈ V and integrating by parts over each element K, we get

−
∫

K
(uv) · ∇v dx +

∫
∂K

(uv) · n v ds =
∫

K
H(u,x)v dx ∀ v ∈ V,

where n is the outer normal on the element boundary ∂K. We seek solutions
in a finite-dimensional subspace Vh ⊂ V , so we replace the exact solution and
the test function by uh ∈ Vh and vh ∈ Vh, respectively. For Vh, we choose the
space of piecewise smooth functions that may be discontinuous over element
boundaries. Since uh may be discontinuous over inter-element boundaries, we
must replace the flux term (uv ·n) by a consistent and conservative numerical
flux function f̂(a, b,v · n). This leads to the following discrete variational
formulation: let

aK(uh, vh) = −
∫

K
(uhv) · ∇vh dx +

∫
∂K

f̂(uh, u
ext
h ,v · n) vh ds,

bK(uh, vh) =
∫

K
H(uh,x) vh dx,

and find uh such that

aK(uh, vh) = bK(uh, vh) ∀ K, ∀ vh ∈ Vh. (8)

Here f̂ is the upwind flux given by

f̂(p, pext,v · n) = p max(v · n, 0) + pext min(v · n, 0), (9)

for inner and outer approximations p and pext at the element boundaries. The
upwind flux preserves the directional dependency in the solution, which is
crucial in our solution procedure.

To fix ideas, we assume, for simplicity of presentation, that Ω ⊂ R2 and
assume that the elements K are rectangles in a regular Cartesian grid. Let
Qn = span{xpyq : 0 ≤ p, q ≤ n} be the space of polynomials of degree at most
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n in x and at most n in y, and let V
(n)
h = {v : v|K ∈ Qn}. A convenient basis

for this space is the tensor product of Legendre polynomials Lk = `r(x)`s(y)
for r, s = 0, . . . , n. The approximate solution on an element Ki can then be
written as

uh(x, y) =
n2∑

k=0

tik Lk

(
2(x− xi)

∆xi
,
2(y − yi)

∆yi

)
, (10)

where (xi, yi) is the centre of element Ki. Thus, V
(0)
h is the space of elementwise

constant functions and yields a formally first-order accurate scheme, V
(1)
h is

the space of elementwise bilinear approximations and yields a formally second-
order accurate scheme, etc. In the following, we use dG(n) to denote the
discontinuous Galerkin approximation of polynomial order n. In other words,
the error of a dG(n)-method will decay with order n+1 for smooth solutions.
On nonsmooth solutions, slower convergence is to be expected. Finally, the
degrees of freedom per element in a dG(n)-method is m = (n+1)d in d spatial
dimensions.

4 Fast Solution by Reordering the Unknowns

In the following we will motivate and present the optimal reordering that
allows us to solve (8) elementwise. To this end, we will use the time-of-flight
equation (5), for which (8) simplifies to a linear system

aK(uh, vh) = bK(vh) ∀ K, ∀ vh ∈ Vh. (11)

Although (8) and (11) have different structure on a given element K, the two
global systems will have a similar block structure. All ideas presented for the
linear case (11) will therefore immediately carry over to the nonlinear case
(8).

By substituting the approximate solution (10) and the tensor-product Leg-
endre polynomials in the variational formulation (11), we get a set of linear
equations for the degrees-of-freedom in each element. Let T denote the vector
of unknown coefficients tik in all of Ω, and let TK be the vector of unknowns
for element K. In element K, we have

AKT = BK , AKT = −RK TK + FKT

where (AK) ij = ah
K(Li, Lj) and (BK)i = bh

K(Li), and ah
K and bh

K are numerical
approximations to the integrals in (11) using Gaussian quadrature. For con-
venience, we have split the coefficient matrix into the element stiffness matrix
R and the coupling to other elements through the numerical flux integral F .
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The coefficient matrix has a block-banded structure, where the size of each
block is given by the number of unknowns in each element.

The properties of F are in general determined by the choice of numerical flux.
The upwind flux (9) can be written as

FKT = F+
KTK + F−

KTU(K), (12)

where F+ denotes flux out of element K, F− denotes flux into element K,
and we write U(K) for the set of neighbouring elements on the upwind side
of K, i.e., U(K) = {E ∈ Ω : ∂E ∩ ∂K− 6= ∅}. Thus, the system reads

−RK TK + F+
K TK = BK − F−

K TU(K). (13)

The split F = (F+ + F−) is easy to motivate and understand if one assumes
that v ·n does not change sign on element interfaces, which we will do hence-
forth. If v is computed using a standard low-order discretisation method for
(3) like the two-point flux-approximation method (i.e., the five-point method
in 2D) or the lowest-order Raviart–Thomas mixed finite-element method, v ·n
will typically be constant on each element face. In this case, U(K) consists of
all elements E such that (v · n)|∂E∩∂K < 0, where n is the outward-pointing
normal to K.

The key to an efficient solution procedure is to take advantage of the fact that
(1) has this one-sided domain of dependence; in other words, both the exact
and the numerical solution in any element is determined by the solution on the
upstream side(s). Thus, we can construct the solution in a given element once
the solution is known in the element’s immediate upstream neighbours. By
careful inspection, we may therefore construct the solution locally, starting at
sources or inflow boundaries and proceeding downstream. A similar approach
was used in [17] in the context of neutron transport. To our knowledge, the
idea has never been applied to transport in porous media before.

From a computational point of view, it is more convenient to look at this as
a reordering of unknowns. Observe that we can solve (13) element by element
if we can determine a sequence of elements such that i appears before j in the
sequence if there is a flux from element Ki to element Kj. By processing the
elements in such a sequence, the right-hand side of (13) is a known quantity
in each step. Since the directions of the fluxes are determined solely by v (and
not by T), this sequence can be computed as part of a preprocessing step
before solving the system (13).

The idea of solving boundary-value problems for advective transport sequen-
tially by a reordering of unknowns was also used in [1], but with a different
spatial discretisation. In that paper, we used an algorithm to compute a suit-
able sequence based on physical arguments. The solution was constructed by
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Fig. 1. (Left) Direction of flow and the order of computation generated by a depth–
first traversal of the reversed flow field. (Right) The sequence that could have been
computed from an advancing-front algorithm.

marching outwards from the inflow boundaries or sources. To do so, we needed
to keep a list of candidate nodes for the next update(s). In each step of the
algorithm, a suitable candidate node was sought in the list, the solution at
this node was computed based entirely on known nodal values, and each of
the node’s downstream neighbours were added to the list.

In this paper, we choose a different approach. To find the sequence of elements,
we observe that the elements and fluxes together form a directed graph, where
the elements are the vertices and the fluxes are the directed edges; that is, if
there is a flux from element i to element j, then there is a directed edge from
vertex i to vertex j in the graph. Furthermore, if the desired sequence of ele-
ments exists, this graph is acyclic (DAG). In graph theory, the task of finding
this sequence of vertices is known as a topological sort of the vertices, which
can be accomplished by a depth-first traversal of the reversed DAG (see, e.g.,
[18]). The depth-first traversal takes O(N) operations for a graph of N ver-
tices. In most cases, the depth-first traversal will produce a sequence of nodes
that allows an elementwise computation of the solution. If the sequence of
elements does not exist, it means that there are so-called strongly connected
components in the graph, that is, groups of elements that are interdependent.
For these groups of elements, we need to compute the solution simultaneously.
This is discussed in the next subsection. However, strongly connected compo-
nents of directed graphs can be found by one additional depth-first traversal.
This means that finding a reordering and locating possibly connected compo-
nents is altogether an O(N) operation. For the remaining part of the paper,
we will assume that a topological sort can always be performed (or, as in
our implementation, that the solution algorithm is capable of solving several
cells simultaneously whenever connected cells are encountered). In Figure 1, we
have illustrated the difference between the DAG algorithm and the advancing-
front algorithm [1] for finding an adequate ordering of elements in a simple
2D case.

Standard linear solvers are usually assumed to have a computational com-
plexity of nα operations for n unknowns. Modern techniques like multigrid
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Fig. 2. (Right) A homogeneous domain with inflow and outflow in a single element
and no-flow boundary elsewhere. The arrows indicate the sign of the flux on the
faces of a 3 × 3 grid. (Middle) Streamlines of a mixed finite-element solution with
3×3 elements. (Right) Streamlines for a solution computed using 90×90 elements.

or domain decomposition can obtain (close to) linear complexity (α ∼ 1.0)
for advection problems, but constructing such solvers efficiently is certainly
non-trivial. Reordering the elements reduces the computational effort needed
to solve (13) from (Nm)α to Nmα, where N is the number of elements and
m is the number of degrees-of-freedom per element. In other words, instead of
solving a large (Nm)× (Nm) system, we solve N small linear m×m systems,
for which highly efficient solvers easily can be constructed. Thus, reordering
is a simple way to obtain highly efficient linear solvers for large advection
problems. See [15] for a discussion of how the same principle can be applied to
decouple the solution of nonlinear systems arising in the implicit discretization
of multiphase transport equations. Discontinuous Galerkin methods based on
explicit temporal discretizations are discussed by Hoteit and Firoozabdi [9].

Strongly Connected Groups of Elements

As noted above, the graph defined by the grid and the fluxes may in some cases
not be acyclic. For instance, if a higher-order method is used to discretise (3),
there may be a few element faces over which the flux changes sign. Consider
such a face, with neighbouring elements K1 and K2. If v · n takes both signs
on ∂K1 ∩ ∂K2, then K1 ∈ U(K2) and K2 ∈ U(K1) (see (12)), meaning that
solutions in the two neighbouring elements depend on each other and must be
computed simultaneously. A direct mapping of the corresponding fluxes to a
graph results in a graph with two-way edges. To obtain a directed graph, each
two-way edges must be replaced by two one-way edges. The corresponding
cycle can be automatically detected as before.

Also when v · n is constant on each grid face, certain boundary conditions
for the pressure equation (3) will produce cycles in the dependency graph.
This is a reflection of the fact that although streamlines do not cross, they
may pass through a grid cell more than once. An example of this is shown
in Figure 2. The figure shows a velocity field computed using a mixed finite-
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Fig. 3. The figure shows a suitable sequence of computations when a group of
connected elements is encountered.

element method with lowest order Raviart–Thomas on a coarse and on a
fine grid. The velocity field is the solution of (3) with the imposed boundary
conditions shown. When the global inflow and outflow boundaries are edges
of the same element, every streamline starts and ends in this element. Thus,
the dependency graph of the elements will not be acyclic. In fact, for this case
all the degrees-of-freedom in the domain must be computed simultaneously.
Note also that a more accurate solution of (3) projected onto the 3 × 3 grid
produces the same dependency graph.

The situation in Figure 2 is a worst-case scenario. A more likely distribution
of fluxes is depicted in Figure 3, where a small subset of elements are strongly
connected. In this situation, our reordering strategy still works and gives one
larger linear system associated with the 2× 2 block of interconnected cells in
addition to the usual twelve linear systems associated with single cells.

Moreover, blocks of interconnected cells do not appear if one uses a two-point
flux-approximation finite-volume scheme for the pressure equation (3), as has
been the standard in the oil industry. A simple argument of decreasing pressure
along streamlines rules out the possibility of a streamline re-entering a cell.

5 Approximation of Tracer Distribution

Determining the spatial region swept by a fluid source or an inflow boundary,
or vice versa, the spatial region from which fluid is drained by a sink or an
outflow boundary, is of practical importance both in groundwater management
and petroleum engineering. In reservoir engineering, computing streamlines is
well suited for predicting where fluid from different wells will eventually end
up. For incompressible flow, any streamline in the domain connects two wells,
an injector and a producer. Thus, by assigning a unique label to each well,
streamlines will give information about well connectivity and areas affected
by each injector or producer. The way one could obtain the same information
in a finite-volume method is by computing the transport of tracers from each
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injector. When the tracer transport becomes stationary, one would obtain
information about well connectivity and affected areas.

Our ideas lend themselves naturally to compute the transport of tracer effec-
tively. The stationary distribution of tracers is given by an equation of the
form

v · ∇c = 0, c|x∈∂Ω− given. (14)

Since c is constant along streamlines, the solution to this equation can be deter-
mined in each point by tracing a streamline backward to the inflow boundary.

To determine the reservoir volume connected to a particular injector, we would
solve (14) by setting the concentration of tracer component i to 1 in well i and
0 in the m− 1 other wells and compute the tracer distribution in the non-well
blocks. For an upwind discontinuous Galerkin discretisation of equation (14),
the linear equations for element K are

(−RK + F+
K + F−

K )Ci = 0, i = 1, . . . ,m, (15)

where Ci is the vector of unknowns for tracer i. As before, we may split the
vector of unknowns Ci in the unknowns Ci, K for element K and the unknowns
Ci, U(K) in the neighbouring upwind elements. Then, (15) may be written as

−RKCi,K + F+
KCi,K = −F−

KCi, U(K), i = 1, . . . ,m.

By solving this equation for C in one element at a time, we compute the
distribution of tracers in the domain. Note that the tracer components are
independent so only one matrix factorisation is needed for the solution of an
m-tracer problem. The same idea can easily be extended to compressible flows,
for which (14) is replaced by v · ∇c = −c∇ · v.

From the tracer distribution, we can approximate the swept areas of each
injection well. The simplest approach is to draw the 0.5 contour (isosurface)
of each tracer concentration. To obtain the drained areas for each production
well, we simply reverse the velocity field. To get the well connectivity, we can
combine the two calculations to uniquely determine the part of the domain
affected by a given injector-producer pair.

At this point it might be tempting to ask why one could not replace (14) by
a simple graph colouring algorithm to assign a colour to all nodes influenced
by a particular injector (or more generally, a particular part of the inflow
boundary). Such an approach is indeed possible, but would in general lead to
multi-labelled nodes. Due to the fluxes, our directed graph is a weighted graph.
By solving the tracer equation (15), we are effectively computing a weighted
colouring of the graph.
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Swept Areas/Volumes

We will now present three test cases, in which we use the above idea to de-
lineate reservoirs in 2D and 3D, respectively. To this end, we compute the
stationary distribution of one tracer launched from each injector. In the fig-
ures, we show the swept areas/volumes, which are distinguished by different
shading. In 2D, the boundaries of the regions are marked by black and corre-
spond to the 0.5 contour of each tracer concentration.

We first show how this idea works in two space dimensions. To asses the per-
formance of the method, we will use geological data from Model 2 of the 10th
SPE Comparative Solution Project [4]. The model contains 60 × 220 × 85
cells and consists of two formations: a shallow-marine Tarbert formation in
the top 35 layers, where the permeability is relatively smooth, and a fluivial
Upper-Ness permeability in the bottom 50 layers. Both formations are char-
acterised by large permeability variations, 8–12 orders of magnitude, but are
qualitatively different; see Figure 9 for plots of the corresponding permeabil-
ities. We compute the swept areas of eight injectors placed on the boundary
of two rectangular reservoirs corresponding to Layers 1 and 76 Three produc-
tion wells are placed inside the domain so that the wells form three five-spot
patterns. The production wells are sources with rate -2.0, the injection wells
in the corners have rate +0.5, and the other injection wells have rate +1.0. In
the figures, the production wells are marked by white and injection wells by
black circles.

Figure 4 shows the swept areas for Layers 1 and 76, respectively, computed
using the dG(0) and dG(1) methods. To illustrate the flow directions, a few
streamlines are plotted in the domain. In the figures, these are drawn in white.
The streamlines close to the boundaries between the swept areas make it
possible to evaluate the quality of the approximations for different orders of
the dG discretisation.

The permeability in Layer 1 is relatively smooth, and the differences between
the dG(0) and dG(1) discretisations are minor. The permeability in Layer 76,
has a strongly heterogeneous structure with intertwined high-permeable chan-
nels on a low-permeable background. Using the dG(0) method, we can observe
some streamlines crossing the boundaries between the swept areas, whereas
the dG(1) method seems to have captured the areas correctly. Increasing the
order in the dG discretization further did not produce any observable differ-
ences in the swept areas.

The same idea can also be applied to three-dimensional problems. Figure 5
shows swept volumes computed for the fifteen upper layers of the SPE 10 test
case. The injection wells are located in the upper-left and upper-right corners
of the back plane and in the lower-left and lower-right corner in the front plane.
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Layer 1

Layer 76

Fig. 4. The plots show the tracer distribution for two layers of the SPE 10 test case.
The solution is computed using the dG(0) (upper) and dG(1) (lower).

The production well is placed in the centre of the domain. To distinguish the
swept regions for each tracer, we have applied different shadings.

Table 1 reports runtimes for a similar partitioning of the full SPE 10 model
with 1 122 000 cells. The runtimes have been split into time used to reorder and
time used for solving the local dense m×m systems with LAPACK. For com-
pleteness we have also included corresponding timings for dG with tri-linear
and tri-quadratic basis functions (P-basis). By using the first-order dG(0) dis-
cretization, the whole 1.1 million reservoir model is delineated in only a few
seconds, which means that the method has a big potential for use in interac-
tive user-exploration of large geomodels. If more accuracy is required for the
swept volumes, the corresponding runtime will of course increase significantly.
However, by using the P-basis, a second-order approximation is computed in
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Fig. 5. Tracer distribution for a subsample from the smooth Tarbert formation in the
SPE 10 test case. The velocity is computed using a two-point flux approximation.

Table 1
CPU time in seconds used to reorder and to solve the tracer boundary-value problem
for the SPE 10 five-spot reservoir using dG(n) with m degrees of freedoms per cell.
Runtimes are measured on a single core on an AMD Athlon X2 4400+ processor.

n basis m reorder solve total

0 — 1 1.24 1.87 3.11

1 P-basis 4 1.21 8.65 9.86

1 Q-basis 8 1.20 25.22 26.41

2 P-basis 10 1.21 85.28 86.48

2 Q-basis 27 1.20 582.34 583.53

less than ten seconds and a third-order approximation in less than 1.5 min-
utes. (Notice also that for dG(2), the total number of unknowns is more than
30 millions).

6 Approximation of Time-of-Flight

In this section we will discuss the approximation of the time-of-flight equation
(5) through a series of test cases with increasing difficulty. Although the equa-
tion has a simple form, the solutions are useful in many applications of trans-
port in porous media. In ground-water flow, for instance, the time-of-flight can
be used to identify the areas affected by a contamination. Moreover, as the
examples in this section will clearly demonstrate, time-of-flight holds much of
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Table 2
The L2-errors and convergence rates for a grid refinement study of the discontinuous
Galerkin scheme with increasing approximation order on a series of N ×N grids. In
the upper half, the L2 error is measured over the smooth domain [1, 1.3] × [1, 1.3]
and in the lower half over the square [1, 2]× [1, 2].

N dG(0) dG(1) dG(2) dG(3)

10 3.36e-03 — 3.13e-05 — 1.74e-07 — 2.77e-09 —

20 1.52e-03 1.15 7.42e-06 2.08 2.24e-08 2.96 1.45e-10 4.25

40 8.01e-04 0.92 1.95e-06 1.93 2.90e-09 2.95 9.58e-12 3.92

80 4.14e-04 0.95 5.02e-07 1.96 3.69e-10 2.97 6.22e-13 3.94

160 2.05e-04 1.01 1.25e-07 2.01 4.60e-11 3.01 3.84e-14 4.02

320 1.02e-04 1.01 3.10e-08 2.01 5.73e-12 3.00 2.39e-15 4.01

10 2.83e-02 — 2.06e-03 — 6.16e-04 — 3.07e-04 —

20 1.72e-02 0.72 7.59e-04 1.44 2.07e-04 1.57 9.81e-05 1.64

40 1.01e-02 0.76 2.75e-04 1.47 6.80e-05 1.61 3.07e-05 1.68

80 5.79e-03 0.80 9.90e-05 1.47 2.23e-05 1.61 9.54e-06 1.68

160 3.23e-03 0.84 3.54e-05 1.48 7.25e-06 1.62 2.94e-06 1.70

320 1.76e-03 0.87 1.26e-05 1.49 2.34e-06 1.63 9.00e-07 1.71

the spatial complexity present in solutions of multicomponent and multiphase
models from reservoir simulation. Therefore, the following test cases show not
only the correctness of our solution strategy, but also the spatial resolution,
or the lack thereof, one can expect to get for more complex transport models.

We start by verifying the accuracy and convergence rates of our discontinuous
Galerkin schemes. For this purpose we use a simple rotating velocity field, for
which the exact time-of-flight can be computed analytically.

Case 1 (Convergence Study) Consider (5) with (u, v) = (y,−x) for (x, y) ∈
[1, 2]× [1, 2]. This makes x = 1 and y = 2 inflow boundaries and the remaining
boundaries outflow boundaries. By setting T = 0 on the inflow boundaries, the
exact time-of-flight can be computed as

T (x, y) = arctan
(

y

x

)
− arctan

( min(
√

r(x, y)2 − 1, 2)

max(
√

max(r(x, y)2 − 4, 0), 1)

)
,

where r(x, y) =
√

x2 + y2. In Table 2, we have computed the L2-errors of the
discontinuous Galerkin scheme for different orders and grid resolutions. The
upper half of the table shows L2-errors in a smooth part (1, 1.3)×(1, 1.3) of the
domain, while in the lower half the error is integrated over the whole domain.
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The dG methods yield the expected order of accuracy in smooth regions, but
due to the kink in the solution along the circular arc r =

√
5, we get reduced

convergence rates for the whole domain.

For applications in porous media the velocity field v is typically obtained by
solving a pressure equation of the form (3). In the remaining examples of
this section we will compare grid-based solutions obtained by discontinuous
Galerkin methods of varying order to highly resolved streamline solutions ob-
tained by back-tracing streamlines from a set of 10× 10 uniformly distributed
points within each element. Unless stated otherwise, the same subresolution
is used in all the following plots to evaluate the piecewise polynomial dG-
solutions within each element.

In all examples, we assume that v is known and given in a such way that the
flux v · n is constant over each element face in a Cartesian grid. We can then
use a streamline tracing method due to Pollock [16] to compute highly resolved
reference solutions. Pollock’s method uses an exact formula for the streamline
through each element based upon a piecewise linear approximation of v in
each direction. The method is widely used in the petroleum industry to trace
streamlines, even though it may become highly inaccurate for non-Cartesian
grids, see [10].

The first example is a standard test case in oil reservoir simulation, called a
quarter-five spot:

Case 2 (Heterogeneous Quarter Five-Spot) Consider a reservoir con-
sisting of the unit square with no-flow boundaries and with a source placed
in the lower-left corner and a sink in the upper-right corner. The synthetic
permeability field is lognormal and isotropic and spans six orders of magni-
tude from the smallest to the largest value and the porosity is assumed to be
constant equal unity. The corresponding (single-phase) velocity field is com-
puted using a mixed finite-element method with first-order Raviart–Thomas
basis on 129× 129 elements.

Figure 6 compares solutions computed by the dG(n) scheme for n = 0, 1, 2
with the solution obtained by the node-based fast-sweeping scheme of [1] (for
which no subsampling was used in the plotting). In addition, we have included
a reference solution obtained by tracing streamlines with Pollock’s method
[16] from 10 × 10 uniformly distributed points inside each element. Pollock’s
method reproduces the exact time-of-flight since the velocity field computed by
the lowest-order Raviart–Thomas approximation is consistent with the velocity
approximation used in the tracing algorithm. The fast-sweeping method gives
a resolution that is slightly better than dG(0) and slightly worse than dG(1).
The differences are easily explained if we momentarily interpret dG(0) as a
first-order finite-difference scheme. Whereas dG(0) uses a first-order upwind
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dG(0) fast-sweeping

dG(1) dG(2)

streamline reference

Fig. 6. Time-of-flights for Case 2 computed using dG(n) for n = 0, 1, 2, the
fast-sweeping method, and direct streamline integration. The contours in the plots
are T = 0.07, . . . , 0.49 PVI in steps of 0.07.
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discretisation in each coordinate direction corresponding to a five-point stencil,
the fast-sweeping method uses a first-order upwind discretisation along local
streamlines, which corresponds to a nine-point stencil and should therefore be
more accurate. In the plots, it also appears to be smoother than dG(0), but this
is a plotting artifact due to the linear interpolation inherent in the contouring
algorithm. (For dG(0) we effectively use a piecewise constant interpolation due
to the 10× 10 subsampling).

Finally, we notice that the third-order method agrees remarkably well with the
highly-resolved streamline reference solution.

In our second reservoir example we consider a three-dimensional case with
similar heterogeneity as in Case 2.

Case 3 We consider a reservoir model consisting of 64 × 64 × 16 grid cells
with unit porosity and a smoothed, lognormally distributed permeability field
with values spanning five orders of magnitude, see Figure 7. An injector is
located in the lower-left corner of the front face, a producer is located in the
upper-right corner of the back face, and no-flow conditions are specified at the
boundaries.

Figure 7 shows time-of-flights computed by dG(n) for n = 0, 1, 2. As in Case 2,
dG(0) resolves the main features of the heterogeneous flow field, but underes-
timates the penetration of sharp fluid fingers. By increasing the polynomial
order in the dG-basis functions, we allow for sub-cell variation in the time-of-
flight and thereby improve the resolution of the viscous fingering, which in a
sense is a sub-grid phenomenon.

In the absence of gravity effects, (hyperbolic) models for multiphase and mul-
ticomponent transport will typically have only positive characteristics. This
means that time-of-flight carries important information about the temporal
development of complex spatial structures in the solution and τ(x) can thus be
used to infer much about flow patterns for convection-dominated transport. In
other words, by solving for τ(x) one can therefore learn much about the fluid
motion without having to compute all time steps of a full fluid simulation.

From a computational point-of-view, computing the time-of-flight is in a cer-
tain sense more difficult than computing one time-step of a transport problem
like e.g., (7). For transport problems, data are given in the whole spatial do-
main, and the domain of dependence for a single point (or grid cell) is therefore
limited by ∆t times the maximum wave speed associated by the correspond-
ing continuous equation, and the variation in phase saturations or component
concentrations are typically limited to the interval [0, 1]. Time-of-flight, on the
other hand, has a global domain of dependence in the sense that τ(x) depends
on all points along the streamline from x and back to the inflow boundary;
see (6). Moreover, the time-of-flight values may easily span several orders of
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Permeability dG(0)

dG(1) dG(2)

Fig. 7. Lognormal permeability field for Case 3 and corresponding time-of-flights
computed using dG(n) for n = 0, 1, 2. The contours shown in the slice plots are at
T = 0.1, . . . , 0.6 PVI in steps of 0.1.

magnitude.

In the two examples above, the reservoir heterogeneity was mild due to unit
porosity and relatively smooth spatial variation in v. As a result, τ(x) had
relatively smooth variation even though it contained the characteristic viscous
fingers, and we were able to obtain good resolution by choosing a uniform
sufficiently high order for the dG basis functions.

For highly heterogeneous reservoirs with large variations in the porosity or
strong shears in the velocity field, τ will generally have low regularity and
exhibit very large variations. For instance, in regions where high-speed flow
meets low-speed flow from nearly impermeable regions such as channel walls
or obstacles, the time-of-flight may oscillate with orders of magnitude over
a few elements. Use of higher-order polynomial approximations can therefore
easily result in oscillations and unphysical time-of-flight values, as will be
demonstrated in Case 4. Moreover, if these variations are not captured by the
local approximation, the error along the outflow edges will be propagated to
the neighbour elements.
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Slope Limiting

Spurious oscillations is a common problem in many discontinuous Galerkin
methods and is usually circumvented by applying a (slope) limiter that re-
duces the local variation of each basis function by modifying the coefficients
of polynomial terms of order two and higher. Limiters are usually derived from
a maximum principle or from a principle that limits the local variation.

For the time-of-flight equation (5), the only principle available to us is the
fact that τ(x) is strictly increasing along streamlines, which follows trivially
from (6). We therefore propose to check that the time-of-flight is higher on
the outflow edges than on the inflow edges of each element; that is,

min τ |∂K+ > (1− ε) max τ |∂K− , 0 ≤ ε � 1.

If this is not the case, we recompute the solution in this element by making a
uniform subdivision into a set of first-order elements such that the number of
new elements corresponds to the degrees-of-freedom in the original element.
That is, for dG(1) we split the element in two in each spatial direction, for
dG(2) we split in three, etc. By reducing the order to one, we expect to reduce
possible oscillations, and by subdividing, we try to compensate for the reduced
accuracy associated with first-order elements.

To clearly demonstrate the problems caused by shear in the velocity field and
the effect of our order-reduction/subdivision strategy, we consider an artificial
transport problem with four large impermeable geometrical obstacles.

Case 4 We consider a quarter five-spot in a square domain with an injector in
the lower-left corner and a producer in the upper right. The permeability field
consists of a homogeneous background into which we have inserted four nearly
impermeable obstacles—two triangles, a circle, and a rectangle—each having a
permeability 10−6 relative to the background. The corresponding velocity field is
computed using a mixed finite-element method with the lowest-order Raviart–
Thomas basis.

As observed in [1], transport past obstacles and through channels is very chal-
lenging since the time-of-flight field will have extreme gradients downstream
from the obstacles. In Figure 8 we compare two approximate solutions com-
puted using dG(0) and dG(2) with the exact streamline solution. As above,
the first-order scheme fails to capture the leading viscous fingers, in par-
ticular those creeping around the impermeable circle. Similarly, the dG(2)
solution contains strong oscillatory pollution that arise along impermeable
boundaries and propagate in the downstream direction. By applying the order-
reduction/subdivision strategy devised above with ε = 0.005, almost all the
oscillations are removed and the exact solution is reproduced quite accurately.
By only using order reduction and no subdivision, the corresponding dG(2)-
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streamline reference dG(0)

dG(2) dG(2) with limiting

Fig. 8. Transport past obstacles for Case 4 computed by dG(0) and dG(2) with and
without order-reduction/subdivision.

solution has comparable accuracy to that of dG(0).

In the above example we used a somewhat extreme case to demonstrate the
problems caused by large shears in the velocity field. Similar problems will
arise due to several types of strong reservoir heterogeneities: impermeable
blocks, shales, layers with large permeability ratios, fluvial reservoirs with
high-permeable channels on a low-permeable background, large variations in
pore volumes. These difficulties will be partly demonstrated in our final ex-
ample, in which we revisit Model 2 from the 10th SPE Comparative Solution
Project [4].

So far, our reference solutions have been obtained by back-tracing a large
number of streamlines inside each grid cell. For large models (in 3D), this ap-
proach is is generally not computationally feasible. Instead, modern streamline
methods [11] rely on tracing a set of representative streamlines launched from
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Fig. 9. Permeability field and time-of-flight for Layers 1 (left) and 76 (right) of the
SPE 10 test case computed with dG(n) for n = 0, 1, 2 (order increasing downwards),
streamline solution with 1500 streamlines, and a streamline reference solution (bot-
tom). The contours shown in the plots are at T = 0.1, . . . , 0.6 PVI in steps of 0.1
for Layer 1 and T = 0.05, 0.1, 0.15 PVI for Layer 76.

injectors and/or producers; see e.g., [12]. Cell-values for time-of-flight can then
be computed by averaging all streamlines passing through or in the neighbour-
hood of each cell. This approach reduces the spatial accuracy unless one uses
a sophisticated scheme for obtaining sufficient streamline coverage.

Case 5 In this example we consider two 2D quarter five-spot cases with per-
meability and porosity data taken from Layers 1 and 76, respectively, of Model
2 in the SPE 10 test case. Figure 9 shows the permeability and the corre-
sponding time-of-flights computed by dG(n) for n = 0, 1, 2. For comparison we
also show solutions obtained by tracing 1500 streamlines initiated uniformly
from the well block. For the Tarbert formation in Layer 1, the variation in
permeability and porosity is relatively smooth. As in Case 2, dG(1) and dG(2)
reproduce the qualitative behaviour of the solution, whereas dG(0) underesti-
mates the viscous fingering. The accuracy of the standard streamline method
is somewhere between that of dG(1) and dG(2).
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Fig. 10. Time-of-flight in the two grid cells (200, 36) and (200, 37) of Layer 76 in
the 10th SPE test case sampled in 2000×2000 evenly distributed points inside each
cell.

The fluvial Upper Ness formation in Layer 76 contains sharp contrasts in
permeability (and porosity) between the low-permeable background and a set of
intertwined high-permeable channels. For the higher-order dG methods we have
therefore applied our order-reduction/subdivision strategy. Figure 9 shows that
although dG(1) and dG(2) have quantitative errors, they are able to capture
most of the qualitative behaviour of the time-of-flight, which should be of most
interest to a reservoir engineer. Moreover, the higher-order dG solutions are
at least as accurate as the solution obtained by the standard streamline method.

To illustrate the difficulty of accurately resolving the time-of-flight in Layer 76,
Figure 10 shows the exact solution sampled in 2000×2000 evenly spaced points
inside two grid cells. Since time-of-flight is an integrated quantity, it is gen-
erally not sufficient to capture the complex spatial behaviour inside each grid
cell in an averaged sense. The variations in time-of-flight over a grid cell may
be quite large relative to an average value or a few representative point values.
Any method based on either a low-order polynomial (as in dG(1) and dG(2)),
or a few representative streamlines, is therefore bound to give quantitative er-
rors, as observed in Figure 9.

7 Final Remarks

The purpose of this paper has been to explore the efficiency and accuracy of a
discontinuous Galerkin scheme applied to a class of boundary-value problems
for advective transport. A unique feature of our methodology is the use of an
optimal ordering of the unknowns that allows us to compute the solutions in
an element-by-element fashion.

We have demonstrated how one can use the framework to compute accurate
approximations to the stationary tracer distribution in a reservoir. This can
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be used to compute so-called swept and drained areas/volumes and well con-
nectivities. These quantities are usually computed using streamline methods
and have proved to be useful tools in, e.g., ranking and history matching. Due
to the efficient sequential solution procedure presented in this paper, this is a
one-sweep computation that can be performed with high order accuracy and
modest demands on storage and computing power. Moreover, as our numerical
test cases illustrate, low-order approximations do, in general, provide sufficient
accuracy.

We have also demonstrated that the discontinuous Galerkin schemes in many
cases can compute the time-of-flight with an accuracy comparable to stream-
line approaches and superior to our earlier grid-based attempts [1]. For strongly
heterogeneous cases, direct integration of streamlines gives a spatial resolution
that is hard to match with other methods based on grid points or cell vol-
umes. One should therefore not expect grid-based methods to perform as well
as back-traced streamlines for all possible velocity fields, as was demonstrated
in [1]. Indeed, we observe reduced accuracy for tranport past (and through)
barriers and through channels as in Cases 4 and 5. For simple 2D cases one
can always argue that better results can be obtained by grid refinement or
by tracing more streamlines, but this is less feasible, e.g., for the full SPE 10
model containing 60 × 220 × 85 = 1 122 000 grid cells, even if one is able to
use the reordering algorithm to solve for the time-of-flight separately in each
cell.

Our experience is that a dG discretisation of sufficiently high order is a rela-
tively robust alternative (to streamlines) that performs well in a wide range
of realistic cases. The computational efficiency of our methodology makes it a
candidate for applications where one needs to establish the qualitative struc-
tures of the flow pattern. Prime examples of such applications are the calibra-
tion of reservoir models to production data and validation of upscaling of geo-
logical models. In [8] the dG-methodology was used to study simple 2D models
of discrete fracture networks. Extensions of the dG/reordering methodology to
multiphase and multicomponent transport will be discussed in a forthcoming
paper [15]. Finally, although the method was presented for uniform Cartesian
grids, the reordering idea is equally applicable to unstructured and irregular
grids.
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