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Abstract. Streamline methods have shown to be effective for reservoir
simulation. For a regular grid, it is common to use the semi-analytical
Pollock’s method to obtain streamlines and time-of-flight coordinates
(TOF). The usual way of handling irregular grids is by trilinear trans-
formation of each grid cell to a unit cube together with a linear flux in-
terpolation scaled by the Jacobian. The flux interpolation allows for fast
integration of streamlines, but is inaccurate even for uniform flow. To
improve the tracing accuracy, we introduce a new interpolation method,
which we call corner velocity interpolation. Instead of interpolating the
velocity field based on discrete fluxes at cell edges, the new method inter-
polates directly from reconstructed point velocities given at the corner
points in the grid. This allows for reproduction of uniform flow, and
eliminates the influence of cell geometries on the velocity field. Using
several numerical examples, we demonstrate that the new method is
more accurate than the standard tracing methods.

1. Introduction

Streamlines, pathlines, and streaklines are convenient tools for describ-
ing and visualizing flow given by an external velocity field q = (qx, qy, qz).
Streamlines are a family of curves s(τ) that are instantaneously tangent to
the velocity vector q at every point

ds

dτ
= q.

Streamlines can be traced for any vector field, although the most common
is that q represents a velocity obtained from the solution of a set of flow
equations. For incompressible flow, streamlines defined at a single instant
do not intersect and cannot begin or end inside the fluid. Streamtubes are
regions bounded by streamlines. Because streamlines are tangent to the
velocity field, fluid that is inside a streamtube must remain forever within
the same streamtube.

A pathline x(t) is the trajectory traced out by an imaginary massless
particle following the flow of the fluid from a given starting point,

(1)
dx

dt
= q(x, t), x(t0) = x0.

A streakline is the locus at a given instance of the positions of all fluid
particles that have gone through a fixed spatial point in the past. In steady
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flow streamlines, streaklines, and pathlines coincide; in unsteady flow they
can be different.

The integration of (1) to obtain particle paths and/or travel times, is
known as particle tracking, for which there exists a rich literature. The
particle tracking literature is primarily concerned with problems where the
velocity field is only known at a finite set of points, either measured or calcu-
lated from a flow model, and interpolation is needed to integrate pathlines.
In computational fluid dynamics, particle tracking has been used for visual-
ization [33, 35, 51, 56, 57]. Velocity interpolation in control-volume mixed
finite-element methods is a related subject to particle tracking and has been
considered in [43]. Within groundwater flow simulation, particle tracking is
used to model contaminant transport [6, 15, 45, 50, 52, 53]. In visualization,
the integration of (1) is usually done numerically using a Runge–Kutta type
solver, whereas in groundwater flow, semi-analytical integration is the most
common.

In the following we regard streamline tracing as a subset of particle track-
ing, since streamlines may be computed by particle tracking if we introduce
the streamline parameter τ as an artificial time variable for which the instan-
taneous velocity field q(x, t) is steady. In this paper we consider streamline
tracing in the context of streamline simulation of flow in hydrocarbon reser-
voirs [3, 7, 32]. In this case, the fluid velocity q is typically given as the
numerical solution of a set of flow equations for q and the fluid pressure p
of the form

cpt +∇ · q = b, q = −a(x)∇p.
The two equations are commonly referred to as the pressure equation and
Darcy’s law, respectively. How the corresponding discrete velocity approxi-
mation is defined, depends on the numerical method:

• For finite-difference methods, the pressure is usually computed at cell
centers, and fluxes can be obtained at cell edges by application of a
discrete form of Darcy’s law [63].

• For finite-element methods, the numerical solution gives a continu-
ously defined pressure approximation given as the sum of the basis
functions for all elements weighted by the corresponding node val-
ues. Although a continuously defined velocity can be obtained from
Darcy’s law, a better strategy is given in [15, 19], where continuous
fluxes are obtained at cell edges.

• Mixed finite-element methods solve for velocity and pressure simul-
taneously, resulting in a more accurate velocity field than for finite
differences and standard finite elements. The continuously defined
velocity is given by the degrees of freedom at the edges and the cor-
responding basis functions [19, 31]; see also [30, 41, 42].

• Finite-volume methods include multi-point flux approximations [1,
20] and control-volume finite-element methods [10, 62]. In these
methods fluxes are computed at cell edges.

In other words, a continuously defined velocity field is obtained only for
the mixed finite-element method. For the other methods one must use an
interpolation scheme to determine the velocity from the discrete fluxes at
the cell edges.
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In reservoir simulation and groundwater flow, the predominant way of
computing streamlines is by use of a semi-analytical technique. In semi-
analytical methods [24, 38, 47, 52], the interpolation of the velocity is simple
enough that analytical integration is possible within each grid cell. As an
example, let us consider the popular method of Pollock [47]. Given an entry
point of a streamline into a grid cell, Pollock’s method starts by mapping the
grid cell onto the unit square (or unit cube in 3D). Each component of the
velocity field is then approximated in reference space by a linear function,
in which case the streamline path in each direction is given as an exponen-
tial function of the travel time. To trace the streamline, Pollock’s method
determines the travel time through the grid block as the minimum time to
exit in each spatial direction, which is given by a logarithmic expression.
Then the travel time is used to compute the exit point and the exit point is
mapped back into physical space to give the entry point into the next cell,
and so on. In groundwater flow and visualization, more complicated interpo-
lation schemes have been used, where numerical integration is needed, using
Euler’s method or higher-order Runge-Kutta methods [6, 12, 45, 46, 53].

Tracing of streamlines for use in flow simulations has been investigated in
[28, 30, 32, 39, 40, 41, 42, 48, 49]. In the current paper we focus on irregular
grids in three spatial dimensions consisting of hexahedral grid cells with
curved surfaces. Streamline tracing may then be performed by a method due
to Prévost et al. [49]. This method is a simplification of work done by Cordes
and Kinzelbach [15], where Pollock’s method is extended to irregular grids.
Each grid cell in physical space P is transformed to a unit cube in a reference
space R using a standard isoparametric trilinear transformation [14]. Next,
the velocity in R is approximated by a linear flux interpolation scaled by an
approximation of the Jacobian determinant of the transformation. Finally,
the streamline segments passing through each cell can be integrated in R
and mapped back to P. Henceforth, we will call this method standard flux
mapping, SFM.

As we shall see, the standard flux mapping cannot reproduce a uniform
flow field on irregular hexahedrons. Uniform flow or almost uniform flow are
important cases to consider, since such flow patterns are likely to occur in
large parts of a hydrocarbon reservoir. For example, if the driving force for
the flow in the reservoir is gravity, and the permeability of the medium is
almost homogeneous, the flow locally is almost uniform in the z-direction of
the reservoir. Reproduction of uniform flow is important if the grid cells are
small compared to the variation of the velocity. Also, the failure to reproduce
uniform flow will produce errors in the interpolated velocity for the SFM
even for nonuniform flow. The error will increase with the irregularity of
the grid cells.

To handle the difficulty associated with the standard flux mapping, we
consider an alternative method, which we call corner velocity interpolation
(CVI). Instead of interpolating the velocity field based on discrete fluxes at
cell edges, we interpolate directly from point velocities given at the corner
points in the grid. This allows for reproduction of uniform flow, and elimi-
nates the influence of the cell geometry on the velocity field. In streamline
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simulation, we usually only know fluxes, so we also present a method for
reconstructing the corner-point velocities in each grid cell from fluxes.

A radically different strategy was recently introduced by Matringe et
al. [41, 42] and Juanes and Matringe [30] for handling irregular grids con-
sisting of triangles and quadrilaterals in 2D. They propose both low and
high-order tracing methods based on the mathematical framework of mixed
finite-element methods and the associated velocity spaces.

The rest of this paper is organized as follows: First we give a short in-
troduction to streamline simulation. Then Section 3 describes the standard
method for streamline tracing on irregular grids. We start with a brief review
of Pollock’s method [47] for streamline tracing on a Cartesian grid. Then a
velocity transformation from physical to reference space is described. Con-
sidering this velocity transformation we discuss the methods of Cordes and
Kinzelbach [15] and Prévost et al. [49] for streamline tracing on irregular
grids. A recent improvement of this standard flux mapping due to Jimenez
et al. [28] is also discussed. The latter method is here denoted by extended
flux mapping (EFM). Finally, the extension of these methods to 3D will
motivate the corner velocity interpolation method (CVI).

In Section 4, the CVI method is described first for the 2D case and then
extended to 3D. We use bilinear or trilinear interpolation of the velocities
at the corners of the cell [11, 57]; an important part of the method is the
reconstruction of the corner velocities from the given fluxes.

Finally, in Section 5 the three methods (SFM, EFM, and CVI) are com-
pared by numerical experiments for different grids and flow fields in 3D. We
consider uniformly and nonuniformly refined grids, including random hexa-
hedral, pyramidal, and a simplistic real field grid. The flow fields may be
analytical solutions of the pressure equation, including uniform, combined
uniform and nonuniform, and pure nonuniform flow; or, realistic flow fields
where analytical solutions are not available. Further, the CVI method is
also tested for use with half-edge fluxes in 2D.

2. Background: Streamline Simulation

Multiphase flow in porous media is usually modeled by a coupled set of
differential equations. Using the so-called fractional flow formulation, the
flow of e.g., two phases can be described by a parabolic equation for the
fluid pressure p (neglecting for simplicity gravity and capillary forces)

(2) ct∂tp+∇ · q = bp,

where q is the total velocity (sum of phase velocities), ct is the total com-
pressibility, and bp is a source term. Equation (2) is linked to a transport
equation for the fluid saturation S

(3) φ∂tS +∇ ·
(
qf(S,x)

)
= bs,

through Darcy’s equation for the velocity,

(4) q = −λ(S,x)∇p.

Here, φ, λ, f , and bs denote porosity, total mobility, fractional flow function,
and source terms, respectively.
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The basis for any streamline simulation method is a sequential splitting
of the coupled pressure and saturation equations, in which one first fixes the
saturation and solves the pressure equation (2) and Darcy’s law (4). The
pressure and velocity fields are then used as parameters while advancing the
transport equation (3) a given time step. Finally, the new saturation field
is used as input parameter for a new pressure solution step, and so on.

In reservoir simulation, the streamline parameter τ is called time-of-flight,
since it can be interpreted as the travel time of a neutral particle along
the streamline. Together with the bi-stream functions ψ and χ, for which
ρq = ∇ψ ×∇χ, the time-of-flight τ forms an alternative set of coordinates
for three-dimensional space [4, 13, 32]. Here, the effective density ρ reduces
to ρ ≡ 1 for incompressible flows, see [13]. The Jacobian of the transforma-
tion from physical coordinates (x, y, z) to time-of-flight coordinates (τ, ψ, χ)
simply equals φ. Using this, and the fact that q is orthogonal to ∇ψ and
∇χ, allows us to simplify the directional gradient along q as follows:

q · ∇ = φ
∂

∂τ
.

This operator identity is a key point in any streamline method, allowing the
multidimensional transport equation (3) to be transformed to a family of
one-dimensional transport equations along streamlines (which are straight
lines in (τ, ψ, χ) space),

(5) ∂tS + ∂τf(S) = bs − f(S)∇ · q.
The last term on the right-hand side accounts for compression or expansion
of fluids in the case of compressible flows. For incompressible flows, ∇ · q =
0 outside wells. Solving the family of one-dimensional problems (5) on a
representative set of streamlines is often much faster than solving (3) over
a grid in physical space.

Streamline simulation has grown in popularity in the last years due to
its ability to deliver fast and accurate simulation of large reservoir models
using simplified flow physics [32, 58]. However, current streamline simulators
are also capable of including gravity and capillary effects by the means
of operator splitting [8, 22, 23] and simulating complex flow physics like
miscibility [29, 61], three-phase [26, 37] and compositional flow [16, 59], and
dual-porosity models [17, 60].

3. Streamline Tracing on Irregular Grids

In this section we will describe the standard method that is used in current
commercial streamline codes for tracing streamlines on irregular grids. The
method relies on a trilinear mapping from physical space to a reference space,
linear interpolation of each velocity component, and analytical solution of
the streamline equation (1) within each grid cell. We will then show that
the method, and its recent extension due to Jimenez et al. [28], are unable to
correctly reproduce uniform flow on arbitrary irregular grids in three spatial
dimensions.

3.1. Introduction: Tracing on Cartesian Grids. To motivate the de-
scription of streamline tracing on irregular grids, we start by discussing the
basic version on Cartesian grids, which is commonly referred to as Pollock’s
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Figure 1. Streamline tracing on a unit square.

method in the literature. As we saw in the introduction, Pollock’s method
builds a streamline as a series of (small) line segments that each cross a grid
cell in physical space. The segments are constructed such that the exit point
of the streamline in one cell is the entrance point in the next cell. For the
development in this paper, it is sufficient to consider the method in the unit
square (or unit cube in 3D).

Pollock’s Method. The method will be presented for 2D; the extension to
3D should be obvious. Linear interpolation of the edge fluxes is then used
to define a velocity field (see Figure 1)

(6) qI(x, y) ≡
[
Fx0(1− x) + Fx1x
Fy0(1− y) + Fy1y

]
, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Here the superscript I refers to the fact that the velocity field is interpolated
based on fluxes given at the edges, as shown in Figure 1.

Having defined a velocity field, the streamline s(t) = [x(t), y(t)] is found
by integrating the system of ODEs in (1):

(7)


dx

dt
= qIx(x), x(0) = x0,

dy

dt
= qIy(y), y(0) = y0,

where qIx and qIy are the x- and y-components of qI. Since qI
x depends only on

x, and qIy depends only on y, the streamline can be found analytically [47]:
Assuming Fx0 6= Fx1 and Fy0 6= Fy1, integration of each of the equations in
(7) yields two separate expressions for the travel time along the streamline
as a function of x and y, respectively,

tx =
1

Fx1 − Fx0
ln
(
qIx(x)
qIx(x0)

)
,(8)

ty =
1

Fy1 − Fy0
ln

(
qIy(y)
qIy(y0)

)
.(9)

By inserting x = 0 and x = 1 in (8) and y = 0 and y = 1 in (9), we determine
the times tx0, tx1, ty0, and ty1, respectively, when the streamline crosses the
corresponding straight lines. (Notice that these times may be negative or
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infinite). From these four travel times we can easily determine the exit time
te when the streamline leaves the unit square. The exit point xe is then
found by inserting te in (8) and (9).

Applying Pollock’s Method in Reservoir Simulation. For flow in porous me-
dia, the flow velocity q is obtained by solving (2) and (4) using e.g., a flux
continuous scheme [1] to provide fluxes on each grid cell edge. In order to
obtain particle velocities, these fluxes should be divided by the porosity. We
assume for the moment that the grid cells can be any quadrilateral. The
fluxes will be used to define a velocity field qI that approximates q.

The flux is the integral of the normal component of the velocity field
across an edge. We will require that qI reproduces the given fluxes,

(10) FE =
∫

E
qI · νEds,

where the subscript E refers to the edge, FE is the flux over the edge, and
νE is a unit normal to the edge. At the common edge between two adjacent
grid cells, the absolute value of the flux is the same seen from both cells.
By defining νE suitably, we can assure that the sign of the flux is also the
same. Thus only one flux is needed per cell edge.

We next assume that the normal component (qI · νE) is constant along a
given edge. Then (10) becomes

(11) FEi = (qI|Ei · νEi) |Ei|, i = 1, 2, 3, 4,

where Ei is one of the four edges, qI|Ei denotes qI evaluated at a point on
the edge, and |Ei| is the length of the edge. Using this, combined with (10)
for a unit square, gives

qIx(0, y) = Fx0, qIy(x, 0) = Fy0,

qIx(1, y) = Fx1, qIy(x, 1) = Fy1,

where qIx and qIy are the x- and y-components of qI, respectively. We are now
in a position to introduce the velocity interpolation (6) and use Pollock’s
method to obtain the streamlines, as described above.

Finally, note that the interpolation step is not always necessary since (6)
can be obtained directly when solving the pressure equation with a mixed
finite-element method using the lowest-order Raviart-Thomas (RT0) ele-
ments [9].

3.2. Streamline and Velocity in Curvilinear Coordinates. Stream-
line tracing on irregular grid cells involves introducing a curvilinear coordi-
nate system [36] for each grid cell. In this section we describe the coordinate
transformation and how to express the velocity in curvilinear coordinates.
This transformation of coordinates and velocity will be fundamental for the
development of the CVI method. Additionally, it will be used to derive the
SFM and EFM methods.

Consider a quadrilateral grid cell in physical space P given by the four
corner points xi = [xi, yi], i = 1, . . . 4. By using the bilinear isoparametric
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Figure 2. Transformation of a streamline and velocity from
reference space R to physical space P.

transformation [14, 15, 49]

(12) x(x̂) ≡
4∑

i=1

xiφi(x̂, ŷ),

each grid cell is transformed into a unit square in the reference space R.
Here x̂ = [x̂, ŷ] is a point in R; x(x̂) = [x(x̂, ŷ), y(x̂, ŷ)] is a point in physical
space P; and φi(x̂, ŷ), i = 1, . . . 4, are the standard bilinear shape functions
on the unit square.

Later we will compute normal vectors to the cell edges. In order to obtain
a well-defined direction of these normals we require that xi, i = 1, . . . , 4, are
the logically bottom-left, bottom-right, top-left, and top-right corner of the
quadrilateral, respectively.

A Velocity Transformation. If we can describe the velocity in bilinear coor-
dinates, the streamline can be integrated in bilinear coordinates, and since
each grid cell is a unit square in R, Pollock’s method is applicable. To ob-
tain the streamline s(t) in P, the bilinear transformation is applied to the
streamline ŝ(t) in R; see Figure 2. From this we can use the chain rule to
deduce the velocity in R,

(13) q ≡ ds

dt
=
dx(ŝ(t))

dt
=
dx

dx̂

dŝ

dt
= Jq̂.

Here q̂ = dŝ/dt is the velocity in R, q is the velocity in P, and J = dx/dx̂ is
the Jacobian matrix of the transformation. Thus, the transformed velocity
is given by

(14) q̂ = J−1q.

Note that the Piola transformation [9, 30] of a vector field given by

(15) q̂P = (det J)J−1q

is constructed so that fluxes are preserved in reference space. By comparing
(14) and (15) we see that q̂P = (det J)q̂.
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3.3. Extending Pollock’s Method to Irregular Grids. Tracing on ir-
regular grids is done in reference space R using (14). The Jacobian matrix
is given by

(16) J =


∂x

∂x̂

∂x

∂ŷ
∂y

∂x̂

∂y

∂ŷ

 =
[
ux uy

]
,

where ux and uy are the base vectors of the bilinear coordinates. Thus, the
inverse of the Jacobian matrix can be expressed in terms of contravariant
vectors, nx and ny, as

(17) J−1 =
1

det J

[
nT

x

nT
y

]
,

where

(18) nx = [∂y/∂ŷ,−∂x/∂ŷ]T, and ny = [−∂y/∂x̂, ∂x/∂x̂]T.

The contravariant vectors, nx and ny, are normal vectors to edges of the
quadrilateral in physical space P. These vectors are generally not constant,
but when evaluated at a particular edge of the quadrilateral, they are con-
stant; and the length of these vectors is then equal to the length of the edge.
It follows from (14) and (17) that,

(19) q̂ =
1

det J

[
q · nx

q · ny

]
.

Next, we approximate q and q̂ by qI and q̂I, respectively, based on the
given fluxes in P. Still using (11) for qI, and recognizing the dot products
in (19) as fluxes since nE = νE |E|, we can define q̂I by the use of a linear
flux interpolation,

(20) q̂I =
1

det J

[
Fx0(1− x̂) + Fx1x̂
Fy0(1− ŷ) + Fy1ŷ

]
.

This expression is the basis for the standard flux-mapping (SFM) method
[49] and the extended flux-mapping (EFM) method of Jimenez et al. [28].
In the SFM method [49], the bilinear Jacobian determinant is replaced by a
constant value in order to make analytical integration possible. Hence,

(21) q̂I
SFM =

1
det Jm

[
Fx0(1− x̂) + Fx1x̂
Fy0(1− ŷ) + Fy1ŷ

]
,

where Jm = J(0.5, 0.5) is the Jacobian matrix evaluated at the midpoint
of the reference element. In [43] it was shown that (20) is exact for uniform
flow in 2D. Since the Jacobian determinant only scales the absolute value of
the velocity in (21), SFM reproduces the shape of the streamlines exactly
for uniform flow. However, approximating the Jacobian determinant by a
constant introduces errors in computing time-of-flight, as noted by Jimenez
et al. [28]. They demonstrated that by using a pseudo time-of-flight τ , the
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velocity in (20) can be integrated analytically by rewriting (20) as

(22)


dx̂

Fx0(1− x̂) + Fx1x̂
=

dt

det J
= dτ,

dŷ

Fy0(1− ŷ) + Fy1ŷ
=

dt

det J
= dτ.

Then Pollock’s method is used to find x̂(τ) and ŷ(τ) and the exit pseudo
time τe. To find the real exit time, te, we integrate the determinant of the
Jacobian

(23) te =
∫ t(τe)

0
dt =

∫ τe

0
det J(x̂(τ), ŷ(τ))dτ.

Thus, the EFM method is characterized by the velocity field q̂I
EFM given in

(20), where the Jacobian determinant is evaluated exactly.

3.4. Extending the SFM and EFM Methods to 3D. We consider an
irregular grid consisting of hexahedral grid cells with fluxes computed on
the faces of each cell. Each hexahedron in physical space P will be defined
as a one-to-one trilinear map [14, 15, 49] of a unit cube in a reference space
R. The trilinear map is given by

(24) x(x̂) =
8∑

i=1

xiφi(x̂, ŷ, ẑ),

where xi, i = 1, . . . , 8 are the coordinates of the eight corners defining
the grid cell, and φi(x̂, ŷ, ẑ), i = 1, . . . , 8 are the standard trilinear shape
functions on the unit cube. Note that these hexahedrons generally have
curved surfaces.

We remark that the mapping gives a natural definition of the faces of the
hexahedron in physical space. We define general x-, y-, and z-surfaces in P
by

sx(x̂) = {x(x̂, ŷ, ẑ) : 0 ≤ ŷ ≤ 1, 0 ≤ ẑ ≤ 1} ,
sy(ŷ) = {x(x̂, ŷ, ẑ) : 0 ≤ x̂ ≤ 1, 0 ≤ ẑ ≤ 1} ,
sz(ẑ) = {x(x̂, ŷ, ẑ) : 0 ≤ x̂ ≤ 1, 0 ≤ ŷ ≤ 1} .

(25)

For the primary faces, sx(0), sx(1), etc., we will also use the notation Sx0,
Sx1, respectively.

The velocity in physical space P is related to the velocity in reference
space R by (13). The Jacobian matrix of the transformation is written,

(26) J =



∂x

∂x̂

∂x

∂ŷ

∂x

∂ẑ
∂y

∂x̂

∂y

∂ŷ

∂y

∂ẑ
∂z

∂x̂

∂z

∂ŷ

∂z

∂ẑ

 =
[
ux uy uz

]
.
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Here ux, uy, and uz are the covariant base vectors of the trilinear coordi-
nates. It follows that the inverse of J can be expressed in terms of con-
travariant vectors nx, ny, and nz such that

(27) J−1 =
1

det J

nT
x

nT
y

nT
z

 ,
where

nx = uy × uz, ny = uz × ux, nz = ux × uy.(28)

Therefore,

(29) q̂ = J−1q =
1

det J

q · nx

q · ny

q · nz

 .
As in the 2D case, the EFM method of Jimenez et al. [28] is based on (29)
in combination with a linear flux interpolation,

(30) q̂I
EFM =

1
det J

Fx0(1− x̂) + Fx1x̂
Fy0(1− ŷ) + Fy1ŷ
Fz0(1− ẑ) + Fz1ẑ

 ,
where Fx0 is the given flux over the face Sx0 in P corresponding to x̂=0, etc.
We will later use the normal vectors at the six primary faces defined as,

nx0(ŷ, ẑ) ≡ nx(0, ŷ, ẑ), nx1(ŷ, ẑ) ≡ nx(1, ŷ, ẑ),(31)

ny0(x̂, ẑ) ≡ ny(x̂, 0, ẑ), ny1(x̂, ẑ) ≡ ny(x̂, 1, ẑ),(32)

nz0(x̂, ŷ) ≡ nz(x̂, ŷ, 0), nz1(x̂, ŷ) ≡ nz(x̂, ŷ, 1),(33)

where (x̂, ŷ, ẑ) ∈ [0, 1]× [0, 1]× [0, 1].
In the SFM method by Prévost et al. [49], the Jacobian in (30) is evaluated

at the midpoint of the unit cube.

3.5. Reproduction of Uniform Flow. By uniform flow we refer to flow
given by a constant velocity field q. Obviously, uniform flow leads to straight
and parallel streamlines, and therefore the time-of-flight is equal at all points
having the same distance from the inflow boundary.

In 2D, the linear flux interpolation used by EFM is exact for uniform
flow, as shown in [43]. However, this is not the case in 3D: in [43] it was
shown that the flux of a uniform flow field will vary quadratically. This
might lead one to believe that replacing the linear interpolation in (30) with
a quadratic, would solve the problem.

The difficulty with any flux interpolation can be seen from the following
argument: Consider for instance the surface Sx0. A normal vector nx0 to
this face at x(0, ŷ, ẑ) is given in (31). The absolute value of nx0 equals
the surface Jacobian, which in the case of planar faces is constant only for
parallelograms. For non-planar faces the direction of the normal vector is
not constant either. By inserting x̂=0 in (29) and (30) we see that both
SFM and EFM use the following approximation

(34) q · nx0 = Fx0.



12 H. HÆGLAND, H. K. DAHLE, G. T. EIGESTAD, K.-A. LIE, AND I. AAVATSMARK

q1

q3

q2

q4

Fx0

Fy0

Fx1

Fy1

Figure 3. Reconstructing velocities from fluxes in 2D

For uniform flow, q is constant but nx0 will generally not be a constant, as
noted above. The normal vector in (34) cannot change at a fixed point, so in
effect we will trace the streamline using a velocity q̃ such that q̃ ·nx0 = Fx0,
and q̃ compensates for the fact that nx0 is not constant. Hence, the tracing
velocity q̃ will depend on the normal vector nx0, or in other words, depend
on the geometry of the cell. Therefore uniform flow cannot be reproduced.

4. Corner Velocity Interpolation

In the previous section we described how the SFM and the EFM methods
fail to reproduce uniform flow on e.g., grids with nonplanar faces. To rem-
edy this problem, we will propose a different velocity interpolation scheme,
which we will denote corner velocity interpolation (CVI). For simplicity, the
method will first be introduced in 2D and then extended to 3D in Section 4.2.

4.1. Interpolation in 2D. As for the SFM and EFM methods introduced
in Section 3.3, we will formulate the CVI method using a cell-by-cell integra-
tion in the unit cube in reference space R. However, the method may also
be used to integrate streamlines directly in physical space; see [25] for more
details. To formulate the CVI method, we start with the relation (19) for
the velocity in R, where the unknown quantity is the velocity q in P. We
approximate q by a bilinear interpolation of the velocities qi at the corners
xi, i = 1, . . . , 4,

qI
CVI(x(x̂, ŷ)) ≡

4∑
i=1

qiφi(x̂, ŷ).(35)

The corner velocities qi will be reconstructed from the given fluxes, such
that qI

CVI is exact for uniform flow. This means that all qi will be equal if
q is constant.

Hence the CVI method is characterized by the following velocity interpo-
lation in R,

(36) q̂I
CVI ≡ J−1qI

CVI.

Reconstruction of Corner Velocities. We consider the cell shown in Figure 3.
The four fluxes Fi, will be given on the edges Ei for i = x0, x1, y0, y1,
and the normal vectors are defined in (18). Note that nx(x̂, ŷ) = nx(x̂)
and ny(x̂, ŷ) = ny(ŷ). Hence, we can define nx0 = nx(0), nx1 = nx(1),
ny0 = ny(0), and ny1 = ny(1), respectively.
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Figure 4. Reconstructing velocities from fluxes in 3D

The corner velocities qi, i = 1, . . . , 4, will be solutions of 2 × 2 linear
systems on the form

(37)
{

qi · nEx(i) = FEx(i),
qi · nEy(i) = FEy(i),

i = 1, . . . , 4.

Here Ex(i) and Ey(i), i = 1, . . . , 4, refer to edges in the x- and y-direction,
respectively, adjacent to corner xi. This means that for q1, we get

(38)
{

q1 · nx0 = Fx0,
q1 · ny0 = Fy0,

since Ex0 and Ey0 are adjacent to corner x1. The systems (37) are well-
conditioned as long as the quadrilateral does not degenerate. If the fluxes
have been computed exactly for a uniform flow field q, then qi = q.

Note that (37) implies that

(39) qI
CVI(Ei) · ni = Fi, i = x0, x1, y0, y1,

where qI
CVI(Ei) denotes qI

CVI evaluated at a point on edge Ei. Hence, since
the length of ni is equal to the length of Ei, qI

CVI will reproduce the given
edge fluxes.

4.2. Extension to 3D. We approximate q in (29) by a trilinear interpola-
tion of the velocities qi at the corners xi, i = 1, . . . , 8,

(40) qI
CVI ≡

8∑
i=1

qiφi(x̂, ŷ, ẑ).

Reconstructing Corner Velocities. Consider the cell in Figure 4. The six
fluxes Fi will be given on the faces Si for i = x0, x1, y0, y1, z0, z1, respec-
tively. The corresponding normal vectors ni are defined in (31).

The flux integral of a velocity field q over the face Si can be transformed
to a double integral on a face of the unit cube in R using the trilinear
transformation:

(41) Fi =
∫ 1

0

∫ 1

0
q · nidαdβ, i = x0, x1, y0, y1, z0, z1,
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since the norm of ni is equal to the surface Jacobian. If q is constant, we
get,

(42) Fi = q ·
∫ 1

0

∫ 1

0
ni(α, β)dαdβ = q · n̄i, i = x0, x1, y0, y1, z0, z1,

where n̄i, defined by the above equation, is given by a simple analytic ex-
pression, see e.g., [1]. Thus, in order to reproduce a uniform flow field, the
corner velocities qi, i = 1, . . . , 8, will be solutions of 3× 3 linear systems on
the form

(43)


qi · n̄Sx(i) = FSx(i),
qi · n̄Sy(i) = FSy(i),
qi · n̄Sz(i) = FSz(i),

i = 1, . . . , 8.

Here Sx(i), Sy(i), and Sz(i), i = 1, . . . , 8, refer to faces in the x-, y-, and
z-direction, respectively, adjacent to corner xi. That is, for q8 we get

(44)

 q8 · n̄x1 = Fx1,
q8 · n̄y1 = Fy1,
q8 · n̄z1 = Fz1.

Now, qI
CVI and q̂I

CVI are given by (40) and (36), respectively. As opposed to
SFM and EFM, each component of the interpolated velocity field q̂I

CVI is a
function of all three variables x̂, ŷ, and ẑ. Therefore, analytical integration
of q̂I

CVI is generally not possible.
Note that numerical integration of a velocity in R will not give the exact

exit point from the cell, unless the last integration step ends on the cell
boundary. Generally, interpolation is needed to determine the exit point
[46].

4.3. Comparison of SFM, EFM, and CVI. Before summing up, let us
compare the expressions of the EFM and CVI for the velocity field in 2D
physical space. From Section 3.3 we know that

(45) q̂I
EFM =

1
det J

[
Fx0(1− x̂) + Fx1x̂
Fy0(1− ŷ) + Fy1ŷ

]
.

Furthermore, multiplication by J gives

(46) qI
EFM = Jq̂I

EFM =
1

det J

[
k1x̂ŷ + k2x̂+ k3ŷ + k4

k5x̂ŷ + k6x̂+ k7ŷ + k8

]
,

for certain coefficients ki, i = 1, . . . , 8, depending on the corners xi, i =
1, . . . , 4, and the edge fluxes Fi, i = x0, x1, y0, y1. Note that for incompress-
ible flow (for which Fx0−Fy1 +Fy0−Fx1 = 0), both k1 and k5 vanish. Some
manipulations show that

(47) qI
EFM =

1
det J

4∑
i=1

(detJ(xi))qiφi(x̂, ŷ),

where qi, i = 1, . . . , 4, are the corner velocities of the CVI method. Thus, the
corner velocities for the CVI method and the EFM method are the same. It
then follows that for parallelograms, where the determinant of the Jacobian
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J is constant, the CVI and EFM are identical. Also, since the Jacobian
determinant is bilinear, it can be written as

(48) det J =
4∑

i=1

(detJ(xi))φi(x̂, ŷ).

For a uniform flow field q, we have, as noted after (38), that qi = q.
Therefore, it follows from (48) and (47) that qI

EFM = q. (Of course, by
construction, the CVI method is also exact for uniform flow.) Equation
(47) can only be extended to 3D for parallelepiped cells, since the corner
velocities in 3D are determined from the average normals, n̄i. The same is
true for (48), since the Jacobian in 3D is not trilinear.

So far, we expect the main advantage of the CVI method to come with its
extension to 3D. The CVI method is the only method that can reproduce
uniform flow on irregular grids in 3D. In 2D, all the methods reproduce
correct streamline paths for uniform flow, but only EFM and CVI reproduce
the time-of-flight exactly. In the next section we demonstrate that CVI is
the only method that converges for nonuniform grid refinements. We also
show how the CVI method can be adapted to use half-edge fluxes. When
the flow equations are solved by an MPFA method [1], half-edge fluxes are
computed, and hence, more information about the velocity field is available.
A disadvantage of CVI is that numerical integration must be used, whereas
the EFM and SFM use analytical integration, which is faster.

5. Numerical Experiments

In this section we compare the three methods, SFM, EFM, and CVI with
respect to accuracy in producing both streamline paths and time-of-flight.
Moreover, we will discuss their relative computer efficiency.

Errors in a streamline tracing method may be classified in several cate-
gories. First, there may be errors in the computed velocity field or in the
computed fluxes that are used as input data. This will be the case in Sec-
tion 5.4, where we present results on two quarter-five spot configurations;
on the unit cube and for a simplified real field model. The other numerical
experiments however, consider only velocity fields with analytic representa-
tions to eliminate errors due to approximate velocities. For such velocity
fields, the streamlines can be calculated analytically or numerically to any
desired accuracy. These exact streamlines will then be used to measure the
errors in the different tracing methods.

Disregarding round-off errors in e.g., reconstruction of the corner veloci-
ties from fluxes, the remaining errors may come from the following sources

• Errors in the transformation of the velocity from P to R.
• Errors in the interpolation in R. These are related to:

– assumptions on the normal component of the velocity at cell
edges, or

– the interpolation method (linear/bilinear/trilinear).
• Errors in the integration due to:

– the evaluation of the Jacobian determinant, or
– numerical integration of the velocity, or
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Figure 5. Error of the method

– interpolation to find the streamline exit points in the numerical
integration.

These errors may combine or cancel each other at different parts of a given
streamline. Due to the number of different error sources, and since the errors
may cause the computed streamline to oscillate around, or diverge away
from the true streamline, it is generally difficult to evaluate the accuracy
and efficiency of a tracing method.

Error of the Tracing Method. Consider the exact streamline s(t;xj) and an
approximate streamline sh(t;xj) starting at the common point xj at t = 0,
see Figure 5. The length of the exact streamline at time t is given by

(49) L(t) =
∫ t

0

∣∣∣∣ds(t;xj)
dt

∣∣∣∣ dt.
The streamlines are traced until they reach the outflow boundary of the
physical domain. Let T be the time-of-flight coordinate of the streamline
that first arrives at a boundary. We choose to evaluate the error in the
approximate streamline by (see [35, 46]):

(50) εj(T ) ≡ ‖s(T ;xj)− sh(T ;xj)‖
L(T )

,

where ‖ · ‖ denotes Euclidean distance. This error measures the error per
unit length in both streamline shape and time-of-flight.

The average error for a given method on a given grid for a number of
starting points xj , j = 1, . . . , Ns, will be computed as

(51) ε̄ =
1
Ns

Ns∑
j=1

εj

Random Grids. In several of the test cases, irregular grids of hexahedral cells
will be used. We start with a rectangular grid of nx × ny × nz uniformly
partitioned grid cells. To obtain an irregular, randomly perturbed grid, each
corner point in the uniform grid is perturbed by up to p percent relative to
the grid cell size. Note that when these relative perturbations are retained
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for all refinements of the grid, these grids are referred to as rough grids.
Refer to [34] for more details.

CVI Integration Method. To compute streamline paths, we have used the
fourth-order, explicit Runge-Kutta solver in Matlab, ode45 [55]. This solver
is based on the Dormand–Prince (4,5) pair [18], which uses six function
evaluations per time step. The equation solved for each grid cell is

(52)
dŝ

dt
= q̂I

CVI, ŝ(0) = ŝ0.

Since this is a method with step size control, we can choose a relative toler-
ance δr and an absolute tolerance δa. In each time step, the solver estimates
the local error e = [e1, e2, e3] in the solution ŝ = [y1, y2, y3]. This error
must be less than or equal to the acceptable error, which is a function of the
specified relative and absolute tolerances

(53) |ei| ≤ max(δr|yi|, δa), 1 ≤ i ≤ 3.

In the following we choose δa = 10−8 and use 10−8 ≤ δr ≤ 10−3. If the time
step is too large according to (53), the step is rejected, a smaller time step
is computed, and a new set of function evaluations is needed. If the error
is much smaller than the acceptable error, it is likely that the time step is
unnecessarily small. The current step is therefore accepted and the next
integration step is computed with a larger time step.

Generally, the last time step in a cell does not end on the cell boundary.
Hence, interpolation is needed to determine the exit point [46]. The inter-
polation to find the exit point uses a fifth order Hermite polynomial [54, 55]
and a Newton iteration.

Finally, it is important to choose a good initial step size to avoid an
excessive number of function evaluations [6]. For our purposes, we will not
go into this topic, but assume that a good initial step has been found. This
is done by picking an initial step that is too large for the given tolerance δr,
and letting the solver iterate until an acceptable step is found.

It is also possible to integrate streamlines directly in physical space based
on CVI. However, using a higher-order Runge–Kutta method like ode45 di-
rectly in physical space will generally be computationally expensive, since
these methods require the velocity to be evaluated in the interior of each
cell. At such points, the velocity is only given in reference coordinates and
a velocity evaluation thus requires an inverse bilinear/trilinear transforma-
tion that is quite computationally expensive. In [25], we therefore suggest
an alternative method based on a simple Euler predictor-corrector scheme
that only requires velocities at cell boundaries in combination with a grid
refinement scheme.

Reference Streamlines. For comparing the tracing methods to an analytical
solution, the exact streamline is computed using ode45 in Matlab with δr =
10−12 and δa = 10−12. The solution domain and the velocity is mapped to
a reference element to simplify detection of domain boundaries.
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Figure 6. (Case 1, uniform flow). Logarithm of error rela-
tive to the degree of irregularity of cells. Top: log10(pk) =
−4,−3, . . . , 1. Bottom: pk = 10, 20, . . . , 60.

5.1. Uniform Flow on Random Grids. We consider first four test cases
for uniform flow on random grids using given constant velocity fields. Unless
stated otherwise, the relative tolerance for the numerical integration in the
CVI method is either δr = 10−3 or δr = 10−8, giving two methods denoted
CVI3 and CVI8, respectively. The fluxes are computed analytically (to
machine precision).

Case 1: Perturbed Grids. For the first test we consider a uniform flow field
q = [1, 1, 1]T, and a base 10 × 10 × 10 Cartesian grid partition of the unit
cube. The simulation will be performed on two series of perturbed grids,
for which each vertex of the grid is moved a distance of up to pk percent
relative to the h = 0.1 grid spacing (i.e., on random grids with a pk percent
perturbation as defined in the previous subsection). For each grid and each
tracing method, streamlines are traced from 100 random points in the front
lower-left grid cell. The results of the test are shown in Figure 6. For this,
and all subsequent plots, we have plotted the (base 10) logarithm of the
average error given in (51).

Note that for a constant velocity field the Runge-Kutta solver will only
need a single time step for each cell independent of the value specified for δr.
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Figure 7. (Case 2, uniform flow). Logarithm of error rela-
tive to uniform grid refinement.

Thus, for velocity fields that are uniform or nearly uniform in a cell, we
cannot assign any particular interpretation to the error tolerances used in the
CVI method. However, since the velocity of the CVI method is integrated
in reference space R, this velocity will not be uniform in a cell even if
the physical velocity field is uniform, unless the Jacobian matrix of the
transformation is constant (i.e., the cells tend to parallelepipeds).

Figure 6 shows that for small grid perturbations the errors of the CVI
methods may be below their prescribed error tolerances, indicating that the
velocity field in R is also uniform. As we reach a 1% perturbation, we begin
to see the effect of the chosen relative tolerances for the CVI method. The
results indicate that the error for the CVI method can be made arbitrarily
small by decreasing δr and δa.

Case 2: Uniform Refinement. For the second test we consider the error
with respect to uniform grid refinement. We still consider a flow field q =
[1, 1, 1]T. Grid G0 consists of one grid cell and is a 50% random perturbation
of the unit cube. Grid Gk for k = 1, 2, . . . , 6 will be a trilinear map (see
Section 3.4) of a uniform 2k × 2k × 2k partition of the unit cube in R to
the cell represented by G0, see Figure 8 (left). The grids Gk will thus be
refinements of G0 and asymptotically tend to a parallelepiped grid.

Streamlines are traced from 100 random points in the front lower-left grid
cell of the finest grid (G6). The average error for grid Gk, k = 2, . . . , 6, is
shown in Figure 7.

We observe that the CVI method is both more accurate and converges
faster than EFM and SFM. For an 8×8×8 refinement (G3), EFM and SFM
have an error of approximately 10−3. The same accuracy is achieved for
the initial grid G0 (not shown in the plot) for the CVI3 method. For the
given velocity field, the streamlines for EFM and SFM on grid G3, are traced
through 21 cells. Consequently, SFM and EFM have to trace approximately
21 cells to achieve the same accuracy that CVI3 obtains on a single cell.

Moreover, we observe that the errors for the CVI methods are almost
independent of the tolerance for Gk, k ≥ 3. The reason is that as the
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Figure 8. Grids for the first refinement level (G1) in Case 2
(left) and Case 3 (right). Note that the base grid G0 is dif-
ferent for the two figures, and also only internal grid points
are perturbed for Case 3, i.e., the central corner in the figure.
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Figure 9. (Case 3, uniform flow). Logarithm of error rela-
tive to nonuniform grid refinement.

grid is refined and the grid cells tend to parallelepipeds, the velocity field
in reference space also becomes approximately uniform, and the numerical
integration will need only one time step for any δr.

Case 3: Nonuniform Refinement. The setup will be the same as for Case 2,
except that the refinement now is random. At each refinement level, the
grids will be a 50% perturbation of a uniformly refined grid, see Figure 8
(right). The average error for grid Gk, k = 2, . . . , 6 is shown in Figure 9.
(The choice of a nonuniform refinement may seem strange, but is in fact
what one will use for real field cases when trying to approach the resolution
of an underlying geomodel, which will typically consist of highly irregular
grid cells modeling complex geological structures.)

For this case, the velocity in reference space will not become uniform at
the same rate as for the uniform refinement. Due to the nonlinearity of the
velocity field in R, the errors of the CVI method cannot be reduced further
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Figure 10. (Case 4, uniform flow). Logarithm of error rel-
ative to length of streamline.

than the prescribed tolerances used in the numerical integration; i.e., 10−3

for CVI3 and 10−8 for CVI8, respectively. The errors are therefore almost
independent of the grid spacing. To increase the accuracy of CVI, one must
select a lower tolerance δr, which implies an increased number of integration
steps. The situation is quite different for the SFM and EFM methods: Here
the horizontal curves indicate that these methods do not converge as the
grid is refined!

Case 4. In this test we consider error accumulation due to the length of the
streamline and the number of cells traversed. For this case we use the flow
field q = [1, 0, 0]T. Grid Gk for k = 0, 1, . . . , 4 will be a 50% perturbation of
a 3 · 2k × 3× 3 partition of the parallelepiped [0, 2k]× [0, 1]× [0, 1]. Twenty
streamlines are traced, each with a different random starting point in the
central-left cell of each grid. Then the number of cells traversed for a given
streamline for a given grid Gk will be approximately 3 · 2k.

Figure 10 shows the error per unit length for each streamline. Since this
error is approximately constant for each method, we can in other words ex-
pect a uniform increase in the absolute error ‖s(T ;xj) − sh(T ;xj)‖ with
increasing streamline length for all methods. Moreover, since the error con-
stant is larger for EFM and SFM than for the CVI method, the accumulation
of error with streamline length will be more pronounced for SFM and EFM.

We also see from (21) that the only difference between EFM and SFM is
the scaling of the velocity vector. Thus the streamline shape will be the same
for both methods, and the differences in the figure are only due to different
time-of-flights. EFM uses a more accurate approximation of the Jacobian
determinant than SFM and should therefore in principle be more accurate.
Here, however, SFM is more accurate than EFM, which is explained by error
cancellation in which the error in approximating the Jacobian determinant
cancels the error in the interpolation.

5.2. Nonuniform Flow on Random Grids. Streamline simulators uses
a sequential splitting method to solve the flow equations as explained in
Section 2. For an incompressible flow in an isotropic and homogeneous
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Figure 11. Field plot for the velocity in (55). All the ana-
lytical streamlines traced for this case lie within the stream-
tube indicated in red.

medium with no sources, (2) reduces to the well-known Laplace equation.
For this case it is easy to verify that

(54) p(x, y, z) = sin(
√

2x) sinh(y) sinh(z)

is a solution to (2). The corresponding velocity field is given by (4) as

(55) q = −

√2 cos(
√

2x) sinh(y) sinh(z)
sin(

√
2x) cosh(y) sinh(z)

sin(
√

2x) sinh(y) cosh(z)

 .
We will now consider the same type of tests as for uniform flow, using the

velocity field in (55). The setup for the test cases will be similar to the cases
for uniform flow in the previous section, except for the following:

• The analytical velocity field is now nonlinear, and numerical inte-
gration must be used to obtain fluxes. We have used a Lobatto
quadrature [21] with a tolerance of 10−6.

• The domain is shifted slightly to avoid the singularity of the velocity
at the origin, see Figure 11.

• Twenty streamlines are traced from the surface (see Figure 11)

S = {(x, y, z) : x = 0.5, 0.5 ≤ y, z ≤ 0.55} .

Case 1: Perturbed Grids. First we revisit the perturbed grids from Case 1
in Section 5.1, i.e., consider a pk percent perturbation of the cells in a 10×
10× 10 partition of the cube shown in Figure 11, but now with the velocity
field (55). The results are shown in Figure 12. The curves for CVI8 are
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identical to those of CVI3 and are therefore not shown in the plots. For small
perturbations, the difference in the methods are overshadowed by the error
in the interpolation since all methods use the same interpolation for small
perturbations. As the perturbations increase, we see the differences in the
methods. However, due to possible cancellation of errors (e.g., as discussed
for Case 4 in Section 5.1), it is difficult to interpret these differences in favor
of one method or the other, even though CVI generally has a slightly lower
error than SFM and EFM.

Case 2: Uniform Refinement. Next, we consider the error relative to a uni-
form refinement of a single skewed cell, as in Case 2 of Section 5.1. The
results are shown in Figure 13, where the CVI8 curve (not shown) is iden-
tical to the CVI3 curve. The figure shows that the convergence rates are
equal for all three methods, indicating that the perturbations of the cells
go faster to zero than the velocity approaches uniform flow in a given cell
(otherwise, the CVI method would converge faster than SFM/EFM).

Case 3: Nonuniform Refinement. Corresponding results for nonuniform re-
finement are shown in Figure 14. This test case shows again the benefit of



24 H. HÆGLAND, H. K. DAHLE, G. T. EIGESTAD, K.-A. LIE, AND I. AAVATSMARK

2 3 4 5
−4

−3.5

−3

−2.5

−2

−1.5

Log
2
(cells) in each direction

Lo
g(

er
ro

r)
SFM

EFM

CVI3

Figure 13. (Case 2, nonuniform flow). Logarithm of error
relative to uniform grid refinement.
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Figure 14. (Case 3, nonuniform flow). Logarithm of error
relative to nonuniform grid refinement.

the CVI method when the flow becomes approximately uniform in each cell
and the grid cells are kept irregular: As for Case 3 in Section 5.1 for uniform
flow, SFM and EFM do not seem to converge as the grid is refined.

Note, however, that the curves depend on a particular realization of the
random grids. Ideally, we should have averaged over a set of such realiza-
tions. This may explain the irregular behavior of the CVI curve. Also, since
the fluxes are computed numerically with a tolerance of 10−6, we cannot
expect the same level of accuracy as the grid is refined for the CVI meth-
ods compared to Case 3 for uniform flow, where the fluxes were computed
analytically.

5.3. Analytic Flow on Truncated Pyramidal Grids. We now study the
effect of using a special kind of grid, denoted a truncated pyramidal grid, see
also [43]. The construction of such a grid is illustrated by Figure 15, where
the entire grid conforms to a cubic domain. As seen here, the inner cells are
truncated pyramids, and ’infill’ cells are used to account for the boundary,



IMPROVED STREAMLINES AND TIME-OF-FLIGHT ON IRREGULAR GRIDS 25

Figure 15. Sketch of a truncated pyramidal grid
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Figure 16. (Case 1, truncated pyramids). Errors versus
grid refinement.

and the cells will be turned upside down systematically from layer to layer.
The surface with the smallest area of a truncated pyramid will either be the
roof surface or floor surface of the cells, and the ratio between the smallest
and the largest surface area is kept constant and equal to 1/9 as the grids
are refined.

As pointed out in the description of the CVI method (Section 4), this
method is constructed to reproduce uniform flow exactly regardless of the
grid geometry. SFM and EFM, on the other hand, do not reproduce uni-
form flow and will therefore, as observed from the results below, produce a
systematic error for skewed cells like the truncated pyramids.

Case 1: Uniform Flow. Figure 16 shows the performance of the three tracing
methods on a sequence of refinements of truncated pyramidal grids for the
uniform flow field q = [0, 0, 1] on the cubic domain {1 ≤ x, y, z ≤ 2}.
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Figure 17. (Case 2, truncated pyramids). Errors of stream-
lines versus grid refinement.

For each refinement, one hundred streamlines are traced from randomly
distributed points on the bottom surface (z = 1) of the domain until they
exit at the top of the domain (z = 2). We see that the errors of the CVI
method stay at the level of their prescribed tolerances, indicating that the
velocity in the reference space is not becoming uniform as the grid is refined
(compare with Figure 7). We also notice that the streamlines of SFM and
EFM do not converge as the grid is refined.

Case 2: Combined Uniform and Nonuniform Flow. We next replace the uni-
form flow field by a combination of nonuniform and uniform flow, obtained
by taking the negative gradient of the pressure field

p(x, y, z) = cosh(x) cos(y) + cz,

which is an analytical solution to the Laplace equation that here represents
a simplification of the general pressure equation (2). Note that this pressure
field gives rise to a uniform flow in the z-direction since the z-component of
the gradient of the pressure field is a constant. This situation can occur if
gravity is the driving force for the flow in the reservoir and the permeability
of the medium is almost homogeneous. Then the flow locally is almost
uniform in the z-direction of the reservoir.

Figure 17 depicts how the methods behave for refinements of the truncated
pyramidal grids introduced above, where the constant c = 5 is used and
twenty streamlines are traced for each refinement level. The CVI method
converges with the expected rate, whereas the convergence for SFM and
EFM is both slower and decays significantly for the highest refinements,
suggesting that these two methods may fail to converge asymptotically.

Case 3: Nonuniform Flow. Finally, we study the effect of a gradual change
from uniform flow in the z-direction to nonuniform flow in all directions.
This is done by allowing the σ-parameter to increase for the solution

(56) p(x, y, z) = cosh(x) cos(y) + cz + σ cosh(x) cos(z).

The result for an 11 × 11 × 11 grid is presented in Figure 18, where we
have plotted the log10 σ along the x-axes. As expected, the errors decrease
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Figure 18. (Case 3, truncated pyramids). Effect of flow be-
coming gradually more nonuniform by increasing σ in Equa-
tion (56) when the grid resolution is fixed.

as the flow approaches uniform in the z-direction (i.e., σ → 0). Repeating
the refinement process from Case 2, we observed that the CVI method still
converges for a fixed σ and increasing refinements, but the error constant
increases for increasing values of σ.

Summing up, when either truncated pyramids or general rough grids are
used in 3D, the difference between our new streamline method and SFM and
EFM is striking. The CVI method is superior to the other methods in terms
of accuracy; this is manifested as either loss of convergence or diminished
convergence rates for the SFM and EFM methods.

5.4. Quarter-Five Spot. In this subsection we use a control-volume finite-
difference method [1] to solve the single-phase flow equations,

div q = −div(K grad p) = f in Ω
q · n = 0 on ∂Ω,

(57)

and provide discrete fluxes on cell interfaces. Here, q = −K grad p is the
Darcy velocity, p is the pressure, K is the permeability tensor, f is a source
term, Ω is the solution domain, ∂Ω is its boundary, and n is the unit outward
normal to ∂Ω. The domain will be discretised with different kind of nx ×
ny × nz grids.

A 3D extension of the classical 2D quarter-five spot test case is generated
by placing an injector and a producer, respectively, in the lower and upper
corner cells (1, 1, 1) and (nx, ny, nz). Streamlines will then be traced from
the injector to the producer. As an error measure, we will in this subsection
only compare the time-of-flight in the producing wells. To this end, we use
a relative error measure by dividing the absolute difference in time-of-flights
to the time-of-flight of the reference streamline. These relative errors are
then averaged over all the traced streamlines.

Case 1: Random Grids. Let Ω be the unit cube and assume that K ≡ 1 over
the whole domain. On this simplified medium, we compare the streamline
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Table 1. Average errors and standard deviations for the
different tracing methods. Random grid perturbations of
16%.

Method Average error St.dev
SFM 0.022 0.015
EFM 0.021 0.015
CVI3 0.017 0.012

methods on a coarse 10 × 10 × 10 random grid. The inner corners of the
coarse grid are perturbed such that the grid is non-orthogonal throughout
the simulation domain. Wells are implemented by using non-homogeneous
Neumann conditions at the faces of the corner cells (1, 1, 1) and (10, 10, 10).
We trace streamlines starting from 225 uniformly spaced entry points along
the inflow boundary given by the boundary faces of cell (1, 1, 1). The stream-
lines are traced until they exit at the outflow boundary, i.e., at some point
of the boundary faces of cell (10, 10, 10).

Time-of-flights at the producer are compared to the reference case simu-
lated by the SFM method on a 50× 50× 50 uniform Cartesian grid, where
the entry points agree with the entry points of the coarse grid. Table 1 re-
ports the average errors and corresponding standard deviations for the three
tracing methods. As seen from the table, the CVI method performs slightly
better than the other two methods; the average error is roughly 20% smaller
for the CVI method compared to e.g., SFM.

Case 2: A Simplified Field Case. Next, we study the streamline generation
on a simplified version of a real field model. We use a 3D grid that is
an extension of a 2D grid where the height of the top and bottom of the
medium varies throughout. The grid has moderate grid aspect ratios that
resemble typical features of field cases; here this ratio is approximately 1/20
for height versus length of a typical grid block. A reference solution will be
generated on a fine 45 × 45 × 45 grid, which is a uniform refinement of a
coarse 9× 9× 9 grid on which the tracing methods will be compared. The
two grids are compatible in the sense that each cell interface of the coarse
grid is exactly matched by a set of interfaces in the fine grid. To compute
a reference solution we solve the flow equations on the fine grid with no-
flow boundary conditions and a nonzero source f to simulate wells. The
approximate solution on the coarse grid are found by simple averaging of
fine-grid fluxes.

We will apply two different permeability fields; first a homogeneous per-
meability field, and then a layered lognormal permeability field that has
similarity to real field cases. For both cases, three hundred streamlines are
traced from the injector to the producer. The reference solution will be
traced with SFM on the 45× 45× 45 grid.

For the homogeneous case, K ≡ 1, averaged errors and associated stan-
dard deviations for the three methods are presented in Table 2. We see that
there is an apparent improvement for CVI compared to SFM and EFM, and
both errors and standard deviations are significantly smaller.
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Table 2. Average errors and associated standard deviations
for the three tracing methods for the homogeneous case.

Method Average error St.dev
SFM 0.084 0.076
EFM 0.083 0.077
CVI3 0.077 0.068

Figure 19. Logarithm of the horizontal permeability for the
simplified 3D field model.

Figure 20. Seventy-five streamlines traced using the fine-
grid velocity for the layered permeability field shown in Fig-
ure 19. Injector and producer cells for the coarse grid are
shown in green. Black dots indicate starting points for the
streamlines.

For the heterogeneous case, the permeability field is defined on the coarse
9 × 9 × 9 grid. On the fine grid, the permeability is therefore constant
on patches of 5 × 5 × 5 cells. We apply an isotropic, layered log-normally
distributed permeability field, see Figure 19. Figure 20 depicts seventy-
five of the streamlines traced on the fine grid, and Figure 21 shows the
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Figure 21. Time-of-flight distribution for SFM on the fine
grid, and for SFM, EFM, and CVI3 on the coarse grid. The
EFM and CVI3 results on the fine grid are not shown since
they could not be distinguished from the SFM curve on the
fine grid.

base 10 logarithm of the time-of-flight for the reference solution and for the
approximate solutions.

Note that in Figure 21 the red SFM curve and the black EFM curve are
more or less covered by the magenta CVI3 curve. Due to the large variation
in permeability on the coarse 9× 9× 9 grid, we observe a huge variations in
time-of-flight for different streamlines. Unfortunately, there are equally large
differences if the same streamline is traced using coarse and fine-grid fluxes,
respectively, which indicates nonlinearity in the velocity field and a high
information loss in the flux averaging. This shows the futility of comparing
different streamline methods on ’realistic’ models, that is for skew grids and
permeability fields with complex heterogeneity structures. In this paper, we
have therefore mainly focused on simplified models, on which one has control
of the reference solution and errors in the velocity fields on the coarser grids.
More details can be found in [44], where a discontinuous Galerkin method
was used for computing time-of-flight.

5.5. Runtime Comparisons. Finally, we investigate the runtimes of the
different methods. For the CVI method, there will be a relation between
the number of time steps needed per cell and the prescribed tolerance δr.
Tables 3 and 4 report the average number of time steps per cell for dif-
ferent values of δr and different perturbations of the grids for Case 1 from
Sections 5.1 and 5.2.

Timing Results. Let us now compare the computational costs required to
determine the exit point given a starting point within the cell. If we nor-
malize the results such that SFM uses one time unit on average, EFM uses
1.5 time units, and CVI uses eight time units (assuming one time step per
cell).

The runtime of CVI is essentially made up of the time used for:
• function evaluations,
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Table 3. Relation between number of time steps per cell
and δr for a 60% perturbation for Case 1 for uniform and
nonuniform flow.

Tolerance δr 10−3 10−4 10−5 10−6 10−7 10−8

Uniform 1.3 1.7 2.3 3.0 4.2 5.2
Nonuniform 1.4 1.9 2.5 3.2 4.4 5.4

Table 4. Relation between cell perturbation and number of
time steps per cell for a given δr for Case 1 for uniform and
nonuniform flow.

Perturbation in % 0 10 20 30 40 50 60

Uniform (δr = 10−3) 1.0 1.0 1.0 1.1 1.1 1.2 1.3
Uniform (δr = 10−8) 1.0 2.3 3.2 3.6 4.2 4.6 5.2

Nonuniform (δr = 10−3) 1.0 1.0 1.0 1.0 1.1 1.2 1.4
Nonuniform (δr = 10−8) 1.1 2.2 3.0 3.4 3.8 4.4 5.4

• interpolation to find the exit point, and
• the reconstruction of the corner velocities.

By a function evaluation we mean evaluation of the velocity at a given point
in reference space. This is done, as shown in Section 4, by a trilinear interpo-
lation to find the velocity in physical space. Then the velocity in reference
space is found by a multiplication by the inverse of the Jacobian matrix.
The evaluation of the inverse is quite time-consuming, so a function eval-
uation takes approximately one time unit. One integration step generally
requires six function evaluations, but for the first integration step in a cell,
we need one extra function evaluation to get started. The interpolation to
find the exit point uses a fifth-order polynomial [55] and a Newton iteration.
This part consumes approximately one half time unit. Finally, reconstruc-
tion of corner velocities from discrete fluxes also takes one half time unit.
Altogether, eight time units.

Although the CVI method is slower, the accuracy is higher when the flow
becomes uniform. Our test cases for uniform flow indicate that to reach the
same level of accuracy, SFM and EFM must use a refined grid, for which
the computational cost is higher, in particular if refining the grid requires a
new global pressure solution since the cost of streamline tracing typically is
minuscule compared with the cost of solving the pressure equation. More-
over, in [25] we showed that by integrating directly in physical space rather
than in reference space, the CVI method can be made as efficient as EFM
for cases with uniform and almost uniform flow in 2D.

5.6. Using CVI with Half-Edge Fluxes. The CVI method interpolates
velocities in a manner that makes it appealing to use a finer resolution of
the velocities. Moreover, if fluxes/velocities are evaluated for the half-edge
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Figure 22. Using CVI with half-edge fluxes. Note that the
aspect ratio of the plot is 1:2.75, i.e., the y-direction is com-
pressed. A horizontal line really makes an angle of 71◦ with
the bottom or top edge of the parallelograms.

rather than for the full edge, this subresolution in the fluxes may possibly
be taken advantage of.

We have tested the CVI method with half-edge fluxes (denoted CVIH) in
2D for the velocity field,

(58) q =
[

sinhx cos y
− coshx sin y

]
,

which is an analytical solution to the Laplace equation. When using CVI
with half-edge fluxes, the interpolated velocity field is still given by (35),
but the corner velocities will be different. Equation (37) is replaced by

(59)
{

qi · nEx(i) = 2FEx(i),
qi · nEy(i) = 2FEy(i),

i = 1, . . . , 4,

where FEx(i) and FEy(i) are now half -edge fluxes adjacent to corner i. Equa-
tion (59) implies that the normal component of qI

CVI varies linearly along
each edge.

Case 1: Half-Edge Fluxes on Parallelogram Grids. For parallelogram grids,
CVI, SFM, and EFM are identical, as noted in Section 4.3. When the skew-
ness of the parallelograms gets large, these methods will produce streamlines
with apparent cusps. The CVIH method will reduce these artifacts, see Fig-
ure 22.

Case 2: Comparing BDM and CVIH. A mixed finite-element method [9] can
be employed to solve the pressure equation for both pressure and velocity, in
which case the velocity must belong to the space H(div; Ω). A divergence-
free higher-order velocity field can then be used to approximate H(div; Ω).
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Figure 23. Comparing different methods. Base 10 loga-
rithm of error.

For two degrees-of-freedom per edge in the two-dimensional case, the velocity
should belong to the Brezzi–Douglas–Marini (BDM) space of order one, with
the added condition of zero divergence [39, 40]. By the BDM method we
will in the following mean streamlines traced by the above velocity field. See
[41, 42, 30] for a comprehensive discussion of streamline tracing in 2D using
low and high-order mixed finite-element velocity spaces.

In our final example, we compare all the methods introduced so far: BDM,
CVIH, CVI, SFM, and EFM for the analytical solution in (58). We start
with a 10× 10 uniform partition of [0, 1]× [0, 1] and consider grids obtained
by a 10i percent perturbation for i = 1, . . . , 6. Exact edge and half-edge
fluxes will be computed for each grid. These fluxes will be used to construct
interpolated velocity fields for all the methods. For each grid, streamlines
are started from twenty random points within a random cell. This cell is
selected randomly as one of three cells in the top row of the grid. The results
are shown in Figure 23. Here, as also remarked for Case 4 in Section 5.1,
SFM is better than EFM due to cancellation of errors. We also note that
the CVIH and BDM methods are of approximately the same accuracy.

6. Summary and Concluding Remarks

This work has investigated streamline generation on irregular grids in
3D and has in particular focused on the problem of representing uniform
flow on hexahedral grids. We have considered two standard methods, the
standard flux-mapping method (SFM) [15, 47, 49] and the extended flux-
mapping method (EFM) [28]. For irregular grids, these methods are based
on a trilinear transformation of each grid cell to a unit cube together with
a linear interpolation scaled by the Jacobian. The two methods only differ
in the way they treat the Jacobian; see Eqs. (20) and (21). The major
advantage of the SFM and EFM methods is that they both allow for fast
and analytical integration of streamlines due to the linear flux interpolation.
On the other hand, the methods share the same fundamental deficiency of
being inaccurate for irregular (and rough) grids. That is, for irregular grids,
the interpolated velocity field used in these methods will generally depend
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on the geometry of the grid cell, except for the 2D case, where a linear flux
interpolation in reference space is sufficient to model the normal vectors nx

and ny exactly. In 3D, the flux of a uniform flow field varies quadratically
for a general hexahedral cell, and also a flux interpolation cannot capture
the variation of the normal vectors that describe the geometry of the cell.

To improve the tracing accuracy, we introduced a new method, which we
called the corner-velocity interpolation (CVI) method. Instead of interpo-
lating the velocity inside the cell based on discrete fluxes at cell edges, the
method interpolates the velocity based on (reconstructed) velocities at the
eight corner-points of a hexahedral cell. This way, we get a method that
is generally less sensitive to the regularity of the cells and in particular is
able to reproduce uniform flow regardless of the cell geometries, a property
that is considered to be of high importance in solution of (elliptic) pressure
equations. Moreover, the CVI method can easily be adapted to exploit the
extra accuracy represented in half-edge fluxes, when these are available (see
Section 5.6).

In Section 5, we compare the three tracing methods on a variety of simple
test cases, focusing in particular on representing uniform flow in 3D. Our
test cases in Sections 5.1 to 5.3 can be divided in two categories. In the first
category, the irregularity of the grids diminish as they are refined. For these
grids, all three methods converge, but CVI typically converges faster and is
more accurate on each specific grid as the flow becomes uniform.

In the second category, we consider so-called rough grids and nonuniform
refinements of these. (Nonuniform refinement may seem a bit strange on a
first glance, but is in fact what will typically be used when refining a coarse
simulation model towards an underlying geological model, which typically
contains highly irregular cells used to model the complex structures of the
underlying geology.) The test cases in this category reveal significant differ-
ences in the behavior of the three methods. For tests with uniform flow, the
SFM and EFM methods do not only fail to reproduce uniform flow; they
also fail to converge as the grids are (nonuniformly) refined. For nonuniform
flow cases, our tests establish convergence of the CVI method, whereas the
SFM and EFM methods either do not converge asymptotically or have a
small convergence rate for the refinements levels observed.

The added accuracy of the CVI method comes at the cost of an increased
computational complexity, which is imposed by the need to use numerical
integration of a set of ODEs to compute streamlines. Since EFM and SFM
use analytical integration, these methods will be significantly faster. We
are therefore investigating various means to speed up the CVI method, for
instance, integrating streamlines directly in physical space using an adap-
tive Euler predictor-corrector method [25]. The method proved to be quite
successful in 2D, but has not yet been extended to 3D. Another tempting
idea is to use a hybrid method, in which SFM is used for regular cells and
CVI is used for irregular cells. This, however, requires some kind of error
estimate for SFM and EFM and remains to be investigated.
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