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Abstract

We present a family of efficient solvers for hyperbolic transport equations modelling flow
in porous media. The solvers are based on discontinuous Galerkin spatial discretisations
and implicit temporal discretisation. By applying an optimal reordering algorithm, the
corresponding discrete system of (non)linear equations can be solved in one grid-block at
a time. This way, we avoid assembly of a full (non)linear system. Our approach allows
us to handle large numbers of grid blocks with modest requirements on memory.

1. INTRODUCTION

In this paper we present efficient and accurate solution procedures for a class of linear
and nonlinear boundary-value problems of the form

αu +∇ ·
(
vF (u)

)
= β, x ∈ Ω,

u = h(x), x ∈ ∂Ω+.
(1)

Here F (u) is a flux function with positive characteristics, v is a given (nearly) curl-free
vector field, and ∂Ω+ denotes the inflow boundary on which v · n < 0. Equations of
this form arise either as simple models for single-phase flow, like e.g., the time-of-flight
equation,

v · ∇τ = φ, (2)

or as the result of an implicit semi-discretisation of systems of hyperbolic conservation
laws for multiphase and multicomponent flow of the form

φ∂tui +∇ ·
(
vFi(u)

)
= qi, i = 1, . . . , `− 1. (3)

To discretise (1) we use a discontinuous Galerkin (dG) formulation. By this approach,
we can easily achieve high-order accuracy with local, compact stencils where the only
coupling is between elements sharing a common element face. This yields systems of
(non)linear equations with predictable structure: Each (non)linear equation describes the
interaction between the degrees-of-freedom of one element and its immediate neighbours
sharing a common element face. If the normal velocity n ·v is constant on each face, this
structure can be greatly simplified by using an upwind approximation of the fluxes across
element interfaces. In fact, in the linear case the upwind discretisation yields reducible
systems of equations, for which we can find symmetric permutations that map the global
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systems to block-triangular systems, where each block involves the degrees-of-freedom of
one or a few elements. In the nonlinear case, the permutation of equations and unknowns
yields a block-triangular Jacobian matrix. Finding the permutation (or reordering) is
quite easy if we view the fluxes across element interfaces as edges in a directed graph and
rephrase the permutation as a topological sort. From elementary graph theory it follows
that the reordering can be found by using a depth-first traversal of the grid, in which each
cell is visited only once.

A key point in our approach is to exploit this optimal reordering to develop very efficient
(non)linear solvers. In the linear case [Natvig et al., 2006], we use a direct solver to factor
the small diagonal blocks in the triangular system and thereby obtain a very efficient direct
solver. In the nonlinear case (see [Natvig and Lie, 2006]), the nonlinear subsystems can
be solved one-by-one according to the reordering, using for instance a Newton–Raphson
method. In both cases the computational effort is reduced significantly from solving a large
sparse (non)linear system for all degrees-of-freedom in the domain to solving a sequence of
block problems involving a few (non)linear equations for each element. Moreover, in the
nonlinear case, we may control the iterations separately for each subsystem and this will
generally give better convergence than for the corresponding global nonlinear iteration.
Finally, by using the optimal reordering one avoids assembling the global system.

The reordering idea is not new and has been described previously by Duff and Reid
[1978]. Similarly, Dennis Jr. et al. [1994] explore the use of block-triangular structures to
construct effective Newton-type nonlinear solvers. However, to the best of our knowledge,
these ideas have not previously been used to compute transport in porous media, even
though the idea is quite natural and can easily be motivated by the underlying physics:
The triangular structure of the equations reflects the directional dependence of the contin-
uous equation (1) that previously has been exploited in streamline methods, see [King and
Datta-Gupta, 1998]. Due to the positive characteristics of F , the exact solution in each
element K will only depend on the upstream points of all streamlines passing through K
and be independent of the solution elsewhere in the domain. Using an upwind flux in our
dG formulation preserves this one-sided domain-of-dependence, which is a prerequisite for
the reordering approach.

2. DISCONTINUOUS GALERKIN DISCRETISATION

A discontinuous Galerkin method starts with a variational formulation. We thus parti-
tion the domain into non-overlapping elements {K}, multiply (1) with a function v from
the space of arbitrary piecewise smooth functions V , and integrate by parts over K to get∫

K

(αu− β)v dx−
∫

K

F (u)v · ∇v dx +

∫
∂K

vF (u)v · n ds = 0, ∀v ∈ V.

We seek a solution in a finite-dimensional subspace Vh ⊂ V consisting of functions that
are smooth inside each element, but may be discontinuous over the element boundaries.
Due to the possible discontinuities, we must replace the flux F (uh)v · n with a consistent

and conservative numerical flux function F̂ (a, b,v ·n). This leads to the following discrete
variational formulation: let

aK(uh, vh) =

∫
K

(αuh − β)vh dx−
∫

K

F (uh)v · ∇vh dx +

∫
∂K

F̂
(
uh, u

ext
h ,v · n

)
vh ds (4)
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and find uh such that
aK(uh, vh) = 0, ∀K, ∀vh ∈ Vh. (5)

For the numerical flux F̂ we use an upwind approximation

F̂ (p, pext) = F (p) max(v·n, 0) + F (pext) min(v·n, 0), (6)

for inner and outer values p and pext at element boundaries. Note that there are other
consistent flux approximations are also consistent, but they may not preserve the direc-
tional dependency we rely on to compute a permutation of the unknowns. For instance,
the well-known Lax-Friedrichs flux yields a consistent approximation of the inter-element
fluxes, but creates a bidirectional dependence between all elements.

In the following we assume that our elements K are hexahedrals in a regular Cartesian

grid and choose V
(n)
h = {v : v|K ∈ Qn−1}, where Qn = span{xpyqzr, 0 ≤ p, q, r ≤ n}.

A simple basis for this space is the tensor-product of Legendre polynomials Lk. Thus

V
(1)
h is the space of elementwise constant functions giving a scheme that is formally first

order; V
(2)
h is the space of elementwise trilinear functions, giving a second-order scheme;

etc. Henceforth, dG(n) will denote the discontinuous Galerkin scheme of formal order n
having m = nd unknowns per element in d spatial dimensions.

Substituting the tensor-product Legendre basis functions into (5) and using an appro-
priate Gaussian quadrature rule to approximate the integrals, we end up with a system
of nonlinear equations for the unknown degrees-of-freedom U

GK(U) := ah
K(uh, Lk) = 0, ∀K. (7)

By writing U |K for the unknowns in element K and U |Ω\K for the unknowns outside K
and separating GK into the different terms of (4) and (6), we can write (7) as

MKUK −BK + RK(U |K) + F+
K (U |K) + F−(UΩ\K) = G+

K(U |K) + G−(U |Ω\K) = 0.

If we reorder the unknowns, all degrees-of-freedom on the upwind side of element K will
be known, meaning that G−(U |Ω\K) is a known quantity. The only unknowns in (7) for
each K are therefore the degrees-of-freedom in K.

3. SEQUENTIAL SOLUTION

As explained in the introduction, the key to obtaining a fast (non)linear solver is to
find a reordering p = (p1, . . . , pN) of the elements that renders the system of equations
(7) into a block-triangular form

G+
p1

(Up1)
G−

p2
(Up1) + G+

p2
(Up2)

...
G−

pN
(Up1 , . . . , UpN−1

) + G+
pN

(UpN
)

= 0,
= 0,
...
= 0.

(8)

We therefore consider the directed graph defined by assigning a vertex to each element
Ki and a directed edge for each flux (v ·n)|∂Ki∩∂Kj

between elements. Thus, an edge from
vertex i to vertex j implies that the solution in Kj depends on the solution in Ki. The
task of arranging vertices in a sequence according to their position in a directed graph is
called a topological sort. To see how a suitable sequence can be constructed, note that
pi < pj for any vertex i that can be reached from vertex j by going backwards in the
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graph. By traversing the graph backwards in a depth-first manner, adding vertex j to the
sequence when the search backwards from j has been completed, we obtain a topologically
sorted sequence. Since a depth-first search only visits each vertex once, the topological
sort of a directed graph can be obtained in O(N) time for N vertices.

If the sequence cannot be found by a single depth-first traversal, the graph has at least
one cycle of vertices that can reach any other vertex in the same cycle. Cycles correspond
to groups of elements that are made mutually dependent by a nonzero circulation in
the velocity field v. The degrees-of-freedom in such a group of elements correspond to
a irreducible diagonal block and must be computed simultaneously. Fortunately, cycles
can be detected automatically by performing a forward depth-first search. By lumping
all elements in a cycle into a single vertex, we obtain an acyclic graph where each vertex
corresponds to one or a few elements that form an irreducible block of degrees-of-freedoms.

For flow in porous media, the velocity field is typically computed by solving a pressure
equation. For incompressible flow, the exact velocity field has zero circulation. A simple
argument shows that the same is true for an approximate velocity field computed by a
two-point pressure solver. A mixed finite-element solution, on the other hand, may give
a velocity field with nonzero circulation. In compressible flow, we may also get nonzero
circulation. In our experience, cycles that appear in velocity fields computed by the mixed
finite-element method are small and sparse for incompressible and weakly compressible
flows.

4. NUMERICAL EXAMPLES

In this section we present a few examples to demonstrate that our dG approach gives
efficient and accurate solvers for single-phase and multiphase flow in porous media.

4.1. Steady-State Tracer Distribution. As our first example, we consider the station-
ary distribution of a set of tracers being continuously injected into a reservoir, modelled
by the simple equation

v · ∇cα = 0, cα|∂Ω+ given.

The reservoir model is taken from [Christie and Blunt, 2001], has 220 × 60 × 85 grid
cells, and consists of a smooth shallow-marine Tarbert formation on-top of a fluvial Up-
per Ness formation. A vertical injection well is located in each of the four corner and
a producer is located in the middle. By launching different tracers in each of the four
injectors, we may determine the volumes swept by each injector and use this to delineate
the reservoir into independent flow regions, as shown in Figure 1. The velocity field of
this scenario was computed with a two-point flux approximation, with pressure-driven
injection. The stationary tracer distributions were computed with a second-order discon-
tinuous Galerkin scheme, and the boundaries between the swept volumes were computed
as the 0.5 isosurface of the different tracer saturations.

4.2. Time-of-Flight. In our second example, we show time-of-flight computed in a
quarter five-spot test case in the unit square. The flow is driven by point sources in
the lower left and upper right corners. The permeability and porosity equal 10−6 in
(0.3, 0.7)×(0.3, 0.7) and 1.0 elsewhere. The solutions computed on 100 × 100 elements
with the dG-method are shown in Figure 2 together with a reference solution computed by
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Figure 1. Stationary tracer distributions used to delineate the SPE 10 test case
into independent flow regions. (Left) The four swept volumes in this scenario are
shown in different colours. (Right) By removing one tracer, the intricate surfaces
separating the swept volumes are revealed.

direct integration of time-of-flight along streamlines. To generate the plots the solutions
have been sampled using 10× 10 points in each element.

This seemingly innocent example turns out to be quite difficult to compute using any
finite-difference or finite-volume method. The reason is that the time-of-flight solution
has a large gradient downstream from the impermeable region. This rapid variation is
impossible to capture accurately with polynomial elements, and will generate oscillations
for elements with order higher that one.

Since our solution procedure computes the solution in one element at a time, we are
able to implement a simple adaptive procedure. Clearly non-physical solutions can be
detected by checking if the solution is increasing from inflow to outflow in each element
K. If this is not the case (large) errors can propagate to the next element. To avoid this
situation, we recompute the solution in K with a first-order method on a refined grid of
n×n sub-elements. A computation based on this approach is shown in Figure 2.

4.3. Two-Phase Flow. In our next example we consider (3) for ` = 2, modelling an
oil-water system. The primary unknown is the water saturation s and the flux function
is given by f(s) = s2/(s2 + (1− s)2). Applying a backward Euler temporal discretisation
to (3), we get an equation of the form (1) for each time-step

φ

∆t
sn +∇ ·

(
vf(sn)

)
=

φsn−1

∆t
.

The two-phase model will generally produce discontinuities at interfaces between injected
water and resident oil. Near discontinuities, the dG scheme will tend to produce spurious
oscillations, which can be suppressed by performing a post-processing with a nonlinear
limiter function after each step, see [Natvig and Lie, 2006] for more details. Figure 3
shows a solution of a water injection scenario in Layer 37 of the model from [Christie
and Blunt, 2001]. This layer is part of the fluvial Upper Ness formation characterised
by high contrast and complex channel patterns. The computations are performed with
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Figure 2. Time-of-flight in quarter five-spot with low-permeable region. Con-
tours correspond to [0.075 : 0.15 : 0.875] pore volumes injected. The solution
is computed using (from left to right) streamline integration, dG(3), and adap-
tive dG(3). The figure on the right zooms on the 0.65 contour of dG(3) (red)
in the lower half and the adaptive dG(3) (red) in the upper half, both with the
streamline solution shown as a dashed line.

Figure 3. Two-phase flow in the fluvial Upper Ness formation of the SPE 10
test case. The figure shows (from top-left to bottom-right) the permeability field,
the solutions at time t = 0.2PVI computed using dG(1), dG(2), and dG(3).

a fixed velocity field computed with a mixed finite-element method and saturations have
been computed with dG(1), dG(2) and dG(3) using very long time steps corresponding
to a CFL-number of 2500. The resolution of thin fingers improve with increased order of
accuracy as expected except at the front, where the nonlinear limiter function reduce the
accuracy to second order.

4.4. Three-Phase WAG Injection. In our last example, we consider a water-alter-
nating-gas scenario in a quarter five-spot. Here the primary unknowns are the water and
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gas saturations, sw and sg. To define the flux functions, we introduce the phase mobilities

λw(sw) = s2
w/µw, λg(sg) = (0.1sg + 0.9s2

g)/µg,

λo(sw, sg) = (1− sw − sg)(1− sw)(1− sg)/µo,

where µw = 0.35, µg = 0.012 and µo = 0.8. The two components of the flux function
are fα = λα/(

∑
α λα) for α = w, g. This system has only positive characteristics and is

strictly hyperbolic except for the single point of 100% gas saturation, where the eigenvalues
coincide [Juanes and Patzek, 2004]. Figure 4 shows the time evolution of a WAG injection
cycle starting with the injection of 0.05 pore volumes of water, then 0.05 pore volumes
of gas, etc. Before each injection step, the pressure and velocity fields are recomputed to
account for the change in total mobility. The transport is computed with dG(2) using a
CFL-number of 5000.

5. CONCLUDING REMARKS

In this paper we have demonstrated the capabilities of an implicit discontinuous Galerkin
discretisation for linear and nonlinear transport in porous media. A sequential solution
procedure based on reordering the equations yields a very fast method with the attrac-
tive feature that the runtime scales linearly with the number of elements. In the linear
case, this offers a competitive alternative to streamline methods for delineating reservoirs.
For nonlinear time-dependent problems this scheme yields a nonlinear solver that allows
implicit time-stepping in large multiphase flow computations on desktop computers.

For very large problems, domain decomposition may be used to circumvent the memory
limitations of a single computer. For time-dependent problems, the sequential solution
procedure allows many time steps to be computed in parallel. Neither of these options
have been tested yet.
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Figure 4. Three-phase flow in the smooth Tarbert formation in the 6th layer
of the SPE 10 test case. The figures show (top, right) the permeability field with
high permeability indicated by light shading, (left column) the water saturation
and (right column) the gas saturation in five steps of a WAG cycle. The plotted
contours are [0 : 0.1 : 1] for the water saturation and [0 : 0.05 : 1] for the gas
saturation. The permeability field span values from 1e− 6 to 1e− 12.


