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Abstract In water-based EOR methods, active chem-

ical or biological substances are added to modify the

physical properties of the fluids or/and the porous me-

dia at the interface between oil and water. The result-

ing displacement processes are governed by complex in-

terplays between the transport of chemical substances,

which is largely linear and highly affected by numerical

diffusion, and how these substances affect the flow by

changing the properties of the fluids and the surround-

ing rock. These effects are highly nonlinear and highly

sensitive to threshold parameters that determine sharp

transitions between regions of very different behavior.

Unresolved simulation can therefore lead to misleading

predictions of injectivity and recovery profiles.

Use of higher-order spatial discretization schemes

have been proposed by many authors as a means to
reduce numerical diffusion and grid-orientation effects.

Most higher-order simulators reported in the literature

are based on explicit time stepping, and only a few

are implicit. One reason that fully implicit formula-

tions are not widely used might be that it becomes

quite involved to compute the necessary linearizations

for modern high-resolution discretizations of TVD and

WENO type. Herein, we solve this problem by using au-

tomatic differentiation. We also demonstrate that using
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lagged evaluation of slope limiters and WENO weights

alleviates the nonlinearity of the discrete systems and

improves the computational efficiency, without having

an adverse effect on the stability and accuracy of the

higher-resolution schemes.

As an example of EOR, we consider polymer flood-

ing, which involves complex and adverse phenomena

like adsorption in the rock, degradation and in-situ chem-

ical reactions, shear thinning/thickening, dead pore space,

etc. Using a few idealized test cases, we compare and

contrast explicit and fully implicit time stepping for

a variety of high and low-resolution spatial discretiza-

tions.

Keywords fully implicit · higher-order schemes ·
polymer flooding

1 Introduction

In many oil recovery processes, water is injected to

maintain reservoir pressure and to force the oil towards

production wells. If water is less viscous than oil, the

water front can develop viscous instabilities and finger

through the reservoir. As a consequence, much of the

oil can be left behind as residual or bypassed oil [12].

Enhanced oil recovery (EOR) is essential to improve

oil recovery and to increase a field’s potential. In water-

based EOR methods, the physical properties of the flu-

ids and the surrounding rock can be modified through

active chemical or biological substances [25]. The trans-

port of these substances is largely linear and therefore

highly affected by numerical diffusion. Furthermore, the

subsequent effects on the fluids and the surrounding

rock are highly nonlinear and sensitive to threshold pa-

rameters that determine transitions between regions of

very different behavior. Thus, the displacement process
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is complex and challenging to simulate. Unresolved sim-

ulation can lead to misleading predictions of injectivity

and recovery profiles.

As an example of water-based EOR, we consider

polymer flooding, which improves both the local dis-

placement efficiency and the volumetric sweep [25,35].

Injecting dissolved polymer increases the water viscos-

ity and enhances its ability to push oil through the rock

because of a more favorable mobility ratio between the

injected and displaced fluids. This effect is most pro-

nounced when mobility ratios are unfavorable, e.g., in

reservoirs with heavy oil. Polymer molecules dissolved

in water can also improve the areal sweep efficiency

by reducing channeling through high flow zones and

through viscous cross-flow between layers of different

permeability. Water viscosity is strongly affected by the

polymer concentration, and it is therefore crucial to

capture polymer fronts sharply to resolve the nonlinear

displacement mechanisms correctly. Polymer fronts will

in the worst case be linear waves and generally have sig-

nificantly less self-sharpening effects than water fronts.

This poses a challenge when using standard low-order

methods, whose large numerical diffusion tend to smear

the polymer bank and hence fail to accurately resolve

the EOR effect. Many authors have discussed the use of

high-resolution spatial discretization schemes to over-

come this and similar challenge in subsurface flow sim-

ulation, see, e.g., [2,18,22,10,19,21,30,20,8,6,38] and

references therein. These discretizations are developed

to maintain high-order accuracy on smooth parts of the

solution and at the same time minimize the creation of

spurious oscillations around discontinuities.

In industry, the predominant approach to reservoir
simulation with black-oil type models is to use a fully

implicit discretization. On one side, this accounts for

the coupling between fluid pressure and transport of

phases and components by solving for all unknowns si-

multaneously. More important, it presents an efficient

means to treat short time constants coming from high

local flow rates (e.g., in near-well regions), cells with

small pore volumes, etc. With a few exceptions, see

e.g., [4,3,28,33,11], higher-order simulators reported in

the literature are based on explicit time stepping. Im-

plicit total-variation diminishing (TVD) schemes date

back to the seminal work of Harten [15] and Yee et

al. [43], who showed that five-point TVD schemes with

backward Euler temporal discretizations are conserva-

tive and unconditionally stable for a scalar 1D con-

servation law as long as the discrete nonlinear equa-

tions are solved exactly using e.g., a Newton method.

Later, Gottlieb et al. [14] showed that implicit time-

integration schemes of order higher than one are only

conditionally TVD. Whether an implicit approach is ef-

ficient will thus depend on whether the cost of solving

the nonlinear equations is offset by the ability to take

larger time steps. In many applications, this is not the

case and work on implicit high-resolution schemes has

focused on linearization methods or methods that only

treat fast waves implicitly for hyperbolic systems with

large differences in characteristic wave speeds.

A more prosaic reason why fully implicit formula-

tions are not widely used together with high-resolution

discretizations such as TVD and weighted essentially

non-oscillatory (WENO) schemes, is that these intro-

duce strong nonlinearities that can be difficult to lin-

earize correctly. To overcome this challenge, we herein

propose to use automatic differentiation (AD) as im-

plemented in the open-source MRST software [24,27,1,

31] using operator overloading in MATLAB [32]. This

ensures that no analytical derivatives have to be pro-

grammed explicitly, and this tool is important for im-

plicit methods since it both reduces implementation

time and risk of errors. AD techniques have mainly been

pioneered for subsurface flow simulation through the

AD-GPRS simulator [41,44,42], but was also used in

an early version of a commercial simulator [7]. The in-

terested reader should also consult [26] for a discussion

of an alternative backward-mode approach to AD.

In this work, we first review several high-resolution

spatial discretizations and discuss how these can be in-

corporated as part of a fully implicit simulator. The

novelty of our work lies in part in our choice of high-

resolution spatial reconstructions, which are different

from previous work (e.g., [28]), and in part with the

use of automatic differentiation and lagged evaluation

of slope limiters and WENO weights to simplify the lin-
earization and solution of the discrete flow equations.

Through a series of idealized test cases, we compare and

contrast the resulting high-order schemes with standard

first-order schemes. We also argue why implicit dis-

cretization is beneficial and generally required. In par-

ticular, we show that using a second-order reconstruc-

tion (and improved spatial quadrature) will counteract

the numerical dissipation imposed by the temporal dis-

cretization in a fully implicit setting and ensure that we

can maintain displacement profiles that are significantly

sharper than what can be computed with a first order

scheme. When the dissipation introduced by the numer-

ical scheme is larger than the physical diffusion, grid-

orientation errors will occur. This has been discussed

by several authors, see e.g., [5]. These errors are partic-

ularly strong for unstable gas floods where the physical

diffusion terms are not fully resolved, and can actu-

ally increase when switching from a first-order scheme

to a higher-order scheme for the advective terms. For

polymer flooding, however, our numerical experiments
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in Section 4.4, and several other that are not reported

herein, indicate that using a high-resolution spatial dis-

cretization significantly diminishes grid-orientation er-

rors.

2 Mathematical Model

Polymer flooding is described by an immiscible, two-

phase model with three fluid components (oil, water

and polymer) that incorporates many of the fluid effects

found in contemporary commercial simulators. This in-

cludes adsorption of polymer onto the reservoir rock,

mixing of polymer in water, and compressibility of flu-

ids and rock. Polymer adsorption and entrapment causes

a reduction in permeability to water but not to oil.

Moreover, the long-chained polymer molecules are gen-

erally not able to access all the pore volume accessible

to the much smaller water and hydrocarbon molecules

and injected polymer will therefore flow faster than the

injected water. The effect of inaccessible pore space is

left out for brevity, but could have easily been included;

see [17] and references therein for more details on mod-

eling. Last but not least, pseudoplastic effects of the

diluted polymer solution may cause shear-thinning or

shear-thickening behavior in the near-well region and

strongly impact polymer injectivity. In a recent paper

[1], we demonstrate that this type of non-Newton fluid

rheology can be efficiently resolved by introducing a

new inner-Newton loop within the global nonlinear it-

eration. The same approach can be applied almost ver-

batim with the higher-order schemes discussed herein,

and for brevity we therefore disregard the pseudoplastic

effects.

The conservation equations for the oil, water, and

polymer components are given by

∂

∂t

(
ραφsα

)
+∇ ·

(
ραuα

)
= 0, α = o, w (1a)

∂

∂t

[
ρwφswc+ ρr(1− φref)ā

]
+∇ ·

(
cρwuwp

)
= 0. (1b)

Here, ρα, sα, and uα denote density, saturation, and

velocity of phase α, whereas c is the polymer concen-

tration given in units of mass per volume of water (and

herein take values in the interval [0, 3]). For simplicity,

we assume that capillary pressure can be neglected so

that we henceforth can write po = pw = p and use p as

a primary unknown along with s = sw and c. The func-

tion ā models the amount of polymer adsorbed onto

the rock, φ is the porosity, φref and ρr are the refer-

ence porosity and reference density of the rock. Simple

PVT behavior is commonly modeled through inverse

formation-volume factors ρα(p) = bα(p)ρSα, where ρSα is

the surface density of phase α. To avoid overloading the

notations, we will not insert those in the equations.

To form a complete model, we also assume that oil

and water occupy the entire pore space, so + sw = 1,

and use Darcy’s law to relate the phase velocities uα
of oil and water to gradients of pressure. For oil, this

reads

uo = −Kkro(so)

µo

(
∇p− ρog∇z

)
, (2)

where K is the absolute rock permeability, kro and µo
are the relative permeability and the viscosity of oil, g

is the gravitational constant, and z is the coordinate

in the vertical direction. The adsorption of polymer

onto the rock will introduce a resistance to flow that

reduces the effective permeability experienced by wa-

ter containing diluted polymer. This is modeled by di-

viding the absolute permeability by a non-decreasing

function Rk(c). Pure water and water containing di-

luted polymer are in general not fully miscible but we

will not model in detail this behavior and rather use

the Todd–Longstaff [37] model that upscales the com-

plex patterns of viscous fingers and models the viscosity

change of the mixture in terms of effective viscosities.

Whereas the viscosity of oil is assumed to be constant,

the viscosity of the other two fluid components is as-

sumed to depend upon the polymer concentration. The

two aqueous components will move with different veloc-

ities. The water component is assumed to move with a

speed given by the phase velocity uw of water, whereas

the polymer component will move with a speed relative

to the water component that is inversely proportional

to the ratio between the effective viscosity of polymer

and water. This gives us Darcy equations

uw = − krw(sw)

µw,eff(c)Rk(c)︸ ︷︷ ︸
λw(s,c)

K
(
∇p− ρwg∇z

)︸ ︷︷ ︸
vw(p)

,

uwp = − krw(sw)

µp,eff(c)Rk(c)︸ ︷︷ ︸
λwp(s,c)

K
(
∇p− ρwg∇z

)︸ ︷︷ ︸
vw(p)

,

(3)

where we assume that the pressure and density are inde-

pendent of polymer, and that the relative permeability

does not depend on mixing.

The degree of mixing of polymer into water comes in

through the mixing parameter w ∈ [0, 1] that generally

depends on the heterogeneity of the porous medium,

the displacement scenario, etc. Let µm = µm(c) be the

viscosity of a fully mixed polymer solution, then the

effective polymer viscosity is defined as

µp,eff = µm(c)wµ1−w
p , (4)
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where µp = µm(cmax). Furthermore, the viscosity of the

partially mixed water is given by

µw,e = µm(c)wµ1−w
w .

Finally, the effective water viscosity is found by inter-

polating linearly between the inverse of the effective

polymer viscosity and the partially mixed water viscos-

ity

1

µw,eff
=

1− c/cmax

µw,e
+
c/cmax

µp,eff
. (5)

3 Numerical Discretization

To find a numerical approximation of s, c and p, the

spatial domain is subdivided into a finite number of

finite volumes. In the following, we only consider regu-

lar Cartesian grids in two spatial dimensions, and use

the integral form of the conservation equations (1) to

compute approximations to the discrete cell averages,

qi(t) =
1

|Ωi|

∫∫
Ωi

q(x, y, t)dxx. (6)

Here, q denotes one of the primary variables p, s, or c

and Ωi = [(i1 − 1
2 )∆x, (i1 + 1

2 )∆x]× [(i2 − 1
2 )∆y, (i2 +

1
2 )∆y] is the grid cell number i = (i1, i2). Let Γij de-

note the interface between cells i and j having normal

vector ni,j pointing from Ωi to Ωj . If we pick the water

equation, for instance, the discretized equation can be

written in compact form as

Rw =
[
ρw(pi)φ(pi)si

]n+1 −
[
ρw(pi)φ(pi)si

]n
+

∆t

|Ωi|
∑
|i−j|=1

∫
Γij

[
ρw(p)λw

]m
ij

(
vmw · n

)
i,j

ds = 0.
(7)

Here, using |i− j| = |i1− j1|+ |i2− j2| = 1 ensures that

the sum only runs over neighbors that share a common

face. The temporal discretization is specified by setting

m = n (i.e., forward Euler) for an explicit scheme and

m = n+1 (i.e., backward Euler) for an implicit scheme.

The integrand denotes the mass flux evaluated at the

interface and how to compute this term will be the

focus for most of the following discussion. For brevity,

we henceforth drop subscript w and superscript m.

3.1 First-order schemes

In our discretization of the mass flux, we treat pressure

differently from saturation and concentration. The pres-

sure is assumed to be constant within each grid cell and

to find the density at the interface Γij , we use a simple

average, so that ρij = 1
2 (ρ(pi) + ρ(pj)). Likewise, for

the flux vi,j = vij · ni,j , we use a standard two-point

approximation; that is, we write

vi,j ≈
[
T−1
i,j + T−1

j,i

]−1(
pi − pk),

Ti,j =
Ki(xij − xi) · ni,j
|xij − xi|2

,
(8)

where xi = (xi1 , xi2) denotes the centroid of cell Ωi
and xij is the centroid on Γij . Summarizing, we have

introduced the following approximation of the pressure-

dependence∫
Γij

ρij(p)λi,j(s, c)
(
v · n

)
i,j

ds

≈ 1
2

[
ρ(pi) + ρ(pj)

]
vi,j

∫
Γij

λ(s, c) ds.

(9)

To evaluate the remaining integral, we need to make

three different choices that will determine our numeri-

cal scheme: (i) which quadrature rule to use for the in-

tegral in (9), (ii) how to reconstruct the necessary point

values at the quadrature points from the cell-averages

si and ci, and (iii) how to approximate the mobility

given point values that generally are different on oppo-

site sides of the interface Γij .

To get a first or second-order scheme, it is sufficient

to use the midpoint rule for the integral. The first-order

scheme assumes a constant reconstruction so that we

get one-sided point values s−i,j = si and s+
j,i = sj , and

similarly for the concentration. For the second-order

scheme, the point values s±i,j are computed by evaluat-

ing the two local polynomial reconstructions at the mid-

point of the cell face. When using spatial reconstruc-

tions of third order or higher, the midpoint rule does

not offer sufficient accuracy and the following fourth-

order Gaussian quadrature rule should be used instead

to evaluate the edge integral in (9),

1/2∫
−1/2

λ(x)dx =
1

2

[
λ

(
−1

2
√

3

)
+ λ

(
1

2
√

3

)]
. (10)

This results in similar one-sided values s±i,j,±α, where

subscript±α denotes the two different integration points.

Given one-sided values, we use the standard upstream

method to evaluate the integrand at each integration

point

λi,j(s, c) =

{
λ(s−i,j , c

−
i,j), if vi,j ≥ 0,

λ(s+
i,j , c

+
i,j), otherwise.

(11)

Notice that the maximum size of the resulting stencil

is determined by the choice of reconstruction and not
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by the quadrature rule as long as the rule is open and

only involves internal points on the cell interface. The

quadrature rule affects the flux integration and hence

the coefficients in the stencil.

3.2 Second-order slope-limiter schemes

The next question is how to reconstruct the necessary

one-sided point values. Using a piecewise linear recon-

struction gives second-order formal accuracy on smooth

solutions, quadratic gives third-order, and so on. Most

reconstructions found in the literature are introduced

for a scalar entity, and it is tacitly assumed that they

can be extended in a component-wise manner to vector-

valued entities. Another question is which quantities to

reconstruct. Herein, we have chosen to reconstruct the

primary physical variables s and c in the integration

points and then use these to evaluate the mobility at

the interface.

For a second-order scheme, a linear reconstruction

is given by

q̃(x) = qi + σxi (x− xi) + σyi (y − yi), (12)

where the slopes σxi and σyi can be estimated from the

discrete difference in cell-average values between neigh-

boring cells. To avoid creating spurious oscillations near

discontinuities, the slopes σi must be limited through

a nonlinear dissipation mechanism that adds stabiliz-

ing numerical diffusion near discontinuities while pre-

serving formal order on smooth parts. This is achieved

through so-called slope-limiters that were first intro-

duced in a series of papers by [39,40]. Let Φ be a non-

linear averaging function that is capable of choosing

the slope. This function is called a limiter and is ap-

plied independently in each spatial direction. Given Φ,

the slope σxi is set to

∆xσxi = Φ
(
qi − qi−(1,0), qi+(1,0) − qi

)
. (13)

Herein, we will consider three different limiters,

Φmm(a, b) =
1

2

(
sgn(a) + sgn(b)

)
min

(
|a|, |b|

)
, (14)

Φsb(a, b) =
1

2

(
sgn(a) + sgn(b)

)
(15)

max
(
min(θ|a|, |b|), min(|a|, θ|b|)

)
,

ΦvL(a, b) =
(
b+ a

|b|
|a|
)
/
(
1 +
|b|
|a|
)
. (16)

The minmod limiter Φmm compares the upwind and

downwind slopes and chooses the one that is smaller in

magnitude. If the slopes have different signs, the slope

is set to zero. This gives a robust limiter that adds

as much numerical dissipation as possible, while keep-

ing second-order accuracy [36]. The superbee limiter Φsb

[34] represents the other extreme end in the sense that

it chooses the slope to be as steep as possible and hence

introduces very little numerical dissipation. The param-

eter θ determines the steepness of the slope chosen;

herein, we use θ = 1.5. When used as part of an implicit

discretization, both limiters have the disadvantage that

they are not smooth functions of their arguments: Φmm

has one kink, whereas Φsb has three. These kinks will

adversely affect the Newton–Raphson solver used to

solve the system of discrete equations. As a third alter-

native, we have therefore included the smooth van Leer

limiter ΦvL, which reconstructs steeper slopes than the

minmod limiter but gentler slopes than the superbee

limiter; see [3]. At the boundary, the reconstruction is

computed using a ghost-cell approach in which cell val-

ues from the interior are mirrored across each no-flow

boundary.

3.3 WENO schemes

The main design principle behind the slope-limiter tech-

nology is to ensure that the resulting schemes give ap-

proximate solutions having diminishing total variation

when applied to a scalar equation. This principle cannot

be extended beyond second order and instead one tries

to construct an essentially non-oscillatory (ENO) solu-

tion, i.e., a solution in which oscillations do not grow

significantly with time. To understand the key idea, we

will look at a simplified example. Assume that we want

to reconstruct a function q(x) inside a cell i based on
cell averages qi−1, qi and qi+1. To this end, we define

two linear polynomials q±(x) based on qi and qi±1 and

a quadratic polynomial qc(x) based on all three cell

averages. The classical ENO idea [16] is to choose the

one of the three polynomials that gives the least oscil-

latory solution. To aid this choice, the method uses a

measure of local smoothness of the given data that is

based on divided differences. Whereas this switching of

stencils seems to work well for explicit schemes, it intro-

duces discontinuity in the Jacobian matrix for implicit

schemes and may cause severe flip-flopping and general

lack of convergence in the nonlinear iterations [23]. In

the so-called weighted ENO (WENO) schemes [29], the

key idea is to instead use a convex combinations of the

three polynomials w−q−(x)+wcqc(x)+w+q+(x), where

w− + wc + w+ = 1. The weights w are designed such

that they reproduce the optimal polygonal approxima-

tion if the solution is smooth inside the overall stencil,

but tends to zero if the corresponding local stencil con-

tains a discontinuity.
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Herein, we use a simplified version of the WENO

idea based on four linear reconstructions, which gives a

scheme that is formally only second-order accurate. To

this end, let us define a polynomial

qNE(x) = qi + σEi (x− xi) + σNi (y − yi), (17)

σEi =
qi+(1,0) − qi

∆x
, σNi =

qi+(0,1) − qi
∆y

,

and a corresponding smoothness indicator,

βNEi = 1
4

[(
∆xσEi

)2
+
(
∆y σNi

)2
+ ε
]−`

, (18)

where ε is a suitable small parameter introduced to

avoid division by zero. Here, we set ε = 10−7 and ` = 2.

Similar polynomials and smoothness indicators are de-

fined for NW, SE, and SW. Then we can define the

weights as wNE = βNE/(βNE + βNW + βSE + βSW ),

and use the following polynomial to reconstruct one-

sided point values at the integration points,

qi(x) =
∑

ν=NE,NW,SE,SW

wνqν(x). (19)

In the default version of the implicit WENO scheme,

the nonlinear weights are functions of the unknown

solution at time n + 1. This contributes to enhance

the nonlinearity of the resulting scheme. An alterna-

tive, and possibly more efficient, approach is to de-

fine the nonlinear weights based on the previous iter-

ate or the values from the previous time step; see e.g.,

[13]. Whereas this should reduce the computational cost

of each time step, we are generally not guaranteed to

maintain accuracy and stability, since we now solve a
slightly different discrete problem. In Section 4, we will

compare accuracy, efficiency, and stability of fully im-

plicit and lagged evaluation of the slope limiters in the

TVD scheme and the weights in the WENO scheme.

3.4 Motivation for the temporal discretization

The use of first-order forward or backward Euler in

combination with a higher-order spatial discretization

may seem a bit strange for readers familiar with high-

resolution schemes. Our motivation for this is as fol-

lows: by the results of Gottlieb et al. [14] it follows

that higher-order temporal discretizations are only con-

ditionally stable. This means that using, for instance,

the standard θ rule of the form yn + 1 − θf(yn+1) =

yn+ (1− θ)f(yn) to get second-order implicit temporal

discretization will inevitably introduce a time-step re-

striction stemming from the explicit part of the stencil.

For reservoir models with large differences in porosities

and/or large differences in the face areas between neigh-

boring cells, this time-step restriction can be quite se-

vere. For efficiency, the parameter θ should be chosen lo-

cally and many cells will need to be treated fully implic-

itly to avoid too small overall time steps that would oth-

erwise adversely affect computational efficiency. There

exist alternative approaches, see e.g., [9], to ensure non-

oscillatory solutions for significantly larger time steps

than what can be achieved by linear time-integration

schemes. However, these introduce additional nonlin-

earities in the temporal discretization and for simplicity,

we have chosen to only consider the case with θ = 1 for

the implicit schemes. For the explicit schemes, we could

have used a second-order TVD Runge–Kutta method

[14], which computes the value at time t + ∆t as the

average of two forward-Euler steps, but we chose to

also use first-order temporal discretization for a more

clean-cut comparison.

3.5 Solving the discretized systems

If we now pick one of the reconstruction methods intro-

duced above to evaluate one-sided point values, plug

(9) and (11) into (7), and repeat the same derivation

with the obvious modifications for the oil and the poly-

mer equations, we end up with a system of nonlinear

equations that can be written in the residual form as

F(y) = 0, (20)

where y = [p, s, c] contains all the unknown cell-averaged

values for pressure, saturation, and concentration for

the new time-step. Even if we use an explicit time in-

tegration, this system is nonlinear because of the fluid

and rock compressibilities. To solve the system, we use

a standard Newton–Raphson method: Assume that we

have an initial guess y0, we write y = y0 +δy and solve

0 ≈ F(y0) + Jδy, (21)

where J = dF/dy, to determine the increment δy. This

process is repeated until the residual F or the increment

δy is sufficiently small in some suitable norm. The New-

ton iteration process will exhibit quadratic convergence

under certain requirements on the smoothness and dif-

ferentiability of F. Unfortunately, F is generally not

smooth for our system because of the switch in the up-

stream formula (11). Moreover, the explicit schemes are

only stable if the time step satisfies a standard CFL

condition. Likewise, it is common to introduce some

mechanism in the implicit scheme that cuts the time

step until a satisfactory convergence is achieved; we will

return to this discussion in the numerical experiments.
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First order Second order: minmod Second order: WENO

Fig. 1 Structure of the Jacobian matrix for various implicit schemes on a 10 × 10 quarter-five spot example. The four plots
included for each scheme show, starting in the south-west corner and moving clockwise: the complete 3× 3 block matrix and
parts of the ∂pRw, ∂sRo, and ∂cRwp blocks, respectively.

Another practical challenge with (21) is how to com-

pute the Jacobian matrix J, which may contain quite

intricate nonlinear dependencies, in particular when the

scheme is extended to higher order. Analytical deriva-

tion and subsequent coding of the Jacobian can be very

time-consuming and prone to human errors. To allevi-

ate this problem, we propose to use automatic differen-

tiation as implemented in the open-source MRST soft-

ware [24,27]. The key idea of automatic differentiation

is that the computation of the residual F can be bro-

ken down to a (nested) sequence of elementary function

evaluations. Each elementary function is simple to dif-

ferentiate analytically and can easily be coded into a

software using operator overloading so that evaluation

of the overloaded function computes the function value

and its derivative(s). Nested function evaluations are

taken care of by using the chain rule. As a result, all

we need to do is to code the evaluation of the residual,

and then the software calculates J automatically. We

will therefore not discuss the computation of J in more

detail for any of the schemes.

Let us look at the structure of the Jacobian in some

detail. With three residual equations of the form (7),

which we denote Rw, Ro and Rp, and three primary

variables p, s, and c, the linearized system reads,

J =


∂Rw
∂p

∂Rw
∂s

∂Rw
∂c

∂Ro
∂p

∂Ro
∂s

∂Ro
∂c

∂Rwp
∂p

∂Rwp
∂s

∂Rwp
∂c

 . (22)

To utilize efficient vectorization in MATLAB, the uknowns

are stored by concatenating global vectors for each pri-

mary variable, i.e., y = [p, s, c]. Thus, J becomes a

global 3 × 3 block matrix that has a different sparsity

pattern than in most other simulators that store all pri-

mary variables consecutively per cell.

Second order: WENO

Fig. 2 Structure of the Jacobian matrix for the WENO
scheme with lagged evaluation of weights for a quarter-five
spot example on a 10× 10 grid.

To show the structure of the different schemes, we

consider a simple quarter-five spot setup on a 10 × 10

grid, which will be discussed in more detail in next

section. Figure 1 shows the Jacobian matrix for the

first-order scheme and the second-order schemes with

minmod and van Leer limiters. Starting with the first-

order scheme, we see that the matrix blocks represent-

ing derivatives of conservation equations with respect to

pressure all have a pentadiagonal structure. The small

’gaps’ in the diagonals correspond to the boundary of

the domain. Looking next at the derivative of the oil

equation with respect to saturation, we see that this has

a tridiagonal structure since the flow is cocurrent and

the conservation equations have unidirectional eigenval-

ues with respect to saturation. The structure is similar

for all the other blocks representing derivative with re-

spect to s and c.
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Our numerical experiments have shown that it is

advantageous to use a constant reconstruction for pres-

sure also in the second order methods, and hence all

blocks representing derivatives with respect to pres-

sure have the same pentadiagonal structure as the first-

order scheme. For the minmod limiter (14), the other

blocks generally have a 7-diagonal structure as a result

of cocurrent flow and monotone displacement profiles.

Since the limiter chooses the slope in each axial direc-

tion as the minimal value of the backward and forward

divided differences, or sets the slope to zero if these

have different sign, at most five of the seven diagonal

elements are nonzero in each row. The blocks for the

superbee limiter (15) have a similar structure since this

limiter chooses the maximum of the two divided dif-

ferences. The van Leer limiter (16) computes the slope

as a nonlinear average of the backward and forward

divided differences and will generally have nonzero val-

ues for all seven diagonals. Whereas the TVD limiters

use dimension-by-dimension slopes, the WENO scheme

relies on a multidimensional approach and hence has

denser matrix blocks consisting of ten nonzero diag-

onals in this particular case. The resulting Jacobian is

generally smoother than for the TVD schemes, which to

a certain extent compensates for the somewhat denser

matrix blocks. When using lagged evaluation of slope

limiters and WENO weights, the matrix blocks repre-

senting derivatives with respect to s and c reduce to the

same tridiagonal structure as for the first-order scheme.

This is shown for the WENO scheme in Figure 2. Inter-

estingly, we observe that this linearization causes sev-

eral of the derivatives of the polymer equation with

respect to pressure and saturation to become zero.

4 Numerical Experiments

This section presents a series of numerical experiments

that compare and contrast the various schemes described

above. Whereas the schemes are not backed up by rig-

orous analysis of stability and accuracy when applied

to the multidimensional polymer system, the classical

analysis of implicit TVD schemes for scalar equations

([15,43]) and the large body of subsequent work on sim-

ilar explicit schemes, have lead us to expect that these

implicit schemes will be stable and free of spurious os-

cillations.

Unless stated otherwise, we assume a homogeneous,

isotropic permeability, which has been quite arbitrarily

set to 100 md and the porosity is taken to be 0.2. In

all test cases below, we use the fluid data described in

Figure 3. The densities of oil and water are taken to

be 962 and 1080 kg/m3, the oil and water viscosity are

Viscosity multiplier
c µm(c)/µw
0 1
0.5 3
1.0 6
1.5 12
2.0 24
3.0 48

Compressibility
Phase Value [bar−1]
rock 3.00 · 10−5

water 4.28 · 10−5

oil 6.65 · 10−5

Adsorption
c ā(c)
0 0
0.25 0.000012
0.50 0.000016
0.75 0.000019
1.00 0.000020
1.25 0.000021
1.50 0.000023
1.75 0.000025
3.00 0.000025

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

s

krw
kro

Fig. 3 Fluid parameters used for the numerical experiments.
The relative permeabilities krα are formed by linear interpo-
lation of tabulated data.

5 and 0.48 cP, and a Todd–Longstaff mixing parame-

ter of w = 1 corresponding to full mixing is used in all

experiments. Reduction in permeability proved to have

a small effect on our numerical experiments, and with-

out lack of generality, we have therefore set Rk(c) = 1

for simplicity in (3). In some of the examples, we re-

port computational times to indicate the computational

cost of the various schemes. These numbers are likely

afflicted by many artifacts resulting from our relatively

simple implementation in MATLAB and should there-

fore merely be interpreted as rough estimates of relative

performance.

4.1 1D example with high porosity contrast

We start by considering a simple one-dimensional case

to illustrate key ideas and motivate the use of implicit

discretization. Water with polymer is injected at a given

rate from the left (x = 0) and pressure is imposed on

the right (x = L). The grid has 100 equally spaced cells.

By using a 1D model and neglecting compressibility,

we can rewrite the flow equations in Buckley–Leverett

form, which somewhat simplified reads

∂

∂t

[
s

sc+ a(c, x)

]
+
u

φ

∂

∂x

[
f(s, c)

m(c)f(s, c)

]
= 0,

f(s, c) =
λw(s, c)

λw(s, c) + λo(s)
,

where the total flux u is constant and m(c) denotes the

ratio µw,eff/µp,eff. When a is a function of c only, this
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Fig. 4 The upper plot shows the CFL number for the s-
waves (solid lines) and c-waves (dashed lines) as functions of
saturation for two polymer concentrations, c = 0+ and c = 1.
The apparent piecewise linearity of the CFL curve comes from
the fact that our data parameters are tabulated. We observe
that there are several local extrema, meaning that we have
a fractional flux function with several inflection points. The
lower plot shows the fractional flow curve, where a higher
polymer concentration results in a translation of the curve to
the right, so that water breakthrough is delayed and recovery
improved.

hyperbolic system, Qt + u
φF (Q)x = 0, has two families

of waves, an s-wave in which only the water saturation

changes, and a c-wave in which both water saturation

and polymer concentration vary. Let rs and rc denote

the corresponding eigenvalues of F ′(Q). Then, we can

estimate the CFL number of the wave families as (see

Figure 4),

CFLs =
u∆t

φ∆x
rs(s, c), CFLc =

u∆t

φ∆x
rc(s, c).

Figure 5 reports approximate solutions computed

by the explicit and implicit schemes with different time

steps. For the explicit scheme, a time step of three days

exceeds the CFL limit by far and hence we get an un-

stable, oscillatory solution. A time step of one day is

slightly above the CFL limit and hence we get a slight

instability near the water front but very sharp resolu-

tion of the polymer front. By decreasing the time step

further, we get rid of the instability but smear the poly-

mer front. As expected, no instabilities are observed for

the implicit scheme. However, only the second-order ac-

curate solver captures the trailing polymer front.

Problems with uniform petrophysical variables are

seldom encountered in real life, and to illustrate why

implicit discretization is more useful in practice, we

consider a conceptual heterogeneous problem in which

the porosity is reduced by a factor M in the inter-

val [0.1L, 0.2L]. To analyze this case, we transform to

time-of-flight coordinates (τ, t), where τ = xφ/u, and

henceforth assume that u = 1 without loss of gener-

ality. To compare how the low-porosity region affects

the explicit and implicit discretizations, we consider a

simple advective wave, qt + qτ = 0, for which the ef-

fective numerical equations for the first-order schemes

are given as qt + qτ = 1
2 (∆τ ± ∆t)qττ , with positive

sign for the implicit scheme and negative sign for the

explicit scheme. This means that a discontinuity propa-

gating over a period t in time will be smeared to a width

O
(√

t(∆τ ±∆t)). Hence, we can say that the total nu-

merical smearing experienced by a linear discontinuity

as it propagates through the domain is proportional to

9φ

10

(
∆xφ±∆t

)
︸ ︷︷ ︸
high-porosity region

+
φ

10M

(∆xφ
M
±∆t

)
︸ ︷︷ ︸

low-porosity region

.

The numerical smearing is clearly dominated by the

high-porosity region for both schemes. For the explicit

scheme, the time-step is restricted by the fast flow in

the low-porosity region, i.e., ∆t ∝ φ∆x/M . Reducing

the porosity by a factor M means that we not only are

forced to take M times as many time steps, but also end

up with significantly more numerical smearing. With

implicit temporal discretization, the numerical dissipa-

tion decreases with decreasing time step. However, since

the overall smearing is dominated by the high-porosity

region, we can safely use a large CFL number in the low-

porosity region and instead choose time step so that we

achieve acceptable smearing in the high-porosity region.

This will drastically reduce the number of time steps,

and this gain in computational effort can enable us to

introduce high-resolution spatial discretization and/or

improved spatial resolution.

In Figure 6, we consider a case with pure water

flooding simulated with a stable time step and a larger

time step that is stable in the high-porosity region but

exceeds the CFL condition in the low-porosity region.

As expected, oscillations appear in the latter case but

disappear as time evolves, in part because of the self-

sharpening inherent in the non-convex flux function and

in part because of the much stronger numerical smear-

ing experienced once the oscillations propagate into the
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Fig. 5 Plot of saturation and concentration for the first 1D test case. The values are plotted for four different time steps, ∆t
equal to 0.01 days and 0.1 days (solid line), 1 day (dash-dot), and 3 days (dot). All methods have converged in time for ∆t
equal 0.1 days and hence solutions with time steps of 0.01 and 0.1 days cannot be distinguished.

high-porosity region. We hasten to emphasize that a

CFL number above the stability limit was used for il-

lustration purposes only, and that we by no means try

to recommend this sort of dangerous practice. With the

implicit scheme, we get stable solutions for all three

time steps, as expected. Figure 6 also shows that the

displacement profile is somewhat sharper for smaller

time step, but the improved resolution is hardly signif-

icant.

Increasing the order of the discretization naturally

improves the solution. This is shown for the implicit

scheme in Figure 7 for a case of polymer flooding. Since

the explicit schemes need small time steps to satisfy

the CFL condition in the low-porosity region, they in-

troduce a large amount of numerical dissipation in the

high-porosity regions. Hence, the high-order implicit

scheme resolves the displacement fronts as good as the

explicit scheme. Notice also that the low-order implicit

scheme fails to sharply resolve the structure of the oil

bank that arises as the polymer front passes from the

low-porosity to the high-porosity region. This wave is

a transient introduced by the spatially-dependent ad-

sorption term a(c, x) and is not part of an otherwise

self-similar structure. Table 1 reports a comparison of

the computational costs for the explicit and implicit

schemes. When using the same time step as the ex-

plicit schemes, the implicit schemes are significantly

more costly. However, a time step of 0.1 days is be-

yond the stability limit of the explicit schemes, and

Table 1 Comparison between implicit and explicit methods
for the case with two different porosities. We give the total
number of linear solves required for each simulation as well
as the total simulation time. The value of ∆t = 0.03 days
for the explicit scheme corresponds to the time step where
oscillations in the low porosity region start to appear.

Simulation case Linear CPU
∆t (day) method order solves time

0.01 explicit 1st 15307 504.2 s
0.01 2nd 15330 541.0 s
0.03 1st 5297 175.5s
0.03 2nd 5328 184.6s
0.1 implicit 1st 2176 89.7 s
0.1 2nd 2960 223.6 s

1 1st 450 14.8 s
1 2nd 508 33.1 s
2 1st 267 8.5 s
2 2nd 330 20.5 s

when running these in a stable manner, we not only get

higher simulation times, but significantly more smear-

ing of the leading waves. In this example, it is therefore

safe to conclude that the second-order implicit scheme

is at least as effective as the explicit schemes.

4.2 Quarter five-spot: time stepping

In the next example, we consider the classical quar-

ter five-spot test problem, which consists of an injec-

tor and a producer placed diagonally opposite of each
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Explicit, first-order scheme

t = T

t = 3T
t = 8T

0.1L 0.2L

Implicit, first-order scheme

t = T

t = 3T
t = 8T

0.1L 0.2L
Fig. 6 Comparison plots for the pure waterflooding case with regions of different porosity (φ = 0.01 for x ∈ [0.1L, 0.2L] and
φ = 0.2 otherwise). Three different time steps are used, ∆t = 0.01 day (blue solid lines), ∆t = 0.1 (black dashed-dot lines)
and ∆t = 1 (red dashed lines) for the first-order scheme. For the explicit method, only the smallest time step is stable. For
∆t = 0.1 day, the scheme is unstable and gives strong oscillations in the low-porosity regions, but these oscillations disappear
in the high-porosity region as a result of wave interactions and numerical diffusion. The scheme did not converge for ∆t = 1
day.
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Fig. 7 Comparison between implicit high-order (red) and low-order (black) schemes for time steps equal to ∆t = 0.1 day
(solid line) and ∆t = 1 day (dashed line). The blue line shows the solution obtained by the explicit scheme for a refinement of
∆t = 0.01 days.

other in a square domain with no-flow conditions set on

all boundaries. Injection is modeled as a source term

with constant injection rate and production is mod-

elled as a boundary condition with fixed pressure. Fig-

ure 8 shows solutions just after water breakthrough

computed with the first-order scheme (constant recon-

struction) and with minmod, van Leer, superbee, and

WENO reconstructions. The explicit version uses 1600

equal time steps, which corresponds roughly to a unit

CFL number. In this scheme, the phase fluxes are com-

puted based on saturation and concentration values re-

constructed at the beginning of the time step, whereas

the pressure-dependence of the total Darcy flux is treated

implicitly. Our computational setup includes fluid com-

pressibility and thus we generally end up with nonlinear

residual equations. In IMPES and various sequential so-

lution strategies, the pressure (and total Darcy fluxes)

and the saturation/concentrations are computed in se-

quence in separate steps. Here, we solve the fully cou-

pled residual system directly using a Newton method

with a residual tolerance set to 10−3 times the maxi-

mum strength of the source sink. As a result, the ex-

plicit schemes typically need to perform more than one

nonlinear iteration in the first time steps to account for
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1st order: 93.2 sec minmod: 98.1 sec vanleer: 100.8 sec superbee: 101.9 sec weno: 111 sec

1st order: 9.1 sec minmod: 23.5 sec vanleer: 31.5 sec superbee: 71.2 sec weno: 42.2 sec

1st order: 9.1 sec minmod: 13.5 sec vanleer: 13.5 sec superbee: 13.4 sec weno: 16.6 sec

Fig. 8 Comparison of saturation profiles on a quarter five-spot problem computed on a uniform Cartesian grid with 50× 50
cells. The upper row shows explicit schemes with 1600 time steps, the middle row shows implicit schemes with 50 time steps
and fully implicit reconstruction, whereas lagged reconstruction is used in the bottom row. Notice how the leading water front
is sharper resolved than the trailing polymer front. Contour lines: s=0.215, 0.245,. . . ,0.785.

the initial pressure transient. From a nonlinear point of

view, however, this is equivalent to IMPES. Figure 9

reports the number of iterations required by all five

schemes. All five schemes require three iterations in the

first three steps, and then two iterations or less there-

after. For the first-order scheme, the Newton solver con-

verges in one iteration more often than for the second-

order schemes. When second-order reconstructions are

added, the overall system becomes more nonlinear and

coupled, and two iterations are required for a longer ini-

tial period. The plots indicate that the sharper a scheme

resolves discontinuities, the longer the period will be be-

fore numerical diffusion makes the displacement profiles

so smooth that the Newton iterations can converge in

one iteration. The superbee limiter gives steeper slopes

than van Leer, which in turn gives steeper slopes than

minmod. WENO will generally not construct very steep

slopes at discontinuities unless we increase the exponent

` in the smoothness indicator. (Notice that WENO →
ENO as `→∞.)

For the implicit schemes, we use a time-step control

built into MRST. In its simplest form, this time-step

controller takes a set of time step targets (control steps)

and desired number of nonlinear iterations as input.

0
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1st order
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1
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0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

weno

Fig. 9 Number of iterations during the first 100 time steps
for the explicit schemes in Figure 8.

Here, we have used five iterations as our target and a

step target that consists of 50 equally spaced time steps.

To avoid a large initial error, the first implicit time step

is replaced by a ( 1
32 ,

1
32 ,

1
16 ,

1
8 ,

1
4 ,

1
2 ) subdivision to form

a gradual ramp-up. To stay within the upper limit of
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five nonlinear iterations, the controller may reduce the

time step so that any control step is chopped into sev-

eral substeps. If several substeps have been computed

with less than five iterations, the controller will try to

increase the time step so that the iterations increase

towards five again. Figure 10 reports the substeps and

the corresponding number of iterations for each of the

five implicit schemes with fully implicit reconstruction,

whereas Figure 11 shows the corresponding cumulative

number of iterations with fully implicit and lagged re-

construction. For the first-order scheme, the first step of

the ramp-up sequence requires four iterations, whereas

the remaining steps only need three iterations or less.

The scheme is therefore able to complete all controls

steps without any chopping. With the minmod lim-

iter, we get the same behavior for the first five ramp-up

steps. In the sixth and last ramp-up step the number

of iterations increases to four and hence the next step

is chopped in two. The WENO and van Leer schemes

have similar behavior; both are smoother than minmod

(whose limiter has one kink) and can be expected to

require fewer iterations. In this particular case, how-

ever, tht total number of iterations is only slightly less

than for minmod. For the highly compressive superbee

limiter, which has three kinks, the Newton solver strug-

gles more and altogether requires four times as many

iterations in total compared with the minmod limiter.

The number of iterations, and the fact that computing

a second-order reconstruction is more expensive than

the constant reconstruction, explains the difference in

runtimes for the first and second-order schemes. The

high runtime for the WENO scheme is explained by

an inefficient implementation having a large number of

redundant function evaluations. Setting the tolerance

lower than 10−3 had no effect on the contour lines, but

naturally gave more iterations for each of the schemes.

The trends were still the same.

Introducing lagged evaluation of slope limiters and

WENO weights reduces the number of iterations signif-

icantly, particularly for the superbee limiter, but seems

to not have any adverse on stability and only reduces

the accuracy slightly. With lagged reconstructions, all

schemes approximately the same number of iterations

as the constant scheme with fully implicit reconstruc-

tion. Improvements in runtime are disproportionally

larger compared with the reduction in the number of it-

erations. Lagged evaluation not only reduces the nonlin-

earity of J but removes many functional dependencies,

which in turn greatly simplifies the algorithmic com-

plexity and the computational cost of the automatic

differentiation. In other words, the AD library uses sig-

nificantly fewer chain-rule evaluations and collects sig-

nificantly fewer partial Jacobians in the forward accu-

mulation used to construct the overall Jacobian matrix.

An overall computational cost slightly less than twice

that of the first-order scheme is quite promising.

Last, we test the ability of the implicit schemes to

use large CFL number when propagating well-established

displacement fronts. This is important if the schemes

are to provide large-time-step capabilities for compu-

tational efficiency. To this end, we first use an explicit

scheme to compute two well-established displacement

fronts, corresponding to approximately 1/15 and 1/3

of the time to breakthrough for the simulation shown

in Figure 8. Using these solutions as initial data, com-

pute a single time step with each implicit solver cor-

responding to CFL numbers 2k for k = 0, . . . , 9. Fig-

ure 12 reports the observed number of iterations to con-

vergence. Lagged evaluation increases the robustness of

second-order schemes significantly, particularly for the

compressive superbee limiter. The ability to take large

time steps improves as the displacement front propa-

gates into the reservoir. Two factors contribute to this:

For this type of setup, the CFL number is given by the

high flow velocities in the near-well region. At time 5

days (which is approximately 1/3 of the time to water

breakthrough), both discontinuities in the displacement

profile have moved to regions of lower fluid velocities

and thus propagate at CFL numbers that are effectively

lower. Secondly, since the initial condition is obtained

by numerical simulation, it will be more smooth when

sampled at 5 days instead of at 1 day. Repeating the ex-

periments discussed above using tighter tolerances gives

higher number of iterations, but the same qualitative

behavior with respect to schemes and time-step size.

4.3 Quarter five-spot: spatial and temporal

convergence

Figure 8 confirms that using second-order reconstruc-

tion and improved spatial quadrature gives more ac-

curate solution profiles for the explicit schemes, as ex-

pected. For the implicit schemes, the improved resolu-

tion is somewhat masked by increased numerical dis-

sipation introduced by the large time steps, but also

in this case the leading water front and the follow-

ing chemical front are resolved more sharply by the

second-order schemes. To investigate the spatial accu-

racy more systematically, Figure 13 shows the result of

a grid refinement study in which we compare the im-

plicit first-order scheme with the corresponding second-

order scheme using the minmod limiter. The plots show

that as a simple rule of thumb, the second-order scheme

provides (at least) as good resolution as we would get

from the first-order scheme on a 2× 2 refined grid with
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Fig. 10 Number of nonlinear iterations for the five implicit schemes from Figure 8. The bar graph to the right shows the
number of iterations per targeted time step (control step) and how these have been divided into substeps to ensure that the
number of iterations per step (green bars) do not exceed five. Steps that have not converged within 15 iterations are considered
to fail and illustrated by a red bar.

twice as many time steps. Figure 14 confirms that al-

though lagged evaluation of slope limiters will not gen-

erally reproduce the fully implicit solution exactly, even

when the residuals are reduced to machine precision,

the discrepancy of the two solutions seems to converge

toward the same solution as the grid is refined.

Figure 15 reports a similar refinement study with

respect to the time step. Here, we see that the implicit

discretization contributes significantly to numerical dis-

sipation; compare the explicit solution with the implicit

solution for CFL=1. We also see that we can safely in-

crease the CFL number for the implicit scheme to one

order of magnitude beyond the stability limit for the ex-

plicit scheme before the increased numerical dissipation

causes a significant widening of the computed displace-

ment fronts.

4.4 Five spot: grid-orientation errors

The idealized quarter five-spot test case corresponds to

an infinite reservoir produced by a symmetric pattern

consisting of four injectors surrounding a producer that

is repeated to infinity in each direction as illustrated in

Figure 16. With a standard two-point spatial discretiza-

tion, as used in the first-order scheme, any displacement

front will preferentially move along the axial directions

of the grid and this will introduce grid-orientation er-

rors. To assess how increasing the order of the scheme

affects these errors for polymer flooding, we compare

solutions to the five-spot problem computed using the

quarter five-spot and the rotated five-spot setups shown

Figure 16. To get comparable spatial resolution, the ro-

tated grid is set to have approximately twice as many

grid cells, i.e.,
√

2 as many grid cells in each axial direc-

tion. The mobility ratio in the experiment is approxi-

mately equal 21.5.

In the original setup, the preferential flow along the

grid axes will tend to overestimate the frontal move-

ment into stagnant regions and underestimate the move-

ment of the displacement front in the high-flow zones

along the diagonal by smearing the tip of the finger. For

the rotated setup, the preferential flow direction is from

injector to producer and hence the two-point scheme

will tend to overestimate the movement of the front

in the high-flow zone and underestimate its movement

towards the stagnant zones. Figure 17 confirms that

using a second-order scheme counteracts these grid-

orientation errors in the sense that the solutions are

almost identical for the original and rotated computa-

tional setups. Since the underlying grids are uniform

Cartesian, the solutions computed on the original and

rotated geometries will converge towards each other
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Fig. 11 Cumulative number of nonlinear iterations for the
five implicit schemes from Figure 8. Solid lines represent fully
implicit reconstruction and dashed lines lagged reconstruc-
tion.

with increased spatial (and temporal) resolution. For

completeness, this study was repeated using fourth or-

der Gauss quadrature in the flux evaluation, which gave

virtually identical contour lines, but somewhat higher

runtimes.
The plots discussed above only show a snapshot of

the grid-orientation errors at one instant in time. Fig-

ure 18 compares water saturation in the cells contain-

ing the fluid sink, as computed by three of the different

schemes on the original and the rotated geometry. (Grid

sizes are 20× 20 and 28× 28, respectively.) Not only is

the discrepancy in production curves significantly larger

for the first-order scheme, but the scheme fails com-

pletely to distinguish the effect of the two fronts in the

displacement profile.

4.5 More on numerical diffusion

Numerical diffusion generally manifests itself as a full

tensor. When written in streamline coordinates, the nu-

merical diffusion of a purely advective flow (i.e., vis-

cous flow without buoyancy and capillary terms) can

be separated into longitudinal and transverse compo-

nents acting along and orthogonal to the flow direc-

tion, respectively. Since the diffusion tensor is gener-

ally not aligned with the flow direction, there will also

be additional cross terms, but these will be negelected

herein for the sake of the argument. Somewhat simpli-

fied, we can then say that the size of the longitudinal

diffusion explains how numerical smearing affects the

prediction of local displacement efficiency, whereas the

transverse diffusion mainly affects the prediction of vol-

umetric sweep efficiency.

In Section 4.1, we used a simple 1D example to illus-

trate how numerical smearing in the longitudinal direc-

tion is affected by heterogeneities and variation in effec-

tive CFL numbers. To quickly recap, numerical smear-

ing decreases as the time step increases towards the

CFL limit for an explicit scheme. For implicit schemes,

the smearing increases with the size of the time step.

In polymer flooding, and similar water-based EOR pro-

cesses, chemical or biological components responsible

for tertiary recovery will typically follow slow waves.

To compare explicit and implicit schemes, we disregard

self-sharpening effects which tend to counteract numer-

ical smearing, and observe that slow waves experience

more numerical smearing than fast waves for explicit

schemes, whereas slow waves experience less numerical

smearing than fast waves for implicit schemes. Trans-

verse diffusion depends primarly on grid size and the

local orientation of the flow relative to the individual

grid cells and does, unlike longitudinal diffusion, not

depend on the time step or the specifics of the time-

integration scheme. Altogether, this suggests that even

though implicit schemes tend to smear water fronts and

other fast waves significantly more than similar explicit

schemes, they may still predict trailing waves and vol-

umetric sweep just as accurately.

In an attempt to illustrate and substiantiate this

claim, we will study a simple and conceptual model of

a channelized reservoir. Our setup consists of a rect-

angular 500 × 1000 m2 domain with a homogeneous

and isotropic background permeability of 100 md. The

reservoir contains two channels of a somewhat higher

permeability of 200 md oriented in the north–south di-

rection for x ∈ [100, 200] and x ∈ [300, 400]. The poros-

ity is 0.25 inside the channels and 0.2 outside. This

creates a mild heterogeneity effect so that the displace-

ment front will move somewhat faster in the channel

than in the background. Water with polymer is injected

at the south edge of the reservoir at a rate proportional

to the porosity in each cell and fluids are produced

at the north edge. Figure 19 shows approximate so-

lutions computed by the implicit and explicit schemes

with constant and van Leer reconstructions. For the

explicit schemes we use a time step of 2 days to get to

the final simulation time of 5 years, and for the implicit
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Fig. 12 Test of large-time-step capability on a homogeneous quarter-five spot for the various implicit schemes with fully
implicit (top) and lagged (bottom) evaluation of slope limiters and WENO weights. The test consists of simulating a single
time step, starting from a well-established displacement profile sampled at time 1 day (left) and at time 5 days (right), which
correspond approximately to 1/15 and 1/3 of the time to water breakthrough. The color in each cell reports the number of
iterations required to converge a single time step with the given CFL number. White color indicates no convergence.

schemes we used control step of 50 days with a ramp-up

as discussed above. Using the runtime of the first-order

implicit scheme as a reference, the explicit schemes are

7.1 and 7.3 times slower, whereas the implicit van Leer

scheme is 1.2 times slower.

As expected, the explicit van Leer scheme gives by

far the best resolution, but is also the most compu-

tationally costly. More interestingly, the implicit van
Leer scheme appears to be at least as accurate as the

first-order explicit scheme. Starting with the north–

south cross-section inside the western channel, we ob-

serve that whereas the first-order explicit scheme com-

putes a sharper water front, the implicit van Leer scheme

gives slightly better resolution of the trailing chemical

wave. For the cross-section in the middle of the lower-

permeable region in between the channels, the implicit

van Leer scheme resolves the trailing chemical wave sig-

nificantly sharper and provides almost identical resolu-

tion for the leading water front. The two cross-sections

sampled in the east-west direction seem to confirm that

all four schemes have the same amount of transverse dif-

fusion since each transition between flow in the back-

ground and a channel is resolved with the same number

of grid cells. There are differences in saturation values

inside each permeability region, but these are a result of

differences in longitudinal diffusion. This is particularly

evident for the fourth cross-section, where the second-

order schemes capture the constant region between the

water front and the chemical wave inside the channels

most accurately. Notice also that the explicit van Leer

scheme is the only one to capture that the piecewise

linear mobility functions induce numerical artifacts in

the form of small wiggles in the solution.

4.6 Including buoyancy

In the previous numerical examples, buoyancy was not

included in the simulations. To study if including buoy-

ancy makes nonlinear convergence more difficult for

the numerical schemes discussed herein, we consider a

simple yet challenging example. Let a square domain

of length L initially be filled with water and oil. Wa-

ter saturation and polymer concentration are set to

(s, c) = (0.8, 1) for x ≤ L/2 and (s, c) = (0.2, 0) for

x > L/2. No-flow boundary conditions are imposed on

the outer boundaries, and the initial pressure is equal

and constant over the entire domain. Water, polymer,

and oil will move only due to buoyancy. Figure 20 shows

initial water saturation and polymer concentration and

at two later times computed on a 50 × 50 grid using

minmod reconstruction in a fully implicit framework.

Figure 21 reports the cumulative number of iter-

ations needed by the nonlinear solver to perform the

simulation in Figure 20 for the five different recon-

structions for the fully implicit formulation and with
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Fig. 16 Well setup for the five-spot test cases used to study
grid-orientation errors.

lagged evaluation of slope limiters and WENO weights.

All simulations use the same time-step control as dis-

cussed in Section 4.2. Consistent with our observations

above, the first-order scheme uses less iterations than

the high-resolution schemes. Among the latter, minmod

with lagged evaluation is the least expensive, requiring

approximately 15% more iterations than the first-order

scheme. The superbee limiter needs significantly more

iterations than the other reconstructions when used in

a fully implicit setup, whereas with lagged evaluation,

the scheme is as efficient the fully implicit scheme with

van Leer limiter. Also important, no ”flip-flopping” of

the upstream direction in equation (11), which poten-

tially could destroy nonlinear convergence, is observed

for any of the schemes.

5 Conclusions

In this work, we studied explicit and implicit schemes

with formal second-order spatial accuracy applied to

polymer flooding. We found that it is (relatively) simple

to implement such schemes using automatic differenti-

ation and that the resulting schemes work well with

standard techniques for time-step control. The use of

a high-resolution spatial stencil improves the accuracy

both for smooth and discontinuous parts of the solu-

tion and reduces grid-orientation effects for the rela-

tive simple polymer-flooding scenarios studies herein.

We also presented a simple illustrative case, as well as

several numerical experiments, all demonstrating that

implicit time discretizations are more suitable than ex-

plicit time integration. In particular, we demonstrated

that although implicit discretization introduces signfi-

cant numerical smearing that may adversely affect the

resolution of fast waves, the resolution of trailing chem-

ical waves is as accurately for a high-order implicit

scheme as for a first-order explicit scheme. Equally im-

portant, transverse diffusion introduced by the schemes

seems to be largely independent of the time step and

scheme used for time integration. We have also run

a number of expriments using strongly heterogeneous

rock properties sampled from the SPE 10 benchmark,

which for brevity have not been reported herein but

all confirm the discussion above. To what extent these

observations carry over to more realistic 3D cases with

strongly heterogeneous geology represented on grids with

non-Cartesian cell geometries and complex topology is

still an open question. Nonetheless, we believe that our

results provide strong arguments for why implicit schemes

with high-resolution stencils is an interesting technol-

ogy that should be further researched.

High computation cost is key argument against the

use of higher-resolution discretizations as part of a fully

implicit formulation. To make these methods amenable

for realistic flow scenarios, preference should be given to

spatial stencils and nonlinear limiter functions that are

as smooth as possible to avoid exacerbating the non-

linearity of the implicit flow equations. We also showed

that using lagged evaluation of slope limiters or WENO
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geometry.

weights in the higher-order reconstructions not only

improves the iteration count of the nonlinear solver,

while retaining the accuracy and stability of the origi-

nal scheme, but also leads to a pronounced reduction in

the computational cost of the automatic differentiation

used for linearization. This is an important practical

step towards utilization of fully implicit high-resolution

schemes for contemporary simulation models of real

reservoirs.
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