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Abstract. We present a family of implicit discontinuous Galerkin schemes
for purely advective multiphase flow in porous media in the absence of
gravity and capillary forces. To advance the solution one time step, one
must solve a discrete system of nonlinear equations. By reordering the
grid cells, the nonlinear system can be shown to have a lower triangular
block structure, where each block corresponds to the degrees-of-freedom
in a single or a small number of cells. To reorder the system, we view
the grid cells and the fluxes over cell interfaces as vertices and edges in a
directed graph and use a standard topological sorting algorithm. Then
the global system can be computed by processing the blocks sequentially
using a standard Newton–Raphson algorithm for the degrees-of-freedom
in each block. Decoupling the system offers greater control over the non-
linear solution procedure and reduces the computational costs, memory
requirements, and complexity of the scheme significantly. In particular,
the first-order version of the method may be at least as efficient as mod-
ern streamline methods when accuracy requirements or the dynamics of
the flow allow for large implicit time steps.

1. Introduction

Simulation of flow in porous rock formations is used as a basis for decision-
making in many subsurface disciplines, from petroleum production to ground-
water protection. Driven by a need for faster and more accurate prediction
of fluid behaviour, there is a prevailing requirement for fast flow simulation.
This is particularly evident within the petroleum industry, where the cur-
rent trend is towards using very large and complex models, often consisting
of several million grid cells, to describe the underlying subsurface geology.
Direct simulation of flow on models with several million cells is a challenging
task.

Given the different physical mechanisms behind flow in porous media, the
flow simulation can typically be divide in two parts: (i) solution of an ellip-
tic/parabolic pressure equation to compute fluid pressures and (phase) ve-
locities, and (ii) solution of a hyperbolic/parabolic equation to compute the
fluid transport. In recent years, there have been several advances towards
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more accurate and efficient (elliptic) pressure solvers, including advanced
spatial discretisation schemes (multipoint schemes, mixed finite elements,
etc), efficient linear algebra solvers like algebraic multigrid, and rescaling
and multiscale methods for reducing the number of unknowns to be up-
dated. As a result, the bottleneck in many simulators is often the solution
of the (nonlinear) fluid transport equations. Although several advanced
high-resolution methods were reported in the literature 10–20 years ago (see
e.g., [2, 3, 13, 14]), the most wide-spread discretisation scheme is still the
first-order, single-point upwind scheme. One possible reason for this, is the
need for implicit time-stepping due to large differences in time constants
throughout the spatial domain, which leads to a nonlinear algebraic system
that needs to be solved using e.g., a Newton–Raphson method. Assem-
bling and solving a large nonlinear system is often very expensive, even for
a simple first-order method, and using a higher-order spatial discretisation
introduces extra couplings and increases the nonlinearity of the discretised
equations.

In this paper we consider a general class of implicit upwind schemes for
solving purely advective transport in the absence of gravity and capillary
forces. We present two key ideas to derive efficient, robust and accurate
schemes. The first idea is a reordering procedure that will greatly reduce the
runtime and the memory requirements needed to compute each time step.
For instance, for the implicit single-point upwind scheme, the reordering
procedure yields a very simple and efficient nonlinear solver that can be
applied to simulate flow on grids with 106–107 grid cells with an efficiency
resembling (and sometimes surpassing) that of modern streamline methods
(see Section 4.1). The reordering idea is simple to explain and is applicable
to upwind discretisations of pure advective flow on general, unstructured
grids.

We note in passing that the reordering ideas presented here are not new.
Duff and Reid [12] have applied reordering of linear systems to obtain a
block-triangular structure as a general tool in numerical linear algebra. Den-
nis et al. [11] have previously explored the use of triangular structures in non-
linear systems to construct effective Newton-Raphson-type nonlinear solvers.
Wang and Xu [32] have more recently used reordering of elements to build
efficient iterative methods for convection-dominated problems. However, as
far as we know, these ideas have not previously been applied to transport
in porous media and in the current paper we give them a clear motivation
based on the underlying physics.

The second idea is to use a discontinuous Galerkin formulation in combi-
nation with an implicit temporal discretisation to derive conservative schemes
that allow for large time steps and high-order spatial discretisation using
compact stencils. Applying the reordering idea to the corresponding dis-
crete equations makes it possible to use second- or higher-order spatial dis-
cretisations in implicit schemes with moderate cost in terms of computation
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time and memory requirements. A high-order spatial discretisation gener-
ally reduces the numerical smearing and is essential to get stable solutions
of miscible flows (as we will see in Section 4.3). Moreover, the flexibility of
the discontinuous Galerkin discretization easily allows for local and adaptive
hp-refinement, but this will not be explored in the current paper.

The outline of the paper is as follows. In Section 2 we present the ba-
sic mathematical models and motivate the two key ideas. In Section 3 we
present the ingredients of our schemes: the variational formulation and the
discontinuous Galerkin discretisations are presented in Section 3.1; the op-
timal ordering and the element-wise solution procedure are presented in
Section 3.2; and finally, all the pieces are put together in Section 3.4. The
efficiency, accuracy and robustness of the corresponding class of implicit up-
wind schemes are discussed in Section 4, where we discuss three different flow
models: a two-phase model, a three-phase model, and a three-component
miscible flow model. Finally, we sum up our observations and make some
concluding remarks in Section 5.

2. Mathematical Models

In this paper we study advective flow in a porous medium, that is, we
neglect gravity and capillary forces and consider viscous flow driven only by
pressure forces. The fact that viscous flow is unidirectional along streamlines
will be the key property used to derive our highly efficient upwind solvers. As
for streamlines, more general flows can be computed using operator splitting
to include gravity and capillary forces [4, 17].

To obtain a model for the nonlinear transport of ` phases or components
through a porous medium, one usually starts with the conservation of mass
for each phase and/or component. By simple arguments, this can be rewrit-
ten as a system of nonlinear conservation laws for the saturations, or volume
fractions, u = (u1, . . . , u`−1):

φ∂tui + v·∇fi(u) = qi, i = 1, . . . , `− 1.(1)

Here φ is the porosity of the medium and f is the fractional flow function
modelling the speed of each phase or component relative to the mean (or
total) velocity v. The volume fraction of the last fluid is given by u` =
1 −

∑
i ui. In the absence of gravity, most flow models are unidirectional

in the sense that f > 0 for scalar equations or that the Jacobian of f
has distinct, positive eigenvalues. This property will be essential for our
development of efficient solvers based on reordering.

The total Darcy velocity v is an average velocity for the bulk flow of
fluids and is given by a conservation equation for the total mass. For an
incompressible mixture of fluids, this equation can be written as

−∇·v = Q, v = −KλT (u)∇p,(2)
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where p is the total pressure and K is the absolute permeability of the
medium. The total mobility λT (u) is a nonlinear function that models the
reduced mobility of each fluid due to the presence of other fluids.

To solve the coupled system (1)–(2) we will use operator splitting. We
are then (relatively) free to choose well-suited methods for each equation
separately. Equation (2) is called the “pressure equation” and is usually
solved using either a finite-difference or a finite-element method. Henceforth,
we will assume that such a solver is available and can produce a velocity field
v given in the form of fluxes that are constant on each element interface.

Solution of the transport equations (1) is in many cases the most time
consuming step in an operator splitting scheme since saturations typically
must be evolved through many time steps in order to accurately predict
the transport of fluid. For explicit temporal discretisations, stability of
each time step is ensured by a CFL condition stating that waves can only
pass through a single cell in one time step. Unfortunately, this stability
restriction may enforce prohibitively small time steps due to large spatial
variations in the mean velocity v and in the porosity φ (in particular for real-
life models). Implicit discretisations capable of taking large(r) time steps
are therefore often preferred in practical computations. Although implicit
schemes are more diffusive than their explicit counterparts, they yield better
stability. Moreover, for cases with strong heterogeneity, our experience is
that the (most severe) time-step restrictions arise in the near-well area or
in cells with very small porosity that fill up almost instantly and have little
effect on the global flow pattern. Choosing the time step to obey a CFL
restriction in such cells means that many other cells are updated with an
effective CFL number that is orders of magnitude smaller than one. Using
an implicit scheme, one can instead choose time steps that give reasonable
effective CFL number in these cells. Although this will lead to very high
CFL numbers and excessive diffusion in cells with small porosity, the spatial
accuracy in the majority of the domain will not be significantly affected.

The downside of implicit schemes is that the computational cost of these
schemes is larger because each time step involves the solution of a system of
nonlinear equations. Therefore, the efficiency of implicit schemes depends on
an efficient linearization method in combination with efficient linear solvers
or on a fast nonlinear solver as will be developed later in the paper.

Implicit temporal discretisation of (1) yields a boundary-value problem
on the form

αu + v·∇f(u) = β in Ω, u=h(x) on ∂Ω−,(3)

where α and β are bounded functions and ∂Ω− denotes the inflow boundary.
In [24] we presented a family of efficient discontinuous Galerkin schemes for
stationary linear transport, i.e., for the special case with f(u)=u and α=0.
In the next section, we will extend these schemes to include (3). The key
to an efficient scheme is the observation that all transport in the domain
is directed, i.e., that all waves in the conservation law (1) travel forward
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along integral curves of the mean velocity field v. By using a discontinu-
ous Galerkin scheme combined with an upwind flux approximation on cell
interfaces, the directedness of (1) is preserved in the discrete system in the
sense that the solution in an element only depends on the solution in its
immediate neighbours on the upwind side.

3. A Family of Implicit Discontinuous Galerkin Schemes

Accurate solution of hyperbolic conservation laws has been the focus of
research for decades. Modern numerical schemes for hyperbolic conserva-
tion laws often combine an explicit temporal discretisation with a complex
spatial discretisation and a limiter to avoid spurious oscillations. One such
method is the Runge-Kutta discontinuous Galerkin method [8, 9, 22, 28],
which has been successfully applied to different systems of hyperbolic con-
servation laws. The discontinuous Galerkin (dG) scheme was first proposed
by Reed and Hill [28] for an equation modelling neutron transport. Lasaint
and Raviart [22] analysed the method for the neutron transport problem
and proved an O(∆xn) convergence rate. Later, Cockburn and Shu [8, 9]
extended the method to general systems of hyperbolic conservation laws
and convection-dominated problems by using stable, explicit Runge-Kutta
schemes and limiters. The advantage of the discontinuous Galerkin method
in the present context is that we can get arbitrarily high, formal order of
accuracy with a compact stencil. We refer the reader to Epshteyn and
Rivière [16] for an overview of discontinuous Galerkin methods applied to
flow in porous media. To the best of our knowledge, this is the first paper
to consider implicit dG methods, which, unlike our work, are applied to the
coupled pressure–saturation system.

In the field of porous media flow, explicit temporal discretisations are usu-
ally considered impractical due to large magnitude variances of the Darcy
velocity and the cell pore volumes. We therefore propose to combine the
discontinuous Galerkin spatial discretization with an implicit time stepping
procedure and use a limiter function to avoid (or reduce) spurious oscil-
lations. To this end we consider (3) and assume that the equation is a
temporal semi-discretised version of (1). For instance, using the θ-rule in
time, the coefficients of (3) read

(4) αn =
1

θ∆t
, βn =

Un−1

θ∆t
− 1− θ

θ
v · ∇f(Un−1),

where Un−1 and Un are approximations of u(·, tn−1) and u(·, tn), respec-
tively. Throughout this paper, we use (4) with θ = 1, corresponding to a
fully implicit discretisation, to allow arbitrarily large time steps, at least in
principle.

Notice that implicit time-discretisations do not have the strong stability
preserving property [18] for orders higher than one. (Strong stability is sta-
bility in a nonlinear rather than in the usual linear sense, here meaning that
the discretization is stable with respect to total variation). Higher-order
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implicit temporal discretisations may therefore cause spurious oscillations
in the presence of discontinuities or kinks in the solution, even for a stable
spatial discretisation. The onset of oscillations makes the discrete nonlinear
system harder to solve, and effectively imposes a limit on the magnitude of
the time step. Here we do not look into these issues, but tacitly assume that
our time steps are within the stability limit henceforth. In our implementa-
tion, we have a simple and pragmatic mechanism that reduces the time step
if the nonlinear iterations do not converge.

3.1. Spatial Discretisation. The discretisation in a discontinuous Galerkin
method starts with a variational formulation, as in a standard Galerkin
method. The difference is that discontinuous Galerkin methods allow dis-
continuities at element interfaces. To get a variational formulation of (3),
we partition the domain into non-overlapping elements {K}. Let V be a
space of arbitrarily smooth functions. By multiplying (3) with a function
ϕ ∈ V and integrating by parts over each element K, we get∫

K
(αu− β)ϕ−

∫
K

f(u) ∇·(vϕ) +
∫

∂K
[ϕf(u)] v·n = 0, ∀ϕ ∈ V,

where n is the outward pointing normal to ∂K and the bracket in the last
integral signifies that the integrand in principle may be discontinuous at all
points along the integration path. We seek a solution in a finite-dimensional
subspace Vh ⊂ V . To this end, we replace the exact solution u and the test
function ϕ with uh ∈ Vh and ϕh ∈ Vh, respectively. For Vh we choose a space
of element-wise smooth functions that may be discontinuous over element
boundaries. This means that we must replace the flux f(u)v · n with a
consistent and conservative numerical flux f̂(u+, u−,v·n), involving the one-
sided values u±. This gives the following discrete variational formulation;
let

aK(u, ϕ) =
∫

K
(αu− β)ϕ dx−

∫
K

f(u) ∇·(vϕ) dx +
∫

∂K
f̂(u+, u−,v·n)ϕ ds,

and find uh such that

aK(uh, ϕh) = 0 ∀K and ∀ϕh ∈ Vh.(5)

Here f̂ is the upwind flux given by

f̂(p+, p−) = f(p+) max(v·n, 0) + f(p−) min(v·n, 0),(6)

for inner and outer approximations p+ and p− at element boundaries. Al-
though other flux approximations are consistent, they may not preserve the
directional dependency we rely on to later reorder the equations. For in-
stance, the well-known Lax-Friedrichs flux yields a consistent approximation
of the inter-element fluxes, but creates a bidirectional dependence between
all elements.

To fix ideas, we assume for simplicity of presentation that Ω ⊂ R3 and
that the elements K are hexahedra in a regular Cartesian grid. We will
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use the polynomial spaces Qn = span{xpyqzr : 0 ≤ p, q, r ≤ n} and Pn =
span{xpyqzr : 0 ≤ p+q+r ≤ n}). The dimension of Qn is (n+1)3, whereas
the dimension of Pn is (n + 1)(n + 2)(n + 3)/6.

Let V
(n)
h = {ϕ : ϕ|K ∈ Pn}. Products of Legendre polynomials Lk(ξ, η, ζ) =

`r(ξ)`s(η)`t(ζ) form a convenient basis for these spaces. The approximate
solution in an element Ki can then be written as

(7) ui
h(x, y, z) =

N∑
k=0

Uik Lk

(2(x− xi)
∆xi

,
2(y − yi)

∆yi
,
2(z − zi)

∆zi

)
,

where N is the number of basis functions, (xi, yi, zi) is the centre of element
Ki, and {Uik}k are the unknown coefficients to be determined. Thus, V

(0)
h is

the space of element-wise constant functions and yields a formally first-order
accurate scheme, V

(1)
h is the space of element-wise trilinear approximations

and yields a formally second-order accurate scheme, etc. In the following,
we use dG(n) to denote the discontinuous Galerkin approximation of for-
mal order n + 1. In other words, the error of a dG(n)-method will decay
with order n + 1 for smooth solutions. On non-smooth solutions, slower
convergence is to be expected. Notice also that dG(0) coincides with the
single-point upwind (SPU) method.

We remark that although the polynomial spaces V
(n)
h are sufficiently rich

to yield a scheme that has formal accuracy of order (n + 1), we have for
simplicity used the tensor-product space W

(n)
h = {ϕ : ϕ|K ∈ Qn} for purely

two-dimensional simulations. Thus, the number of unknowns per element
in a dG(n)-method is m = (n + 1)2 in two spatial dimensions and m =
(n + 1)(n + 2)(n + 3)/6 for three spatial dimensions.

By substituting the tensor-product Legendre polynomials in the varia-
tional formulation (5), we get a system of nonlinear equations for the un-
knowns in the domain. Let U be the vector of unknowns {Uik} and let

GK(U)j = ah
K(uh, Lj),

where ah
K is an approximation of aK using Gaussian quadrature. If UK

denotes the unknowns in element K, we can write the equations for element
K as

0 = GK(U) = MKUK −BK − FK(UK) + F̂K(U),

where we for convenience have split the form GK in four parts: three inte-
grals over K plus the element coupling given by the flux F̂K(U) integrated
over ∂K. Due to the directional dependence of the upwind flux function (6),
the flux can be split in two parts

F̂K(U) = F̂+
K (UK) + F̂−K

(
UU(K)

)
describing flow out of and into element K, respectively. Here U(K) = {E ∈
Ω : ∂E ∩ ∂K− 6= ∅} denotes the neighbouring elements of K in the upwind
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direction. Thus, the nonlinear system for element K can be written as

GK(U) = MKUK −BK − FK(UK) + F̂+
K (UK) + F̂−K

(
UU(K)

)
,

= G+
K(UK) + G−K

(
UU(K)

)
= 0.

(8)

Assembling all the local nonlinear systems gives a global nonlinear system
G(U) = 0. In the linear case (with f(u) = u, see [24]), this results in a
reducible block-structured linear system Ax = b. Furthermore, there exists
a symmetric permutation P that maps the global coefficient matrix A to a
lower block-triangular matrix L=PAP T . If we are able to determine P , we
can therefore solve the linear system by solving a sequence of smaller linear
problems corresponding to each irreducible diagonal block of L. The size
of each diagonal block is given by the number of degrees–of–freedom in the
corresponding single element or group of mutually dependent elements. The
resulting computational complexity is close to optimal in the linear case: if
LU-factorisation is used for each subsystem, the asymptotic complexity is
linear in the number of irreducible blocks (which in the best case coincides
with the number of elements) and roughly cubed in the degrees-of-freedom
per element.

In the nonlinear case, the Jacobian matrix JG must have the same block-
structure as A. Thus, JF = PJGP T will have a lower block-triangular
structure as in the linear case. Alternatively, one can apply the symmet-
ric permutation directly to the nonlinear equations and unknowns to get a
system F (ũ) = PG(ũ), ũ = P T u with the irreducible lower block-triangular
form

F (ũ) =


F1(ũ1)
F2(ũ1, ũ2)
...
FM (ũ1, ũ2, . . . , ũM )

 =


0
0
...
0

 .(9)

Here ũj is the vector of unknowns corresponding to one or a few elements,
and Fj are the equations that govern these degrees-of-freedom. With this
structure, ũi is independent of ũj for j > i. In other words, we can compute
the solution of the discrete nonlinear boundary-value problem (9) by solv-
ing a sequence of M smaller nonlinear systems using e.g., Newton-Raphson
method.

In the next subsection we will demonstrate that an optimal permutation
P can be found by considering the interface fluxes. However, rather than
working on the linear system directly, we will present a method for reordering
the elements and a corresponding solution procedure that visits the elements
sequentially and solves (8) locally. Thus, neither the global Jacobi matrix
JG nor the nonlinear systems G need to be assembled. Instead, the solution
procedure guarantees that UU(K) is a vector of known variables when element
K is processed and all one needs to assemble is the local Jacobi matrix JGK

.
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3.2. Sequential Solution Procedure. Using the upwind flux approxima-
tion in the discontinuous Galerkin schemes above preserves the unidirec-
tional flow property of (1) exactly: The solution in element K depends on
the solution at the inflow boundary ∂K− and is independent of the solution
elsewhere in the domain. This property implies that there is an inherent
directional dependency between (collections of) elements. Under certain as-
sumptions on the interface fluxes v = v · n (to be discussed below), this
directional dependency permits us to compute the solution sequentially, one
element at a time.

Consider the directed graph defined by assigning a vertex to each element
Ki and an edge for the flux vij between elements Ki and Kj , see Figure 1.
An edge from vertex i to vertex j in the graph implies that the solution in
element j depends on the solution in element i. This dependency graph is
directed and is given entirely by the interface fluxes vij . Suppose that we
can find a sequence of element numbers Π = (p1, p2, . . . , pM ) such that if
Upj depends on Upi , then i < j such that pi appears before pj in Π. Then,
by definition, we can compute the solution in element p1 independently of
the rest of the elements using only values on the inflow boundary. Likewise,
the sequence guarantees that Upi is either given on the inflow boundary or
can be computed from Up1 , . . . , Upi−1 , once these are known. This means
that the global nonlinear system reduces to a sequence of local systems,

G+
p1

(Up1)
G+

p2
(Up2)

...
G+

pM
(UpM )

= 0,

= −G−
p2

(Up1),
...

...
= −G−

pM
(Up1 , . . . , UpM−1).

(10)

Here, each local system corresponds to a irreducible diagonal block in the
nonlinear system and involves the degrees-of-freedom in a single element, or
more generally, as we will discuss below, in a collection of mutually depen-
dent elements. In other words, we recover the solution of the full nonlinear
system G(U) = 0 by solving one sub-system at a time.

If there exists a sequence Π of single elements, it can easily be obtained
by a classical graph algorithm. The task of arranging vertices in a sequence
Π according to their position in a directed graph is called a topological sort
[29]. To see how a suitable sequence can be constructed, note that i < j
for any vertex pi that can be reached from vertex pj by going backwards
in the graph. In Figure 1, Element 5 can be reached going backward from
Element 2 and similarly Element 8 is reached from Element 5. Hence, in the
reordered sequence, they end up in the order {8, 5, 2}. A topological sort
can easily be obtained by looping through the vertices in the graph in any
order and initiate a depth-first search of the reversed graph from each vertex
that has not been previously visited. During the depth-first search, we add
vertex pj to the reordered sequence when the search backwards from pj has
been completed. In Figure 1 we start at Element 9 and go down through
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1 2 3

4 5 6

7 8 9

Grid with fluxes

V =

2666666666664

∗
∗ ∗ ∗

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗

∗ ∗ ∗

3777777777775
Nonlinear equations: U + V F (U) = Q

1 2 3

4 5 6

7 8 9

Directed graph

1 2 3 4 5 6 7 8 9

Flattened graph

1 4 7 8 5 2 3 6 9

Topological sort

Figure 1. Illustration of the reordering procedure for a simple
3× 3 grid.

Elements 8, 7, and 4 until we reach Element 1, which has no outgoing edges
in the reversed graph and is therefore added as the first element in the
reordered sequence. We then backtrack, adding Elements 4, 7, and 8, for
which all outgoing edges point to vertices that have been visited during the
backtracking phase. Next we visit Element 6 and then Element 5, for which
the only outgoing edges point to Elements 4 and 8 that have already been
added. We then add Element 5 and backtrack to Element 6, and so on.

Since a depth-first search only visits each vertex once, the topological
sort of a directed graph can be obtained in O(n) operations for n vertices.
The directed graphs that can be sorted topologically are characterised by
being acyclic. If there are cycles in a graph, a forward (backward) traversal
can reach a vertex an arbitrary number of times, and a sequence that fulfils
our requirement does not exist. If a sequence Π cannot be found by a
single depth-first traversal, the graph has at least one cycle (or strongly
connected component). Cycles correspond to groups of elements that are
made mutually dependent by nonzero circulation in the discrete set of fluxes
{vij}. This mutual dependence makes a topological sort impossible. For
the discrete equations, this implies that the degrees-of-freedom in such a
collection of cells form an irreducible diagonal block in the Jacobian matrix
of PJGP T and must be solved for simultaneously.
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Fortunately, there is an easy solution to this problem. By grouping to-
gether elements corresponding to strongly connected components in the de-
pendency graph, we obtain an acyclic graph, where each vertex corresponds
to either a single element or a single strongly connected component (i.e., a
group of elements). Strongly connected components can easily be detected
by one extra depth-first traversal of the graph. Alternatively, Tarjan’s order-
ing algorithm [31] can be used. Thus, if our solver can compute the solution
in groups of elements, we can still apply the sequential solution procedure.

In passing, we remark that the reordering idea can also be applied when
v is computed by a higher-order method, in which case there may be a few
cell faces where the flux changes sign. Given a proper algorithm to detect
these faces, the neighbouring cells can easily be treated as on a cycle and
be lumped together.

3.3. Treatment of Cycles. The number and size of cycles in the discrete
fluxes depend on the heterogeneity and on the numerical method used to
discretize the pressure equation. For instance, if one uses a two-point flux-
approximation scheme for the pressure equation (2), a simple monotonicity
argument on the pressure shows that the discrete velocity field is guaranteed
to contain no cyclic dependencies, see [24]. More general schemes like mixed
finite elements, multipoint flux-approximation schemes [1], or mimetic finite
differences [5, 6] may produce velocity fields or fluxes with cyclic dependen-
cies. Theoretically, all cells in the domain can be coupled and reordering
the cells will not give any speedup for the solution of the global nonlinear
system. However, this is a worst case scenario that we have so far never
encountered, despite extensive testing on both synthetic and real-field cases
with strong anisotropy. In our experience, large cycles rarely occur and if
they occur it is mainly for rough grids and permeability fields with large-
scale structures that dominate flow, such as fluvial or layered permeability
fields with sharp contrasts. For cases with shorter correlation lengths or lack
of strong directional trends, the fraction of cells in cycles is typically small
compared with the total number of cells in the domain. See also the discus-
sion in [25] of how to avoid nonmonotone solutions (and thereby cycles) in
multipoint schemes.

To obtain an efficient solver for cases containing cycles, some care should
be taken when choosing linear solver(s) for the block problems. For small-
sized problems corresponding to a single or a few connected cells, a direct
solver is the best choice. For medium-sized cycles, we are currently using
the UMFPACK library [10].

Alternatively, or as a complement, one may preprocess the discrete ve-
locity field and cut edges with small flow, e.g., by setting all fluxes with
magnitude below a certain user-given threshold to zero. This will not only
reduce the number of cycles, but also take away cells with small flow. Cut-
ting small fluxes will introduce small errors in the local mass balance. The
thresholding of small fluxes may therefore be followed by a repair algorithm,
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in which one seeks to get the mass balance right again. That is, in each cell
Ci, one introduces a scaling αi of the outflow fluxes determined by

(11) αi

∑
j∈U(i)

max(vij , 0) = qi −
∑

j∈U(i)

min(vij , 0).

If the inflow fluxes are known, each outflow flux is scaled by αi, and mass
conservation is retained. In the case of cycles, (11) gives a linear system for
the unknown scaling factors of all cells involved in the cycle. By solving this
system, the mass balance in the whole cycle is cured.

3.4. The Complete Scheme. The upwind discontinuous Galerkin scheme
(5) yields an approximation of the solution in terms of a polynomial ui

h(x, y, z)
for each element Ki in the domain. For higher-order approximations we
need to remove or reduce any spurious oscillations that may appear near
discontinuities and kinks in the solution to obtain a stable scheme for (1).
To this end, we apply a variant of Cockburn and Shu’s TVB limiter [9] to
postprocess the solution. To avoid limiting in regions where the solution is
smooth, we check the magnitude of the jump [uh] across each element faces.
If the jump at some point on ∂K is larger than some prescribed constant,
we reduce the polynomial order of the local approximation in element K to
a trilinear surface with the slopes being restricted by the minmod limiter.
In other words, the TVB limiter ΛΠh is given by

ΛΠhui
h =


u +ux(x− xi)

+uy(y − yj) + uz(z − zj),
if |[uh]| > M on ∂K

ui
h, otherwise,

(12)

where

ux =
2

∆x
minmod(ux, θ(ui+1,j,k − uijk), θ(uijk − ui−1,jk)), etc.

Here u, ux, uy, and uz are the degrees-of-freedom corresponding to the basis
functions 1, `1(ξ), `1(η), and `1(ζ), respectively; that is, the constant and
the slopes in the x-, y- and z-directions. The minmod function is defined as

minmod(a1, . . .) =


maxi ai, ai < 0 ∀i,
mini ai, ai > 0 ∀i,
0, otherwise.

For practical reasons, we only check the size of the jump in the approxima-
tion uh at the midpoints on each element interface.

To solve the coupled system (1)–(2) we use a standard operator splitting
and advance the total solution in time steps ∆t. First, we compute the
pressure pk and mean velocity vk at time tk by solving (2) with the total
mobility λT (uk−1) fixed. Then we fix vk (and pk) and use an implicit dis-
continuous Galerkin scheme (5) to evolve the transport equation (1) a time
step ∆t. To obtain a reasonable accuracy, a small time step δt < ∆t is
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usually required. For schemes of second order or higher, we postprocess the
solution by applying the limiter (12) to each component of the solution and
each element in the domain to remove over- and undershoots in the solution.
Optionally, we may also perform extra step(s) to add gravity and capillary
forces. Then we solve (2) again, and the procedure is repeated until the
desired final time T is reached.

The accuracy of the solution obtained with this scheme depends on the
choice of time steps ∆t and δt, as well as on the degree of coupling between
(1) and (2). For a medium with relatively homogeneous porosity (e.g., Case 1
in the next section), we would typically choose a CFL number somewhere
between one and ten to avoid too much smearing. For a medium with large
variations in porosity and the magnitude of fluxes (e.g., Case 2 in the next
section), one would typically want to choose a similar CFL target for the
most ‘typical’ cells, thereby avoiding the time-step to be severely restricted
by cells having a small volume and limited influence on the global solution.
In commercial codes, it is common to impose a restriction on the maximum
change in saturation allowed in single cell as an extra precaution. On the
other hand, if one is merely interested in production curves and does not care
too much about the spatial resolution elsewhere, one can use surprisingly
high CFL numbers, as we will see in Case 2 in the next section.

For incompressible and weakly compressible flows, one can typically allow
∆t to be much bigger than the time step δt used to solve (1) because the
pressure and velocity fields are not very sensitive to changes in the total
mobility λT . We refer the reader to [26] for a simplified analysis to support
the choice of ∆t.

4. Numerical Examples

In this section we assess the efficiency, accuracy, robustness, and flex-
ibility of the dG schemes by applying them to three different models for
incompressible multiphase flow in porous media: (i) two-phase flow, (ii)
three-phase flow [20], and (iii) miscible two-phase, three-component flow
[19]. Unless stated otherwise, we use a standard two-point finite volume
scheme to discretize the pressure equation (2).

4.1. Two-Phase Flow. We start by considering two-phase incompressible,
immiscible flow of oil and water in the absence of gravity and capillary
forces. As our primary unknown we pick the water saturation s. Then the
conservation equation for water saturation is given by (1) with ` = 2; that
is,

(13) φst + v·∇f(s) = 0.

Here the fractional flow or flux function reads f(s) = λw(s)/(λw(s)+λo(s)),
where λw and λo are the mobilities of water and oil, respectively, given by

λw(s) = µws2, λo(s) = µo(1− s)2.
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Figure 2. Saturation along the diagonal computed using n
time steps on a N ×N ×N grid for N = 10, 20, 40.

A backward Euler discretisation of (13) yields nonlinear boundary-value
problems of the form,

(14)
φ

∆t
sn + v·∇f(sn) =

φ

∆t
sn−1.

In the following we will consider a few test cases in two and three spatial
dimensions. In these testcases we have used M = 0.0 in (12). A few more
test cases for incompressible and weakly compressible flow can be found in
[23].

Case 1. The first model we consider is a simple quarter five-spot with unit
permeability and porosity, where the flow is driven by two rate-controlled
wells placed in diagonally opposite corners. In a water-injection scenario,
solutions to (13) will typically consist of a shock followed by a rarefaction
wave.

We start by a qualitative comparison of implicit versus explicit temporal
discretization; the latter has previously been the method of choice with
dG discretizations. To this end, we consider the unit cube represented by
a uniform N × N × N grid. We place an injector in cell (1, 1, 1) and a
producer in cell (N,N, N). To keep matters simple, we only consider dG(0)
with first-order Euler temporal discretization and without any reordering,
and we compute the velocity field only once, initially. Figure 2 shows the
saturation along the diagonal computed with the explicit and the implict
scheme. For the explict scheme we use the maximal time step allowed by the
CFL condition, giving ne equally spaced time steps. For the implicit scheme
we use a very simple adaptive time-stepping: first we try to use bne/Mc
(or one if zero) equally spaced time steps for M = 5, 50, 500, and 5000. If
the Newton–Raphson method fails to converge, we reduce the time step by
one half until the time step converges. Similarly, if we are using a reduced
time step and this has been stable for two consecutive time steps, we double
the next time step. As we can see from the figure, one can safely reduce
the number of implicit time step two or three orders of magnitude compared
with the explicit scheme without significantly changing the saturation profile
by excessive numerical dissipation. Henceforth, we therefore tacitly assume
that our implicit dG schemes can use relatively large implicit time steps.
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Table 1. Runtimes and average number of nonlinear itera-
tions per cell per time-step versus the time-step ∆t for Case 1.
The time used to compute the permutation P was 8.0×10−4

seconds.

∆t NR–UMFPACK NR–PFS NPFS
days time (sec) iterations time (sec) iterations time (sec) iterations

2 1.34e-01 13.88 2.45e-02 13.88 2.48e-03 1.98
4 1.43e-01 14.69 2.54e-02 14.69 2.71e-03 2.27
8 1.48e-01 15.12 2.59e-02 15.12 3.06e-03 2.65

16 1.47e-01 15.00 2.53e-02 15.00 3.41e-03 3.17
32 1.48e-01 15.00 2.62e-02 15.00 3.97e-03 3.84

Second, we will assess the efficiency of our reordering strategy for the
simple dG(0) discretization of (14). To this end, we consider a 100×100×1
grid and compare three different solvers for the nonlinear system arising
from (14) in each time step. The first nonlinear solver (NR–UMFPACK) is
a plain implementation of Newton–Raphson’s method with the direct sparse
solver from the UMFPACK library [10]. To get a robust scheme we use 0.5 as
initial guess in all iterations, use a relaxation factor of 0.9, and iterate until
the nonlinear residual is less than 10−6. In the second solver (NR–PFS), we
replace the direct sparse linear solver by a permuted forward substitution
(PFS) solver, which is the same as applying reordering to the discrete system
arising from the Newton–Raphson linearization. The third solver (NPFS) is
the reordering method introduced above, where we use Ridder’s method [27]
for the scalar nonlinear equations and the NR–UMFPACK method described
above for strongly connected components.

Table 1 reports the elapsed CPU time per time-step for different choices
of the time-step. We first observe that NR–PFS is almost an order of mag-
nitude faster than NR–UMFPACK. The better performance of NR–PFS is
directly attributed to the efficiency of the PFS linear solver. Secondly, we
observe that NPFS is an order of magnitude faster than NR–PFS. This
difference can to a large extent be attributed to the iteration count. Be-
cause the NPFS solver computes the solution cell by cell, it has the ability
to vary the number of iterations used from on cell to the next. In fact, it
will even use no iterations in cells where the nonlinear residual is zero, for
instance, in the unswept zone, where saturation values are identically zero.
The Newton–Raphson method, on the other hand, is bound to use the same
number of iterations in all cells and therefore has one order of magnitude
higher iteration count.

To further assess the efficiency of the reordering method, we consider a
homogeneous quarter five-spot consisting of N3 cells to see how the runtime
grows with increasing N . Figure 3 shows the average computational time
per element per time step for N = 10, 15, . . . , 50 measured at times corre-
sponding to approximately 0.4, 0.8 and 1.2 pore volumes injected for dG(0).
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Figure 3. Average computational time per element per time step
(in µs) for a homogeneous quarter-five spot simulations with N3

elements computed with dG(0) (dashed lines) and dG(1) (solid
lines) at times 0.4, 0.8 and 1.2 PVI. The implementation is not
optimised.

dG(0) dG(1) dG(2)

Figure 4. Saturation at time t = 0.25 PVI computed by dG(n),
n = 0, 1, 2 for Layer 6 in SPE 10. The wells are indicated by white
circles.

Because there are no cycles in the velocity fields, the runtime per element
is close to linear in the number of elements for both schemes. Figure 3 also
shows timings for a unoptimized dG(1) solver, which also exhibits the same
complexity as our optimised dG(0) code.

Case 2. Next, we compute water injection in a square 2D reservoir with
permeability distribution sampled from Layer 6 of Model 2 from the 10th
SPE Comparative Solution Project [7] and unit porosity. This layer is char-
acterised by a smoothly varying (lognormal) permeability field that spans
six orders of magnitude. The rectangular domain is partitioned in 220× 60
cells of size 6.096× 3.048 and an injection and a production well are placed
in elements (1, 24) and (217, 60), respectively.

Figure 4 shows saturation profiles after 0.25 pore volumes of water have
been injected computed with the standard single-point upwind method (i.e.,
dG(0)), dG(1), and dG(2). In the simulation the pressure has been updated
three times and the time steps were chosen to meet a target CFL number
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Tarbert formation, Layer 15

Upper Ness formation, Layer 77

Figure 5. Model 2 from the 10th SPE Comparative Solution
Project [7].

of 10. It is clear that the resolution increases significantly from the first-
order single-point upwind method to the second-order dG(1), in particular
for the thin water finger near the production well. However, increasing the
accuracy from second to third order does not produce a significantly better
resolution of the front. The reason for this is that the limiter (12) employed
in the two higher-order methods effectively reduces the order of the schemes
near jumps in the solution. The effect of higher order might be noticeable
in the smooth part of the solution, but not near shocks.

Case 3. The full test case from the SPE 10 comparative solution project is
a model with 60 × 220 × 85 grid cells, see Figure 5. The 35 first layers of
the domain consist a smooth Tarbert formation laid on top of 50 layers of
a fluvial Upper Ness formation. This test case was originally designed as a
benchmark for upscaling methodologies and as such includes many difficult
details that are seen in real oil reservoirs.

Our production scenario consists of a five-spot configuration, where we
inject water in a vertical well in the middle of the domain and produce oil
and water from vertical wells placed in each of the four corners. The simula-
tion time is 2000 days. For more details see [7]. We compute this two-phase
problem with one initial pressure update using a standard two-point flux-
approximation scheme. Figure 6 shows the water-cut curves for each of the
four wells computed by an optimised implementation of the single-point up-
wind scheme (i.e., dG(0)) using uniform time steps of twenty days. The
accuracy of the production curves is similar to what is obtained by a com-
mercial streamline simulator. The total computational time of the transport
steps computed by dG(0) is two minutes, which is approximately the same
as for the transport step in a highly optimised streamline solver [30]. This
makes the standard implicit first-order upwind scheme with reordering a
prime candidate for applications where one usually has to resort to stream-
lines, like direct simulation of high-resolution grid models with multimillion
cells, history matching, and screening of multiple geological models.
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Figure 6. Water-cut curves for the full SPE 10 model computed
with dG(0) using a time step of 20 days (left) and dG(1) using a
time step of 1 day (right). Both computations are compared to a
commercial streamline simulator (dashed line).

Figure 6 also shows production curves computed by dG(1) with uniform
time steps of one day. Here the improved spatial accuracy of the higher-
order method is masked by the numerical diffusion introduced by relatively
long time steps used in the implicit discretisation. However, the point of the
example is to demonstrate that it is possible to run a higher-order method
on a standard desktop PC for a model with realistic and very complex het-
erogeneity and 1,1 million cells without the use of any kind of parallelisation.

Case 4. The corner-point grid format used in industry allows very general
geometries to model real geological formations having as faults, throws, and
pinched layers. A corner-point grid consists of a set of hexahedral cells
that are aligned in a logical Cartesian manner. Figure 7 shows one such,
artificially constructed, faulted reservoir having 80 220 grid cells and 254 869
cell faces. The grid is specified in terms of a set of vertical pillars defined
over an areal Cartesian 2D mesh in the lateral direction. Each volumetric
cell is restricted by four pillars and is defined by specifying the eight corner-
points of the cell, two on each pillar. Our heterogeneity model is a layered
permeability field with lognormal variation inside each layer spanning three
orders of magnitude. We have placed one water injector and two producers
in the reservoir, all modelled as sources uniformly distributed in all layers.
The flow is described using the two-phase model introduced above with an
oil-water viscosity ratio of ten.

For such complex models, a two-point scheme for the total pressure may
not produce accurate solutions. We therefore solve simultaneously for the
pressure and velocity using a mimetic finite-difference scheme [5, 6], which
is very accurate and applicable for general polyhedral grids. However, the
velocity field produced by this scheme will not in general be loop-free.

As shown in Case 3, accurate production curves can be obtained using
fairly large time steps. We have computed the water flooding using two
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Figure 7. The left plot shows the fractured layered reservoir
with lognormal permeability field. The middle plot shows water
saturation after 0.18 pore volumes injection. The right plot shows
water-cut curves for with 100 pressure steps (solid line) and 10
pressure steps (dots).

different time steps for the pressure solver. In the first computation, we
used 100 pressure steps with 10 sub-steps in the saturation solver and in
the second computation we used only 10 pressure steps and 10 saturation
sub-steps. In both runs, the mimetic pressure solver produced velocity fields
with approximately 200 loops involving about 1 100 cells altogether. Fur-
thermore, the majority of the loops were small, coupling less than 15 cells.
The largest loop that occurred in the simulations involved only 72 grid cells.
This amount of loops does not significantly alter the speed, accuracy or ro-
bustness of the saturation solver. However, the efficiency of the solver would
have decayed somewhat, of course, if a large percentage of the cells had been
part of cycles.

Figure 7 shows a snapshot of the water saturation after 0.18 pore volumes
of water has been injected in the first run. To show the accuracy obtained in
the two runs, we have also plotted the water-cut curves in the two producers.

Case 5. Our next model is a real-life geological model of a North Sea sand-
stone formation, with one large fault and several smaller ones. The perme-
ability and porosity fields are quite smooth with jumps between the layers,
giving a mild heterogeneity where the ratio of largest to smallest permeabil-
ity is 8.8× 104. The grid, however, is quite rough with 27 437 cells, many of
which are twisted and pinched. The ratio of largest to smallest grid cells is
roughly 4× 103 and the ratio of largest to smallest face areas is 106.

The model was originally used to study the feasibility of CO2 deposition,
but here we pretend that it is a petroleum reservoir. The reservoir covers
roughly 50 × 50 kilometers and 1 kilometer in the vertical direction and
the volumes and time scales involved are, of course, totally unrealistic, but
the heterogeneity and geometrical complexity are representative also for
a petroleum reservoir. We therefore scale the model by a factor 0.1 in
each spatial dimension and place one producer in the center near the large
fault and three injectors in different sectors, see Figure 8. All wells are
vertical, pressure-controlled wells with bottom-hole pressures of 300 bar in
the producer and 700 bar in the injectors.
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Figure 8. The Johansen formation from the North Sea. The left
plot shows the water saturation after 1 000 days of water injection
and the right plot shows the number of iterations per cell for a
typical time step.

Table 2. Runtimes and average number of nonlinear itera-
tions per cell per time-step versus the time-step ∆t for water-
flood simulations of the Johansen formation from the North
Sea.

∆t NR–UMFPACK NR–PFS NPFS
days time (sec) iterations time (sec) iterations time (sec) iterations
125 2.26e+00 12.69 3.28e-01 12.69 4.44e-02 0.93
250 2.35e+00 12.62 3.32e-01 12.62 4.73e-02 1.10
500 2.38e+00 13.25 3.46e-01 13.25 4.16e-02 1.41

1000 2.50e+00 13.50 3.49e-01 13.50 4.21e-02 1.99

The left plot in Figure 8 shows the water saturation after 1 000 days
of water injection. In the computation, the number of strongly connected
components in the flux fields was on average 77.4, the number of cells in
strongly connected components was around 780, and the largest component
involved contained 380 cells. The time used to compute the permutation P
was 3.6× 10−3 seconds.

Table 2 reports a similar comparison of nonlinear solvers as given in
Case 1. Also here we see that that NPFS is about one order of magnitude
faster than NR–PFS, which again is about one order of magnitude faster
than NR–UMFPACK. We also note the low iteration count for NPFS. To
support the explanation given in Case 1, the right plot in Figure 8 shows the
number of iterations in each cell for a typical time-step after the injection
fronts have extended into the reservoir. The figure shows that no iterations
are performed in the unswept zone and that the maximum number of iter-
ations appears in the well blocks and in regions behind the injection fronts.
In [23] we also show results for simulations with a compressible oil phase.

Case 6. Finally, we show that the schemes presented here can also be im-
plemented for general unstructured grids. In Figure 9, we have included
a direct simulation of flow in a synthetic fractured medium using dG(0)
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Figure 9. Water saturation in fractured medium at 0.15, 0.24
and 0.36 PVI computed with the single-point upwind method on
a triangular grid.

on triangular elements. Each time step is computed using exactly the same
sequential solution procedure that was applied for the Cartesian grids above.

In a forthcoming paper [15], we study stationary single-phase transport
equations on the form

(15) v · ∇T = φ(x)

for naturally fractured reservoirs modelled using unstructured triangular
grids with large aspect and cell-size ratios and demonstrate the feasibility
of reordering in combination with dG(n) for n ≤ 5. From a computational
point of view, solving the semi-discrete equations of multiphase transport
(3) is simpler than solving the time-of-flight equation (15). Whereas (3)
has solutions in [0, 1] and models a time-increment of a problem with fi-
nite speed of propagation, the solutions of (15) are integral solutions along
streamlines, show large local variations that span several orders of magnitude
and are therefore much harder to approximate using piecewise polynomial
representations. Therefore, given the rather successful application of the
dG/reordering method in [15], extending it to to the transport equations
considered herein on fully unstructured tetrahedral grids is a question of
a rather straightforward implementation. Similarly, it is in principle pos-
sible to extend the higher-order dG methods to unstructured hexahedral
grids. However, here the implementation is a bit more involved, because the
corner-point format allows various geometrical and topological degeneracies
that need to be accounted for, such as non-matching interfaces arising near
faults.

4.2. Three-Phase Flow. To demonstrate that the methodology also can
be applied to more complex physical processes we next consider a water-
alternating-gas (WAG) injection modelled by the hyperbolic three-phase
system introduced by Juanes and Patzek [20]. For simplicity, we assume
(somewhat nonphysically in the presence of gas) that the system is incom-
pressible. Then the flow model can be written as (13), with s denoting a
vector with first component representing the water saturation sw and the
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second component the gas saturation sg. The mobilities are modelled by

λw(sw) = (awsw + (1− aw)s2
w)/µw,

λg(sg) = (agsg + (1− ag)s2
g)/µg,

λo(sw, sg) = (1− sw − sg)(1− sw)(1− sg)/µo,

λT = λw + λg + λo,

where aw = 0, ag = 0.1, µw = 0.35, µg = 0.012 and µo = 0.8. The two com-
ponents of the flux function are λw/λT and λg/λT . This system is strictly
hyperbolic except for the single umbilical point of 100% gas saturation, i.e.,
s = (0, 1)T , where the eigenvalues coincide [20]. Thus, all characteristics are
positive and we may apply the upwind flux as before. In the remaining test
cases we have used M = 0.05 in (12).

Case 7. We consider a three-phase WAG injection into the two-dimensional
reservoir from Case 2 with permeability data taken from the sixth layer of
the second SPE 10 model. The WAG injection sequence consists of 0.1 pore
volumes of water, followed by 0.1 PVI gas, and then again 0.1 PVI water,
etc. (To avoid the umbilical point, we inject a wet gas consisting of a mixture
of 95% gas and 5% oil rather than a pure gas). In the operator splitting,
we update the pressure at the end of each step in the injection cycle. As in
Case 2, we use a CFL number of 10 in the saturation solver.

Figure 10 shows saturation profiles at the end of the first three steps in
the cycle, i.e., at times t = 0.1, 0.2, and 0.3 PVI. Because gas has a much
higher mobility than water, the gas injected in the second step will flow
fast through the system and break through in the producer earlier than the
water. In the third step, all gas will be displaced by water inside the water
finger. As a result, a large amount of gas is produced before water breaks
through. Again, the higher accuracy of the second-order scheme yields solu-
tions with a much sharper resolution of the thin finger near the production
well. From the plot, it may look like the gas saturation has oscillations seen
as a number of small ‘islands’ in the profiles. A careful examination showed
that are partially plotting artifacts created by the contouring algorithm (at
t = 0.2) and partially small pockets of gas that have been displaced into
low-permeable regions and encapsulated by the waterfront.

4.3. Two-Phase, Three-Component Flow. Since the early 1970’s, it has
been recognised that many discrete methods for computing miscible fluid
flow give qualitatively different results when one changes the orientation of
the spatial grid with respect to the geometry of the physical flow.

In the last example we repeat a numerical experiment from [19] describing
miscible injection of solvent in a quarter five-spot with unit porosity and
permeability. In this model, the solvent is assumed to dissolve readily in the
oil phase, while the water and oil phases are immiscible. The model can be
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Figure 10. Water and gas saturation for the three-phase WAG injection.

written as

st + v · ∇f(s) = 0,

ct + v · ∇
(

1− f(s)
1− s

c

)
= 0,

where s and c are the water and solvent saturations, respectively. See [19]
for more details. The flux function f is given by the ratio λw/λT and the
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Figure 11. The parallel and diagonal grids used in Case 8. Pro-
ducers are marked with circles and injectors with filled circles.

water and hydrocarbon mobilities are modelled by

λw(S) =

0, S < Swc

1
µw

(
S−Swc
1−Swc

)2
, otherwise,

λh(S) =

{
0, 1− S < Shc

1
µh

(
ah

1−S−Shc
1−Shc

+ (1− ah)
(

1−S−Shc
1−Shc

)2
)
, otherwise,

with Swc = Shc = 0.2, ao = 0.1, and µw = 1.0. The hydrocarbon viscosity
is modelled by a power law

µh(χ) =
[1− χ

µ
1/4
o

+
χ

µ
1/4
g

]−4
, χ =

C

1− S
,

with µo = 4.0 and µg = 0.4. Initially, the domain is filled with 30% water
and 70% oil, and the injected fluid is pure solvent. Two fronts are present in
the solution. The fastest front is a stable shock, while the slowest front is a
contact discontinuity. This problem has an adverse mobility ratio, i.e., the
mobility of the injected fluid is greater than the mobility of the resident fluid
at the contact discontinuity. Problems with adverse mobility ratios are infa-
mous for so-called grid-orientation effects, which means that the numerical
solution depends strongly on the orientation and size of the grid. Without
any diffusive terms, this problem is physically unstable. Grid-orientation
effects are expected to vanish only if the physical diffusion dominates the
numerical diffusion.

Case 8. To examine the grid-orientation effects of the discontinuous Galerkin
schemes, we consider a five-spot problem (with zero physical diffusion) on
two different grids that are commonly referred to as the diagonal and the par-
allel grid, see Figure 11. It is well-known that single-point upwind schemes
exhibit strong grid-orientation effects. However, we expect that higher-order
spatial discretisations are less sensitive to this effect. Therefore, the dG(0)
method is likely to be inferior to any higher-order dG method for this prob-
lem.

Figure 12 shows the gas concentration (in which the front corresponds to
a contact discontinuity) at time t = 0.25 PVI computed on the parallel and
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Figure 12. Gas concentration on the parallel and diagonal grids.

diagonal grids. In all plots we have used CFL = 10 in the saturation solver
and 400 pressure updates. To illustrate the problem of grid-orientation ef-
fects, we have included results by the first-order single-point upwind method
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(i.e., dG(0)), which is clearly very sensitive to the grid orientation. More-
over, the effects of grid orientation are increased, rather than reduced, when
the number of grid cells increases. The second and third-order dG methods
produce solutions that are qualitatively similar on the parallel and diago-
nal grids. However, notice that the number of “wiggles” increases on the
finer grids, due to a decreased amount of numerical dissipation. Altogether,
the figure demonstrates the advantages of using a higher-order method for
simulating miscible flow.

5. Final Remarks

In this paper we have introduced two new ideas for efficient computation
of advection-dominated flow. First, we have introduced an implicit dis-
continuous Galerkin discretisation to derive schemes that allow high-order
accuracy and compact stencils in combination with an ability to take large
time steps. This yields very robust schemes. Since all degrees-of-freedom
used in the higher-order stencils are located inside a single element (or grid
cell), the method can easily be extended to include p-adaptivity (i.e., local
adaptivity in the order of the method). For simple flows, like the standard
Buckley–Leverett two-phase model, higher-order dG elements should only be
used if one is able to take reasonably small time steps. If not, the increased
spatial resolution of higher-order schemes will be completely overshadowed
by the excessive numerical dissipation introduced when taking large implicit
time steps. For more complex flows, e.g., miscible flow with adverse mobility
ratios, the use of higher-order elements may stabilise the computations and
diminish grid-orientation effects.

The second idea of the current paper is a reordering method that may
be used to speed up the nonlinear solution procedure by decomposing the
discrete global nonlinear system into a sequence of local nonlinear systems.
By using this method, one may not only speed up the nonlinear iterations,
but also avoid the assembly of global discretisation matrices and thereby
increase the size of problems that one can solve. Here we have applied the
reordering method to discontinuous Galerkin schemes on uniform Cartesian
grids, on a industry-standard corner-point grid (logically Cartesian), and on
an unstructured triangular grid. However, the method can (in principle)
be applied to any discretisation method that in a discrete sense preserves
the unidirectional dependency of the underlying differential equations. In
particular, the reordering idea easily applies to general unstructured grids,
as long as one is able to map cells and interface fluxes to vertices and edges in
a directed graph. In fact, by viewing the (unstructured) grid as a graph and
discretising using the single-point upwind method, all one needs to know
is the edge connections and fluxes and the cell volumes and porosities in
order to make a very efficient first-order implicit method. For a higher-
order discontinuous Galerkin method one also needs quadrature rules and
appropriate interpolation schemes for the velocities inside each cell.
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Although the reordering method has great advantages with respect to
computational efficiency, it also has an important limitation: the assumption
of unidirectional flow. This assumption is violated by more general trans-
port equations that include for instance gravitational or capillary forces. The
natural way of extending the methodology presented here to more general
transport equations is by operator splitting, as is also done for streamline
methods, see [4, 17]. In this sense, the method is somewhat related to, and
may have the same areas of applicability as streamline methods [21] in for
instance direct simulation of models with multimillion cells and complex con-
nectivities, history-matching, model screening and ranking, etc. Compared
with streamlines, a reordered finite-volume scheme has a few advantages.
Most notably, the discontinuous Galerkin schemes are conservative, and
mass-balance errors are therefore not a problem. Furthermore, whereas a
streamline simulator needs a method to distribute streamlines in the domain
and methods for projecting saturations back and forth between streamlines
and grid cells in physical space, we only need to find a reordering. This can
be accomplished using well-known and efficient graph algorithms. Last but
not least, this scheme can be built into conventional reservoir simulators
that use a sequential splitting, and be used when appropriate.
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