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Abstract The present work describes a fully implicit simulator for polymer injec-
tion implemented in the free, open-source MATLAB Reservoir Simulation Toolbox
(MRST). Polymer injection is one of the widely used enhanced oil recovery (EOR)
techniques and complicated physical process is involved, which makes accurate sim-
ulation very challenging. The proposed work is intended for providing a powerful
and flexible tool to investigate the polymer injection process in realistic reservoir
scenarios.

Within the model, the polymer component is assumed to be only transported
in the water phase and adsorbed in the rock. The hydrocarbon phases are not
influenced by the polymer and they are described with the standard, three-phase,
black-oil equations. The effects of the polymer are simulated based on the Todd–
Longstaff mixing model, accounting for adsorption, inaccessible pore space, and
permeability reduction effects. Shear-thinning/thickening effects based on shear
rate are also included by the means of a separate inner-Newton iteration process
within the global nonlinear iteration. The implementation is based on the auto-
matic differentiation framework in MRST (MRST-AD), and an iterative linear
solver with a constrained pressure residual (CPR) preconditioner is used to solve
the resulting linear systems efficiently.

We discuss certain implementation details to show how convenient it is to use
the existing functionality in MRST to develop an accurate and efficient polymer
flooding simulator for real fields. With its modular design, vectorized implemen-
tation, support for stratigraphic and general unstructured grids, and automatic
differentiation framework, MRST is a very powerful prototyping and experimen-
tation platform for development of new reservoir simulators.
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To verify the simulator, we first compare it with a commercial simulator and
good agreement is achieved. Then, we apply the new simulator to a few real-
istic reservoir models to investigate the effect of adding polymer injection and
computational efficiency is demonstrated. Finally, we combine existing optimiza-
tion functionality in MRST with the new polymer simulator to optimize polymer
flooding for two different reservoir models. We argue that the presented software
framework can be used as an efficient prototyping tool to evaluate new models for
polymer-water-flooding processes in real reservoir fields.

Keywords MRST · Open-source implementation · Polymer flooding · Black-oil ·
Flow diagnostics

1 Introduction

Water-based methods for enhanced oil recovery (EOR) consist of adding active
chemical or biological substances that modify the physical properties of the fluids
and/or the porous media at the interface between oil and water [7]. Polymer flood-
ing is one of the most widely applied water-based EOR techniques [23]. In polymer
flooding, polymer molecules of relatively large size are added to the injected water
to reduce its mobility and hence improve the local displacement and the volumetric
sweep efficiency of the waterflood [13,7,24]. The most important mechanism is that
the dissolved polymer molecules increase the brine viscosity, which increases the
saturation behind the water front, enables the water drive to push more oil through
the reservoir and reduces its tendency of channeling through high-flow zones. The
presence of polymer may also reduce the permeability of the reservoir rock. On-
shore, polymer flooding can be considered a mature technology, having migrated
from USA to China where the world’s largest polymer-driven oil production is
found in the Daqing Oil field. Offshore applications are few and more challenging
because of high-salinity formation water, well placement and large well spacing,
stability under injection, produced water and polymer treatment and other HSE
(health, safety, and environment) requirements, logistic difficulties, etc.

In its most basic form, polymer flooding is described by a flow model that
consists of two or three phases and three or four fluid components. Compared
with the standard black-oil models, the presence of long-chain polymer molecules
in the water phase introduces a series of new flow effects. Depending on the types
of the polymer used, and also the rock and brine properties, polymer can be ad-
sorbed onto the surface of the reservoir rock, and contribute to reducing porosity
and permeability. Polymer flooding is in reality a miscible process, but is typi-
cally simulated on a field scale using immiscible flow models which use empirical
mixture models to account for unresolved miscibility effects. Moreover, the diluted
polymer solution is in most cases pseudoplastic or shear-thinning, and hence has
lower viscosity near injection wells and other high-flow zones where shear rates
are high. This non-Newtonian fluid rheology improves injectivity and gradually
introduces the desired mobility control in terms of a stronger displacement front,
but may also reduce sweep efficiency since the polymer solution will have a higher
tendency of flowing through high-permeable regions. Polymer solutions can also
exhibit pseudodilatant or shear-thickening behavior, which improves sweep effi-
ciency and reduces injectivity. Understanding and being able to accurately sim-
ulate the rheological behavior of the polymer-water mixture on a reservoir scale
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is therefore important to design successful polymer injection projects. In addition
to the basic effects discussed so far, the viscosity and mobility-control of a poly-
mer flood tends to be significantly affected by the fluid chemistry of the injected
and resident water. More advanced models of polymer flooding therefore account
for pH effects, salts, etc. Likewise, to achieve better oil recovery, polymer is often
combined with other EOR processes, such as surfactant-polymer flooding, alkali-
surfactant-polymer (ASP) flooding, polymer-alternating-gas (PAG) [8] processes,
etc., within which polymer plays an important role for mobility ratio control.

Herein, we will introduce a simulator framework that has been developed on
top of the open-source MATLAB Reservoir Simulation Toolbox [16] as a versatile
and flexible test bench for rapid prototyping of new models of polymer flooding.
The simulator is – like most commercial simulators – based on a black-oil formu-
lation with simple first-order, upstream weighting for spatial discretization and
fully implicit time stepping. This offers unconditional stability for a wide range
of physical flow regimes and reservoir heterogeneities. Moreover, combining the
fully implicit formulation with automatic differentiation ensures that it is simple
to extend the basic flow models with new constitutive relationships, extra conser-
vation equations, new functional dependencies, etc. By using numerical routines
and vectorization from MATLAB combined with discrete differential and averag-
ing operators from MRST, these equations can be implemented in a very compact
form that is close to the mathematical formulation [6,10]. Once you have imple-
mented the discrete equations, the software will generate the discretizations and
linearizations needed to obtain a working simulator that by default is designed to
run on general unstructured grids. To test the performance of your new simulator,
you can use one of the many grid factory routines and routines for generating
petrophysical data to set up simplified and idealized test cases with a large variety
of structured and unstructured grid formats in two and three spatial dimensions.
Alternatively, you can also use the functionality for reading and parsing commer-
cial input decks to set up proper validation on test cases having the complexity
encountered in the daily work of reservoir engineers.

Using a scripting language like MATLAB will generally introduce a computa-
tional overhead, which can be quite significant for small systems. In our experience,
however, the lack of computational efficiency is by far out-weighted by a more effi-
cient development process, which is largely independent on your choice of operating
system. At any point, you can stop the execution of the simulator to inspect your
data, modify their values or the data structure itself, execute any number of state-
ments and function calls, and go back and reiterate parts of the program, possibly
with modified or additional data. For larger systems, the majority of the computa-
tional time of a well-designed simulator should be spent processing floating-point
numbers. For this, MATLAB is efficient and fully comparable with compiled lan-
guages. Tests on two- and three-phase models with the order of ten to hundred
thousand cells show that MRST simulators based on automatic differentiation are
between two and ten times slower than fully optimized commercial simulators.

In the following, we will review the basic flow equations of polymer flooding and
discuss how to formulate an efficient strategy that uses a separate inner Newton
iteration process within the global nonlinear solution process. We then introduce
key elements of the MRST software in some more detail and outline how we have
applied the flexible grid structure, discrete differential operators, automatic differ-
entiation, and object-oriented framework, to develop a new and efficient polymer
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simulator that is readily applicable to simple conceptual models as well as models
having the full complexity of real assets. We end the paper by presenting a series
of numerical test cases for verifying and validating the simulator. To make new
simulator prototypes capable of handling realistic flow models on large models,
the underlying framework offers CPR-type preconditioners in combination with
multigrid linear solvers, automated time-step selection, etc. In a recent paper, we
also discussed how to formulate sequential solution strategies and use these to
introduce a highly efficient multiscale pressure solver for polymer flooding [3].

2 Model Equations

In this section we will state our physical assumptions and outline the flow equations
for polymer flooding, which are built as an extension of a general black-oil model.

2.1 The black-oil model

The black-oil model is a special multicomponent, multiphase flow model with no
diffusion among the fluid components. The name 'black-oil' refers to the assump-
tion that various hydrocarbon species can be lumped together to form two com-
ponents at surface conditions – a heavy hydrocarbon component called 'oil' and a
light component called 'gas'. At reservoir conditions, the two components can be
partially or completely dissolved in each other, depending on the pressure, forming
a liquid oleic phase and a gaseous phase. In addition, there is an aqueous phase,
which herein is assumed to consist of only water. The corresponding continuity
equations read,

∂t(φbwsw) +∇ · (bwvw)− bwqw = 0, (1a)

∂t[φ(boso + bgrvsg)] +∇ · (bovo + bgrvvg)− (boqo + bgrvqg) = 0, (1b)

∂t[φ(bgsg + borsso)] +∇ · (bgvg + borsvo)− (bgqg + borsqo) = 0. (1c)

Here, φ is the porosity of the rock while sα denotes saturation, pα phase pressure,
and qα the volumetric source of phase α. The inverse formation-volume factors bα,
which measure the ratio between the bulk volumes of a fluid component occupied
at surface and reservoir conditions, and the gas-oil ratio rs and oil-gas ratio rv,
which measure the volumes of gas dissolved in the oleic phase and oil vaporized in
the gaseous phase, respectively, are all user-specified functions of phase pressures.
The phase fluxes vα are given from Darcy’s law

vα = −λαK(∇pα − ραg∇z), α = o, w, g. (2)

Here, K is the absolute permeability of the reservoir rock, while λα = krα/µα
is the mobility of phase α, where krα is the relative permeability and µα is the
phase viscosity. The model is closed by assuming that the fluids fill the pore space
completely, so + sw + sg = 1, and by supplying saturation-dependent capillary
functions that relate the phase pressures. Altogether, the equation system will
have three primary unknowns. Since we are going to study water-based EOR, we
choose the first two to be water pressure pw and water saturation sw. The third
unknown will depend on the phases present locally in each cell: If only the aqueous
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and liquid phases are present, we choose rs, whereas rv is chosen when only the
aqueous phase is present. If all phases are present, rs and rv depend on pressure
and we hence choose sg as the last unknown.

To get a complete model, we also need to support initial and boundary condi-
tions. Herein, we will only consider problems with no-flow conditions on the outer
boundaries and assume that the initial condition is supplied entirely by the user,
e.g., as a hydrostatic pressure and fluid distribution. In addition, we need extra
well equations to compute the volumetric source terms qα. To this end, we use a
semi-analytical model [21]

qα = λαWI(pw − p), (3)

where p is the reservoir pressure (inside a grid cell) and pw is the pressure inside
the wellbore. The well index WI accounts for rock properties and geometric factors
affecting the flow. The flow inside the wellbore is assumed to be instantaneous, so
that fluids injected at the surface will enter the reservoir immediately. Likewise,
the wellbore is assumed to be in hydrostatic equilibrium, so that the pressure at
any point can be computed as a hydrostatic pressure drop from a datum point
called the bottom hole, i.e., pw = pbh +∆ph(z). Wells are typically controlled by
surface rate or the bottom-hole pressure. These controls are given as a set of extra
equations that impose target values for fluid rates and bottom-hole pressures.
And also, a certain logic that determines what happens if the computed rates or
pressures violate operational constraints, in which case a well may switch from
rate control to pressure control, shut in hydrocarbon rates become too low, etc.

2.2 The polymer model

In the present model, we assume that polymer is transported in the aqueous phase
and that polymer changes the viscosity of this phase, but does not affect the liquid
oleic and gaseous phases. The corresponding continuity equation reads,

∂t
(
φ(1 − sipv)bwswc

)
+ ∂t

(
ρrc

a(1 − φ)
)

+ ∇ · (bwvpc) − bwqwc = 0. (4)

Here, c ∈ [0, c∗] is the polymer concentration given in units of mass per volume of
water and c∗ is the maximum possible concentration, ca = ca(c) is the polymer
adsorption concentration, ρr is the density of the reservoir rock, and sipv is the
inaccessible (or dead) pore volume. The reduced mobility of the mixture of pure
water and diluted polymer is modeled by introducing effective mixture viscosities
µw,eff and µp,eff that depend upon the polymer concentration. This gives modified
Darcy equations of the form,

vw = − krw(sw)

µw,eff(c)Rk(c)
K
(
∇pw − ρwg∇z

)
, (5)

vp = − krw(sw)

µp,eff(c)Rk(c)
K
(
∇pw − ρwg∇z

)
. (6)

Here, the non-decreasing function Rk(c) models the reduced permeability experi-
enced by the water–polymer mixture as a result of adsorption of polymer onto the
rock’s surface.
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Inaccessible pore space. Many polymer flooding experiments show that polymer
propagates faster through a porous medium than an inert chemical tracer dissolved
in the polymer solution [13]. There are two reasons for this: First of all, large-sized
polymer molecules cannot enter narrow pore throats and dead-end pore channels.
Secondly, the free tumbling of polymer molecules is only possible at the center of
the pore channels, away from the surface of the pore walls. Hence, the polymer
solution can only flow through a fraction of the pore space. In (4), this effect is
modeled by the scalar rock parameter sipv, which is defined as the amount of the
pore volume inaccessible to the polymer solution for each specific rock type [22].

Adsorption. Polymer may attach to the rock surface through physical adsorp-
tion, which will reduce the polymer concentration and introduce a resistance to
flow that reduces the effective permeability of water. This process is assumed to
be instantaneous and reversible and is modeled through the accumulation term
ρrc

a(1− φ) in (4).

Permeability reduction. The rock’s effective permeability to water can be re-
duced, primarily by polymer adsorption but also as a result of polymer molecules
that become lodged in narrow pore throats. The permeability reduction Rk rep-
resenting this effect is given as,

Rk(c, cmax) = 1 + (RRF− 1)
ca(c, cmax)

camax
, cmax(x, t) = max

s≤t
c(x, s), (7)

where camax is the maximum adsorbed concentration and the hysteretic residual
resistance factor RRF ≥ 1 is defined as the ratio between water permeability
measured before and after polymer flooding. Both these quantities depend on the
rock type.

Effective viscosities. To compute the effective viscosities of the water–polymer
mixture, we will use the Todd–Longstaff mixing model [25]. In this model, the
degree of mixing of polymer into water is represented by a mixing parameter
ω ∈ [0, 1], which generally depends on the displacement scenario, the geological
heterogeneity, etc. If ω = 1, water and polymer are fully mixed, whereas the
polymer solution is completely segregated from pure water if ω = 0. Let µfm =
µfm(c) denote the viscosity of a fully mixed polymer solution, then the effective
polymer viscosity is calculated as

µp,eff = µfm(c)ω · µ1−ω
p , (8)

where µp = µfm(c∗). The standard way of defining µfm is to write µfm =
mµ(c)µw, where the viscosity multiplier mµ is a user-prescribed function. The
partially mixed water viscosity is calculated in a similar way as

µpm = µfm(c)ω · µ1−ω
w . (9)

The effective water viscosity is then calculated by summing the contributions from
the polymer solution and the pure water. Setting c̄ = c/c∗ results in the following
alternative expression

1

µw,eff
=

1− c̄
µpm

+
c̄

µp,eff
, µw,eff =

mµ(c)ω µw
1− c̄+ c̄/mµ(c∗)1−ω . (10)
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2.3 Rheology of the polymer solution

The viscosity (or thickness) of a fluid is defined as the ratio between the shear stress
and the shear rate and measures the resistance of a fluid mass to change its form.
The aqueous, oleic, and gaseous phase in the black-oil model all have Newtonian
viscosity, which means that the viscosity is independent of the experienced shear
rate and can be modeled as a constant or as a pressure and/or temperature-
dependent quantity. Polymer solutions, on the other hand, generally have shear-
thinning viscosities. As shear rates increase, polymer molecules are elongated and
aligned with the flow direction. Once this shear effect becomes sufficiently strong,
the molecules will uncoil and untangle, causing a decrease in the effective viscosity
of the water-polymer mixture. (Polymer solutions may also be shear-thickening,
but this is less common).

Herein, we will represent shear effects using the same model as in a commercial
simulator [22]. This model assumes that shear rate of water is proportional to the
water velocity, as a result, the calculation of shear effect with this model is based
on water velocity uw. This assumption is not valid in general, but is reasonable
when applied to a single rock type within reservoirs. A shear factor Z is introduced
to describe the shear effect, which is calculated as

Z =
µw,sh(uw,sh)

µw,eff
=

1 + (mµ(c)− 1)msh(uw,sh)

mµ(c)
, (11)

where the multiplier msh ∈ [0, 1] is a user-prescribed function of the unknown
shear-modified water velocity uw,sh, µw,eff is the effective water viscosity (10)
without considering the shear effect. With no shear effect (msh = 1), we recover
the effective water viscosity, whereas the shear viscosity equals µw,eff/mµ(c) in the
case of maximum shear thinning (msh = 0). To calculate the unknown velocity
uw,sh, we first introduce the effective water velocity uw,0 computed from (5) with
no shear effect, and then use the relation

uw,sh = uw,0
µw,eff

µw,sh(uw,sh)

combined with (11) to derive the following implicit equation for uw,sh,

uw,sh
[
1 + (mµ(c)− 1)msh(uw,sh)

]
−mµ(c)uw,0 = 0. (12)

Here, uw,0 is the un-sheared water velocity.

Once (12) is solved for uw,sh, we can calculate shear factor Z from (11) and
calculate the shear-modified viscosity µw,sh and µp,sh as

µw,sh = µw,effZ µp,sh = µp,effZ.

In practice, we compute the modified phase fluxes directly as

vw,sh =
vw
Z

vp,sh =
vp
Z

to avoid repeated computation.
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MRST core

Data structures: grid, petrophysics, wells, b.c., . . .
I/O, grid processing, AD library, plotting, . . .

ad-core

General simulation framework: abstract model
classes, time-step/iteration control, linearizations,
linear solvers, hooks for I/O and plotting, . . .

ad-blackoil

General 3-phase black-oil simulator with dissolu-
tion and vaporization, specialized 1- and 2-phase
models, CPR preconditioning

ad-props

Initialization of fluid models from ECLIPSE input
decks

deckformat

Input of ECLIPSE simulation decks: reading, con-
version to SI units, and construction of MRST
objects for grids, fluids, rock properties, and wells

mrst-gui

Graphical interfaces for interactive visualization of
reservoir states and petrophysical data

ad-eor

Fully implicit simulators for water-based EOR:
polymer and surfactant

core functionality

utility module

AD-OO module

Fig. 1: Modules from MRST used to implement a fully implicit polymer simulator.

3 The Three-Phase Black-Oil Simulator in MRST

In this section, we will discuss how to discretize and solve the basic black-oil equa-
tions and how to implement these discretizations and solvers using functionality
for rapid prototyping from the open-source MRST software to obtain a simulator
framework that is efficient and simple to extend with new functionality. However,
before we start discussing the discretizations and solvers, we give a brief introduc-
tion to [16]; more details can be found in [11], [6], and [10].

The essence of MRST is a relatively slim core module mrst-core that con-
tains a flexible grid structure and a number of grid factory routines; routines for
visualizing grids and data represented on cells and cell faces; basic functionality
for representing petrophysical properties, boundary conditions, source terms and
wells; computation of transmissibilities and data structures holding the primary
unknowns; basic functionality for automatic differentiation (AD); and various low-
level utility routines. The second, and by far the largest part of the software, is a set
of add-on modules that implement discretizations and solvers; more complex data
structures, extended grid formats, and visualization routines; more advanced AD
functionality for building simulators; reading and processing of industry-standard
input decks; as well as a wide variety of simulators, graphical user interfaces, and
workflow tools. Many of these modules offer standalone functionality built on top
of mrst-core and standard MATLAB routines. More advanced simulators and
workflow tools, on the other hand, typically rely on functionality from many of
the other MRST modules. The majority of the software that is publicly available
is quite mature and well documented in a format similar to that used in standard
MATLAB functions. Most modules also offer examples and tutorials written in a
workbook format using cell-mode scripts. Herein, we focus on the AD-OO family
of modules rapid prototyping of fully implicit simulators, see Figure 1.

3.1 Grids and discrete differentiation operators

When working with grids that are more complex than simple rectilinear boxes,
one needs to introduce some kind of data structure to represent the geometry and
topology of the grid. In MRST, we have chosen to use a quite rich format for
unstructured grids, in which general geometric and topological information is al-
ways present and represented explicitly regardless of whether a specific grid allows
for simplifications. The reason for this is that we want to ensure interoperability
among different grid types and computational tools, and ensure maximal flexibility
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Fig. 2: Illustration of grids in MRST. The upper plot shows the relation between
cells and faces which can be used to define discrete differentiation operators. The
lower plots show various grids of increasing complexity, from a simple rectilinear
grid to a model of the Gullfaks field from the Norwegian North Sea.

when developing new methods. As a result, grid and petrophysical properties are
passed as input to almost all simulation and workflow tools in MRST. For stan-
dard low-order, finite-volume discretizations one does not need all this information
and in many simulators, grid and petrophysical parameters are only seen explicitly
by the preprocessor, which constructs a connection graph with cell properties and
pore volumes associated with vertices and inter-cell transmissibilities associated
with edges. To simplify the presentation, we will herein only discuss this infor-
mation and show how it can be used to build abstract operators implementing
powerful averaging and discrete differential operators that later will enable us to
write the discrete flow equations in a very compact form.

Figure 2 illustrates parts of the unstructured grid format, in which grids are
assumed to consist of a set of matching polygonal (2D) or polyhedral (3D) cells
with matching faces. These grids are represented using three data objects – cells,
faces, and nodes – which contain the geometry and topology of the grid. To form
our discrete differential operators, we basically need two mappings. The first is
the map F (c), which for each cell gives the faces that bound the cell. The second
is a mapping that brings you from a given cell face f to the two cells C1(f) and
C2(f) that lie on opposite sides of the face. In the following we will use boldfaced
letters to represent arrays of discrete quantities and use the notation q[c] and q[f ]
to denote the element of an array q corresponding to grid cell c and cell face f ,
respectively.

We can now define discrete counterparts of the continuous divergence and
gradient operators. The div operator is a linear mapping from faces to cells. If
v[f ] denotes a discrete flux over face f with orientation from cell C1(f) to cell
C2(f), then the divergence of this flux restricted to cell c is given as

div(v)[c] =
∑

f∈F (c)

sgn(f)v[f ], sgn(f) =

{
1, if c = C1(f),

−1, if c = C2(f).
(13)
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∂
∂y

∂
∂x

∂
∂y

∂
∂x

Fig. 3: The sparsity structure of the matrix D used to define discrete differential
operators for three different 2D grids. The two Cartesian grids consist of two blocks
that each have a clear banded structure.

The grad operator maps from cell pairs to faces. If, for instance, p denotes the
array of discrete cell pressures, the gradient of this cell pressure restricted to face
f is defined as

grad(p)[f ] = p[C2(f)]− p[C1(f)]. (14)

If we assume no-flow conditions on the outer faces, the discrete gradient operator
is the adjoint of the divergence operator as in the continuous case, i.e.,∑

c

div(v)[c] p[c] +
∑
f

grad(p)[f ] v[f ] = 0.

Since div and grad are linear operators, they can be represented by a sparse matrix
D so that grad(x) = Dx and div(x) = −DTx. Figure 3 shows the sparsity
structure of D for three different 2D grids. In addition, we need to define the
transmissibilities that describe the flow across a cell face f given a unit pressure
drop between the two neighboring cells i = C1(f) and k = C2(f). To this end, let
Ai,k denote the area of the face, ni,k the normal to this face, and ci,k the vector
from the centroid of cell i to the centroid of the face. Then, the transmissibility is
defined as

T[f ] =
[
T−1
i,k + T−1

k,i

]−1
, Ti,k = Ai,kKi

ci,k · ni,k
|ci,k|2

, (15)

where Ki is the permeability tensor in cell i with primal axes aligned with the
grid axes. To provide a complete discretization, we also need to supply averaging
operators that can map rock and fluid properties from cells to faces. For this, we
will mainly use arithmetic averaging, which in its simplest form can be written

avga(q)[f ] = 1
2

(
q[C1(f)] + q[C2(f)]

)
.

3.2 Discrete flow equations for black-oil

The discrete operators defined above can be used to discretize the flow equations
in a very compact form. If we use a first-order, implicit temporal discretization and
a standard two-point spatial discretization with upstream weighting, the discrete
conservation for the aqueous phase can be written as

1

∆t

(
φ[c] b[c] s[c]

)n+1
− 1

∆t

(
φ[c] b[c] s[c]

)n
+div(bv)[c]n+1 −

(
b[c]q[c]

)n+1
= 0,

(16)
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where we have omitted the subscript 'w' for brevity. To evaluate the product of
the inverse formation-volume factor and the phase flux at the cell interfaces, we
introduce the operator for extracting the upstream value

upw(h)[f ] =

{
h[C1(f)], if grad(p)[f ]− g avga(ρ)[f ]grad(z)[f ] > 0,

h[C2(f)], otherwise.
(17)

Then, the discrete version of Darcy’s law multiplied by bw reads

(bv)[f ] = −upw(bλ)[f ] T[f ]
(
grad(p)[f ]− g avga(ρ)[f ] grad(z)[f ]

)
. (18)

If we now collect the discrete conservation equations for the aqueous, oleic, and
gaseous phases along with the well equations – all written on residual form – we
can write the resulting system of nonlinear equation as

R(x) = 0, (19)

where x is the vector of unknown state variables at the next time step. The stan-
dard way to solve such a nonlinear system is to use Newton’s method. That is,
we write x = x0 +∆x, and use a standard multidimensional Taylor expansion to
derive the iterative scheme,

J(xi)
(
xi+1 − xi

)
= −R(xi), (20)

where J = dR/dx is the Jacobian matrix of the residual equations.

3.3 Automatic differentiation in MRST

Before continuing to describe our implementation of the black-oil simulator, we
give a quick introduction to automatic differentiation (AD) for the benefit of read-
ers not familiar with this powerful technique. Automatic differentiation – also
known as algorithmic or computational differentiation – is a set of techniques for
simultaneous numerical evaluation of a function and its derivatives with respect
to a set of predefined primary variables. The key idea of AD is that every func-
tion evaluation will execute a sequence of elementary arithmetic operations and
functions, for which analytical derivatives are known. To exemplify, let x be a
scalar variable and f = f(x) an elementary function. The AD representations
are 〈x, 1〉 and 〈f, fx〉, where 1 is the derivative dx/dx and fx is the numerical
value of the derivative f ′(x). By applying the chain rule in combination with stan-
dard rules for addition, subtraction, multiplication, division, and so on, we can
now automatically compute derivatives to within machine precision, e.g., addition:
〈f, fx〉+ 〈g, gx〉 = 〈f + g, fx + gx〉, cosine: cos(〈f, fx〉) = 〈cos(f),− sin(f)fx〉, etc.
The same principle can easily be extended to higher-order derivatives and partial
derivatives of functions of multiple variables.

In MATLAB, this functionality can be elegantly implemented using classes and
operator overloading. When MATLAB encounters an expression a+b, the software
will choose one out of several different addition functions depending on the data
types of a and b. All we now have to do is introduce new addition functions for the
various classes of data types that a and b may belong to. You can read more about
how this is done in [17]. MRST implements automatic differentiation as part of
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mrst-core. A new AD variable is instantiated by the call x=initVariablesAD(x0),
where x0 is a scalar or an array containing values to be used for subsequent function
evaluations. Any new variable f computed based on x will now automatically
become an AD variable, whose value and derivatives are accessed as f.val and
f.jac, respectively. The AD class in mrst-core differs from most other libraries
in the sense that instead of representing the Jacobian with respect to multiple
variables as a single matrix, we have chosen to let jac be a list of sparse matrices
that each represents the derivatives with respect to a single primary variable.
In solution algorithms, one may want to separate pressure, compositions, and
variables associated to wells, and by keeping the sub-Jacobians separate and not
assembling directly into one large sparse matrix, we avoid manipulating subsets
of large sparse matrices, which has low performance in MATLAB. Moreover, this
approach makes it simpler for users who wish to manipulate matrix blocks that
represent specific sub-equations in the Jacobian of a full equation system.

3.4 Making a black-oil simulator: procedural approach

Having introduced you to automatic differentiation, we will now show how this
idea can be used to implement a fully implicit solver for the discrete black-oil
equations on residual form (16). To keep track of all the different entities that are
part of the simulation model, MRST introduces a number of data objects:

– a state object, which basically is a MATLAB structure holding arrays with the
unknown pressures, saturations, concentrations, and inter-cell fluxes, as well
as unknowns associated with the wells;

– a grid structure G, which in particular implements the mappings F , C1, and
C2 introduced in Section 3.1;

– a structure rock representing the petrophysical data, primarily porosity and
permeabiliy, but also net-to-gross, multipliers that limit (or increase) the flow
between neighoring cells, etc;

– a structure fluid representing the fluid model, which is implemented as a
collection of function handles that can be queried to give fluid densities and
viscosities, evaluate relative permeabilities, formation volume factors, etc;

– additional structures that contain the global drive mechanisms, including wells
and boundary conditions.

By convention, we collect G, rock, and fluid in an additional data structure called
model, which also implements utility functions to access model behavior. Given a
state object, we can for instance query values for physical variables

[pO, sW, sG, rs, rv, wellSol] = model.getProps(state, 'pressure', 'water', 'gas' , ...
' rs ' , 'rv' , 'wellSol ' );

bhp = vertcat(wellSol.bhp);
qWs = vertcat(wellSol.qWs); % ... and similarly for qOs and qGs

Here, the array pO holds one oil pressure value per cell, sW holds one water saturation
value, etc. The last output, wellSol, contains a list of data structures, one for each
well, that contain the unknowns associated with the perforations of each well. The
call to vertcat collects these quantities into standard arrays. Which among sg, rs,
and rv one should choose as primary reservoir variable will vary from one cell to
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the other depending the fluid phases present. For brevity, we assume that all three
phases are always present, so that rs and rv are functions of pressure. Thus, we
henceforth use sG as our third unknown. Having extracted all the primary variables
needed, we set them to be AD objects

[pO, sW, sG, qWs, qOs, qGs, bhp] = initVariablesADI(pO, sW, sG, qWs, qOs, qGs, bhp);

When these AD objects are used to evaluate fluid and rock-fluid properties in the
cells, we will also get derivatives with respect to the primary variables evaluated
at their current value

[krW, krO, krG] = model.evaluateRelPerm({sW, 1− sW − sG, sG}); % relative permeabilities
bW = model.fluid.bW(p); % inverse formation−volume factor
rhoW = bw .* model.fluid.rhoWS; % density at reservoir conditions
mobW = krW ./ model.fluid.muW(p); % mobility

To evaluate Darcy’s law across each face, we need to use the averaging operator,
the gradient, and the transmissibility introduced in Section 3.1. In MRST, the
corresponding mappings are computed during the preprocessing phase based on
G and rock and stored in terms of function handles in structure operators inside
the model objects. For brevity, we henceforth refer to this as ops. We first use the
averaging operator and the gradient operator to pick the upstream directions for
each interface

rhoWf = ops.faceAvg(rhoW); % density at cell faces
gdz = model.getGravityGradient(); % g*nabla(z)
pW = pO − model.fluid.pcOW(sW); % water pressure
dpW = ops.Grad( pW ) − rhoWf.*gdz; % derivative terms in Darcy's law
upcw = ( double(dpW) <= 0); % upwind directions

Then, we use the upstream operator (17), which is also contained in ops, to compute
the correct water fluxes for all interior interfaces

bWvW = ops.faceUpstr(upcw, bW.*mobW).*ops.T.*dpW;

The last thing we need to do is to handle the pressure-dependence of the accumu-
lation term. In MRST, this is represented as a static pore volume, evaluated at a
reference pressure, and a pressure-dependent multiplier function

[pvMult, pvMult0] = getMultipliers(model.fluid, pO, pO0);

Having computed all the necessary values in cells and on faces, we can evaluate
the residual from the homogeneous part of the aqueous conservation equation over
a time step dt

water = (ops.pv/dt).*( pvMult.*bW.*sW − pvMult0.*bW0.*sW0 ) + ops.Div(bWvW);

The homogeneous residual equations for the oleic and gaseous phases are computed
in the same way, and then we collect the three phase equations in a cell array
holding all reservoir equations:

eqs = {water, oil, gas};

To form a complete model, we also need to add residual equations for wells and
incorporate the effects of driving forces into the continuity equations. Computing
the contributions from wells, volumetric source terms, and boundary conditions
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is a bit more involved and skipped for brevity. However, once the resulting fluxes
or source terms have been computed, all we need to do is subtract them from the
continuity equations in the affected cells. Looking at the overall implementation, it
is clear that there is an almost one-to-one correspondence between continuous and
discrete variables. In particular, the code implementing the conservation equations
is almost on the same form as (16), except that compressibility has been included
through a pressure-dependent multiplier instead of evaluating a function φ(p) di-
rectly. Likewise, you may notice the absence of indices and that there are no loops
running over cells and faces. Using discrete averaging and differential operators de-
rived from a general unstructured grid format means that the discrete equations
can be implemented once and for all without knowing the specifics of the grid or
the petrophysical parameters. This is a major advantage that will greatly simplify
the process of moving from simple Cartesian cases to realistic geological models.

With the code above, we have collected the whole model into a cell array
that contains seven different residual equations (three continuity equations, three
equations for well rates, and one equation providing well control) as well as their
Jacobian matrices with respect to the primary variables (po, sw, sg, pbh and qsα).
The last thing we need to do to compute one Newton iteration is to assemble the
global Jacobian matrix and compute the Newton update (20).

eq = cat(eqs{:}); % concatenate unknowns and assemble Jacobian
J = eq.jac{1}; % extract Jacobian
upd = − (J \ eq.val); % compute Newton update for all variables

This shows the strength of using automatic differentiation. There is no need to
compute linearizations explicitly; these are computed implicitly by operator over-
loading when we evaluate each residual equation. Likewise, we do not need to
explicitly assemble the overall Jacobian matrix; this is done by MATLAB and
MRST when we concatenate the cell array of AD variables. All that remains to
get a first prototype solver is to specify two loops, an outer loop that advances
the time steps, and an inner loop that keeps computing Newton updates until
the residual is sufficiently small, as shown to the left in Figure 4. The result is
a framework that is very simple to extend with new functionality [6,10]: you can
implement new fluid behavior or add extra conservation equations, and the AD
functionality will automatically generate the correct linearized equations. How-
ever, to get a simulator capable of running industry-grade simulations, we will
need to introduce more sophisticated numerical methods.

3.5 Object-oriented implementation in MRST

The actual code lines presented above are excerpts of equationsBlackOil from
the ad−blackoil module, and have been slightly modified for pedagogical purposes.
Industry-standard reservoir models contain many details that are seldom discussed
in scientific papers. For brevity, we skipped a lot of details like conversions and
consistency checks, and did not include various multipliers used to manipulate the
flow between neighboring cells. Likewise, we did not discuss construction of reverse
flow equations that can be used to compute adjoints [4]. However, since MRST is
open-source, the interested reader can consult the code for full details.
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[x, t] = initializeSolution(deck)
while t < T

[∆T , ctrl]=getControl(t)
τ = 0
while τ < ∆T

do
[∆t, . . . ] = getTimeStep(. . . )
[ok, τ , . . . ] = solveMinistep(t+ τ , ∆t, . . . )

while ok=false
end

end

Main loop

[res, J, . . . ] = getEqs(t+ τ , . . . )
xit = x
while res > tol & it ≤ itmax

lsys = assembleLinSys(res, J, . . . )
lsol = setupLinSolver(xit, lsys, . . . )
upd = solveLinSys(xit, lsys, lsol, . . . )
upd = stabilizeStep(xit, upd, lsys, . . . )
xit = updateIterate(upd, . . . )
cleanupLinSolver(lsol)
[res, J ] = getEqs(t+ τ , . . . )

end
if it ≤ itmax

ok = true
[τ , x, . . . ] = updateSolution(xit)

else
ok = false

end

solveMinistep

Context:
physical model and reservoir state
nonlinear solver and time loop
linearization of discrete equations
linear solver

[xit, t] = initializeSolution(deck)
while t < T

t = t + dt
x = xit
do

[R,J] = computeResiduals(xit,x)
upd = J−1R
xit = xit + upd

while norm(R)>tol
end

Classic Newton

Fig. 4: Comparison of a simple time-loop with a standard Newton solver and
the more sophisticated approach used in the ad-core framework, in which the
time-loop has been organized into specific numerical contexts to separate the im-
plementation of physical models, discrete equations and linearizations, nonlinear
solvers and time-step control, and linear solvers. Here, solveMinistep subdivides
well-control intervals into smaller time steps, specified by user or error control.

In all their generality, black-oil models can be very computationally challeng-
ing for a number of reasons: the flow equations have a mixed elliptic-hyperbolic
character; there are order-of-magnitude variations in parameters and spatial and
temporal constants; primary variables can be strongly coupled through various
(delicate) force balances that shift throughout the simulation; fluid properties can
have discontinuous derivatives and discontinuous spatial dependence; and grids
representing real geology will have cells with rough geometries, large aspect ra-
tios, unstructured connections through small face areas, etc. As a result, the simple
Newton strategy discussed above will unfortunately not work very well in practice.
Linearized flow problems typically have very large condition numbers, and while
we can rely on the direct solvers in MATLAB being efficient for small systems,
iterative solvers are needed for larger systems. These will not converge efficiently
unless we also use efficient preconditioners that account for strong media contrasts
and the mixed elliptic-hyperbolic character of the flow equations. To ensure that
saturations stay within their physical bounds, each Newton update needs to be
accompanied by a stabilization method that either crops, dampens, or performs
a line search along the update directions. Likewise, additional logic is needed to
map the updated primary variables back to a consistent reservoir state, switch
primary variables as phases appear or disappear, trace changes in fluid compo-
nents to model hysteretic behavior, etc. To get a robust simulator, we also need to
introduce sophisticated time-step control that monitors the iteration and cuts the
time step if this is deemed necessary to improve convergence. And finally, we need
procedures for updating the well controls in response to changes in the reservoir
state and the injection and production of fluids.

Introducing all this functionality in a procedural code is possible, but can easily
give unwieldy code. A lot of this functionality is also to a large degree generic and
can be reused from one model/simulator to another. One way to design a transpar-
ent and well-organized code is to divide the simulation loop into different numerical
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Fig. 5: Overview of how components in the object-oriented AD framework are or-
ganized to implement a black-oil simulator. The different components are colorized
by the type of the corresponding construct (class, struct, or function). Notice, in
particular, how the nonlinear solver utilizes multiple components to solve each
ministep on behalf of the simulator function.
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contexts, e.g., as outlined in Figure 4, and only expose the details that are needed
within each of these contexts. This motivated us to develop the ad-core module
(see [6]), which offers an object-oriented AD framework that enables the user to
separate physical models and reservoir states, nonlinear solvers and time loops,
discrete flow equations and linearizations, and linear solvers. The framework has
been tailor-made to support rapid prototyping of new reservoir simulators based on
fully implicit or sequentially implicit formulations and contains a lot of function-
ality that is specific for reservoir simulators. Figure 5 outlines how various classes,
structures, and functions can be organized to formulate an efficient black-oil simu-
lator. In particular, the time-step selectors implement simple heuristic algorithms
like the Appleyard and modified Appleyard chop as used in commercial simula-
tors. There are linear-solver classes that implement a state-of-the-art, constrained
pressure residual (CPR) preconditioner [2], which can be combined with efficient
algebraic multigrid solvers like the aggregation-based method of [19]. Notice also
that assembly of the linearized system is relegated to a special class that stores
meta-information about the residual equations (i.e., whether they are reservoir,
well, or control equation) and the primary variables. This information is useful
when setting up preconditioning strategies that utilize structures in the problem.

4 The Polymer Flooding Simulator

In this section, we will discuss how we can utilize the general framework presented
above to implement a new polymer simulator capable of simulating real EOR
scenarios. As in the previous section, we will focus on the main steps in the imple-
mentation and leave out a number of details that can easily be found by consulting
the corresponding code from the ad-eor module (first released in MRST 2016a).

4.1 Defining the polymer model object

The first thing we need to do is to set up a physical model. Obviously, the black-oil
model already has most of the features we need for our polymer simulator. To avoid
duplicating code, this model has been implemented as the extension of a general
model skeleton that specifies typical entities and features seen in reservoir models,
and the skeleton model is in turn a special case of a generic physical model; see
Figure 6. We use inheritance to leverage all this existing functionality:

classdef ThreePhaseBlackOilPolymerModel < ThreePhaseBlackOilModel
properties

polymer
usingShear

end
methods

:

The properties polymer and usingShear are boolean variables that tell whether
polymer and shear effects are present or not. (For the moment, the first will be true
and the second false). The next thing we need to do is to add two new variables:
the concentration c, which will be a primary variable, and the secondary variable
cmax holding the maximum observed polymer concentration, which will be needed
to model the hysteretic behavior of the permeability reduction factor (7).
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PhysicalModel

Abstract base class for all MRST
models. Contains logic related
to linearization and updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and tempera-

ture. Base class for all reservoir models.

Added primary variables: sα, p, T, qα, pbh

ThreePhaseBlackOilModel

Extends ReservoirModel with optional
solution gas and vaporized oil. Base

class for two- and single-phase versions.

Added primary variables: rs, rv

ThreePhaseBlackOilPolymerModel

Extends ThreePhaseBlackOilModel with
additional variables, mixing rules, viscosity

modification, and optional shear effects.

Added variables: c, cmax

Fig. 6: The class hierarchy used to define the three-phase, black-oil, polymer model.

function [fn, index] = getVariableField(model, name)
switch(lower(name))

case {'polymer'}
index = 1; fn = 'c' ;

case {'polymermax'}
index = 1; fn = 'cmax';

otherwise
[fn, index] = getVariableField@ThreePhaseBlackOilModel(model, name);

end

Here, index tells the size of the variables in each cell, and the second last line
provides access to all variables defined in the black-oil model. We also need to
add one extra variable giving the surface rate of polymer in and out of wells.
This is done in the constructor of the polymer object. The general framework also
offers two additional member functions that provide useful hooks into the general
simulation loop. The first function is run after every iteration update to enable
us to check if the computed states are consistent with the underlying physics. We
set this function to inherit all consistency checks from the black-oil model and
additionally enforce that c ∈ [0, c∗].

function [state, report] = updateState(model, state, problem, dx, drivingForces)
[state, report] = updateState@ThreePhaseBlackOilModel(model,...

state, problem, dx, drivingForces);
if model.polymer

c = model.getProp(state, 'polymer');
c = min(c, model.fluid.cmax);
state = model.setProp(state, 'polymer', max(c, 0));

end

The second function is run after the nonlinear equation has converged and can be
used, e.g., to model hysteretic behavior as in our Rk function.

function [state, report] = updateAfterConvergence(model, state0, state, ...
dt, drivingForces)

[state, report] = updateAfterConvergence@ThreePhaseBlackOilModel(model, ...
state0, state, dt, drivingForces);

if model.polymer
c = model.getProp(state, 'polymer');
cmax = model.getProp(state, 'polymermax');
state = model.setProp(state, 'polymermax', max(cmax, c));

end
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To form a complete model, we also need to incorporate functions and parameters
describing the adsorption, the Todd–Longstaff mixing, inaccessible pore space,
etc. Instead of implementing analytical formula (or hard-coded tables), we have
chosen to get all necessary data by parsing industry-standard input decks. This
parsing is automated in MRST in the sense that if you want a keyword KWD to be
interpreted, you will have to implement a new function called assignKWD in the
ad-props module. This function should take three parameters: the fluid object to
which the property is appended, data values, and a structure containing region
identifiers, which could possibly be used to incorporate spatial dependence in the
parameters. For the six keywords describing our polymer model [22], implementing
these functions amounted to approximately forty extra lines of code to interpret
each keyword and setup functions that either extract constants or interpolate the
tabulated data in the input deck correctly.

4.2 Discretized equations without shear effects

The last thing we have to do is to implement the discretized flow equations. That
is, we need to implement the member function getEquations which the AD-OO
framework will call whenever it needs to evaluate the residual of the flow equations

function [problem, state] = ...
getEquations(model, state0, state, dt, drivingForces, varargin)

[problem, state] = equationsThreePhaseBlackOilPolymer(state0, state, ...
model, dt, drivingForces, varargin{:});

end

To this end, we start by copying and renaming the function equationsBlackOil,
which was discussed above and implements the discretized equations for the three-
phase black-oil model. The first change we need to introduce in the copied function
is in the extraction of physical variables.

[pO, sW, sG, rs, rv, c, cmax, wellSol] = model.getProps(state, ...
'pressure ' , 'water' , 'gas' , ' rs ' , 'rv' , 'polymer', 'polymermax', 'wellsol ' );

:
qWPoly = vertcat(wellSol.qWPoly);

Similar changes are also made when choosing and instantiating the primary vari-
ables as AD objects. In the computation of fluid properties, we start with the
polymer properties since they will also affect the mobility of water.

ads = fluid.ads(max(c, cmax)); % adsorption term

mixpar = fluid.mixPar; % mixing parameter w
cbar = c/fluid.cmax; % normalized concentration
a = fluid.muWMult(fluid.cmax).ˆ(1−mixpar); % viscosity multiplier resulting
b = 1./(1−cbar+cbar./a); % .. from mixing of water and
muWeffMult = b.*fluid.muWMult(c).ˆmixpar; % .. polymer using w−mixing rules

permRed = 1 + ((fluid.rrf−1)./fluid.adsMax).*ads; % permeability reduction
muWMult = muWeffMult.*permRed; % full multiplier for mobility

The computation of the water properties is almost as before, except for a minor
change marked in red:
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mobW = krW ./ ( fluid.muW(p) .*muWMult);

Apart from this, the computation of the aqueous, oleic, and gaseous residual re-
mains unchanged. The residual equation for polymer is implemented as follows,

poro = ops.pv./G.cells.volumes;
polymer = (ops.pv.*(1−fluid.dps)/dt).*(pvMult.*bW.*sW.*c − ...

pvMult0.*fluid.bW(p0).*sW0.*c0) + (ops.pv/dt).* ...
(fluid.rhoR.*((1−poro)./poro).*(ads − ads0)) + ops.Div(bWvP);

which again is almost the same as the corresponding expression for the continuous
equations. Unfortunately, using this residual equation without modifications may
incur numerical unstabilities in the case when water is almost nonexistent. To
prevent this, we detect all cells in which the diagonal element of the Jacobian
falls below a certain lower tolerance and replace the residual in these cells by
the polymer concentration, i.e., if bad is a logical array indexing these cells, we set
polymer(bad)=c(bad). Assuming that we make the necessary modifications to the well
models, we now have four continuity equations, four well equations, and a control
equation that can be linearized and assembled as before by first building a cell
array of residual equations, which we then use to construct a LinearizedProblem

object.

4.3 Including shear effects

The simulator, as described above, computes fluxes across cell faces and fluxes in
and out of wells. However, to compute shear effects, we need the un-sheared water
velocities, which can be defined on each face f of the discrete grid as

uw,0[f ] =
vw[f ]

avga(φ)[f ] A[f ]
,

where A[f ] is the face area. The product φA is then the available area for the
fluids to flow through each particular face. In addition, we need to evaluate the
viscosity multiplier mµ(c) at each face. This is done by picking the upstream value.
Then we can instantiate uw,sh as an AD variable, initialized by uw,0, and use a
standard Newton iteration to solve (12). This inner iteration is invoked every time
we need to evaluate the water or polymer residual.

The solution process for the shear factor calculation is presented in Figure 7.
There are basically three parts involved. At the beginning, we initialize the AD
variable Vsh based on the un-sheared velocity Vw, and set up the residual equation
we are solving with function shFunc, which can be easily related to (12). Then a
standard Newton iteration process is used to solve the residual equation. Finally,
we calculate and return the shear factor z based on the calculated sheared water
velocity Vsh following (11). The function solve for the shear factors of all the faces
at the same time for better efficiency.

Shear effects are most important near the wellbore, and will to a large extent
determine the injectivity of a polymer solution. Unfortunately, it is challenging
to compute a representative shear rate. Grid cells are typically large compared
with the length scale of the near-well flow, and using a simple average over the
grid cell will tend to smear flow rates and hence underestimate the non-Newtonian
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function z = computeShearMult(fluid, Vw, muWMultf)
Vsh = Vw; % give the initial guess for the Vsh
Vsh = initVariablesADI(Vsh); % initialize the AD variable
plyshearMult = fluid.plyshearMult; % get the shear function M

shFunc = @(x) x.*(1+(muWMultf−1.).*plyshearMult(x))−muWMultf.*Vw; % residual function
eqs = shFunc(Vsh);

resnorm = norm(double(eqs), 'inf'); % initial norm of residual
iter = 0;
maxit = 30; % maximum iteration number
abstol = 1.e−15; % tolerance for convergence

while (resnorm > abstol) && (iter <= maxit) % Newton iteration
J = eqs.jac{1}; % Jacobian
dVsh = −(J \ eqs.val); % Newton incremental update
Vsh.val = Vsh.val + dVsh; % update the solution
eqs = shFunc(Vsh);
resnorm = norm(double(eqs), 'inf'); % norm of the residual
iter = iter + 1;

end

if (iter >= maxit) && (resnorm > abstol) % not converged
error('Convergence failure within %d iterations\nFinal residual = %.8e', maxit, resnorm);

end

if (resnorm <= abstol) % convergence achieved
M = plyshearMult(Vsh.val);
z = (1 + (muWMultf − 1.).* M) ./ muWMultf; % shear factor

end
end

Shear Calculation

Fig. 7: Shear factor calculation with MRST

effects. One obvious remedy is to use local grid refinement (LGR) around the wells,
see [14]. Another alternative is to use an analytical injectivity model in which the
water velocity is computed at a representative radius from each well perforation [9,
22]. The representative radius is defined as rr =

√
rw ra, where rw is the wellbore

radius and ra is the areal equivalent radius of the grid cell in which the well is
completed. The water velocity can then be computed as

uw,0 =
qsw

2πrrhwc φ bw
,

where qsw is the surface water rate and hwc is the height (or length) of the per-
foration inside the completed grid cell. Notice, however, that this model has only
been derived assuming Cartesian cell geometries.

4.4 Running the simulator from an input deck

MRST is primarily a tool for prototyping new computational methods and simu-
lator tools. As such, the software does not offer any simulator that can be called
directly from the command line in MATLAB. Instead, the idea is that users should
write the simulator scripts themselves, using functionality from the toolbox. The
tutorials and module examples contain many such simulator scripts that can be
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framework, one can instantiate the data structures necessary to run a simulation
from an industry-standard input deck.

used as a starting point to write simulators that are fit for purpose. For com-
pleteness, we will here go through one example of such a script. To set up a
simulation, we need to construct three different data objects as illustrated in Fig-
ure 8: a class object describing the physical model, a structure containing variables
describing the reservoir state, and a structure containing the schedule that spec-
ifies controls and settings on wells and boundary conditions and how these vary
with time. Here, we assume that we have a reservoir model described in terms
of an industry-standard input file [22]. We can then use functionality from the
deckformat module, to read, interpret, and construct the necessary data objects
from this input data file. We start by reading all keywords and data from the file.

deck = readEclipseDeck(file);
deck = convertDeckUnits(deck);

The data can be given in various types of units, which need to be converted to
the standard SI units used by MRST. We then construct the three data structures
that make up the physical model:

G = computeGeometry(initEclipseGrid(deck));
rock = compressRock(initEclipseRock(deck), G.cells.indexMap);
fluid = initDeckADIFluid(deck);

By convention, all grid constructors in MRST only output the information nec-
essary to represent an unstructured grid and do not process this information to
compute geometric information such as cell volumes, face areas, face normals, etc.
However, as we have seen above, we need this information to compute transmis-
sibilities and pore volumes and hence we also call a routine that computes this
information. Similarly, the input parser for petrophysical data outputs values for
all cells in the model and hence needs to be passed on to a routine that eliminates
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data in cells set to be inactive. Having obtained all the necessary data, we can
then call the constructor of the appropriate model object:

model = ThreePhaseBlackOilPolymerModel(G, rock, fluid, 'inputdata', deck);

Next, we instantiate the state object and set the initial conditions inside the reser-
voir. Here, we assume that the reservoir is initially in hydrostatic equilibrium, so
that saturations/masses are defined to balance capillary pressure forces. This is a
standard black-oil routine that works with three or fewer phases and is not aware
of extra fluid components. The initial polymer concentration therefore needs to be
specified manually.

state = initEclipseState(G, deck, initEclipseFluid(deck));
state.c = zeros(G.cells.num,1);
state.cmax = state.c;

To set up the schedule, we need to know information about reservoir model, and
hence this data object is constructed last,

schedule = convertDeckScheduleToMRST(model, deck);

Having established the necessary input data, we select the linear and nonlinear
solvers.

nonlinearsolver = getNonLinearSolver(model, 'DynamicTimesteps', false, ...
'useCPR', false);

nonlinearsolver.useRelaxation = true;

Here, we have set the simulator to use a simple relaxation procedure to stabilize the
Newton iterations and MATLAB’s standard mldivide as linear solver. By setting
useCPR to be true, function getNonLinearSolver will set up a CPR preconditioner
with either BackslashSolverAD based on mldivide or AGMGSolverAD with the
AGMG multigrid solver [19]. (The main advantage of AGMG compared with other
multigrid solvers is that it has a simple MATLAB interface and can be used directly
as a drop-in replacement for mldivide without any data conversion or parameter
tuning.) For small cases, mldivide can be efficient enough or even faster, while
CPR preconditioned linear solver is typically more efficient or required for bigger
cases. The option DynamicTimesteps being false says that we do not make any
attempt at optimizing the time steps and only perform a standard Appleyard chop
to cut time steps if the nonlinear solver fails to converge. If we turn on dynamic
time stepping, the simulator will try to dynamically adjust the time steps to stay
close to a targeted number of nonlinear iterations per time step.

We now have all that is necessary to run a simulation and can do this by calling
the following script:

[wsols, states] = simulateScheduleAD(state, model, schedule, ...
'NonLinearSolver', nonlinearsolver);

To visualize the output of the simulation, we invoke two graphical user interfaces
from the mrst-gui module that let us view the reservoir variables and the well
responses at all instances in time specified in the schedule.

plotToolbar(G, states); plotWell(G,schedule.control(1).W); view(3); axis tight
plotWellSols(wsols)
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Fig. 9: Properties and functions entering the fluid models.

As an alternative to using these two GUIs, well curves can be extracted to standard
MATLAB arrays using either getWellOutput or wellSolToVector.

5 Numerical Examples

In this section, several examples are presented to demonstrate the validity and
performance of the developed model. The first two examples verify the model and
implementation against a leading commercial simulator [22]. Also, the effects of
polymer injection and the impact of non-Newtonian fluid rheology on the water-
flooding process are investigated. In the third example, we illustrate how the sim-
ulator is readily applicable to fully unstructured grids, whereas the last example
uses the geological model of a real field to set up a test case with a high degree
of realism. For simplicity, we use the same basic fluid model for the Example 1,
2 and 4, as summarized in Figure 9. For polymer, the dead pore space is set to
0.05, the residual reduction factor is 1.3, and the polymer is fully mixed into the
aqueous phase (i.e., ω = 1). For Example 3, we use a slightly different fluid model
but the same polymer parameters. Link to complete codes for these examples can
be found in http://www.sintef.no/mrst/ad-eor/.

http://www.sintef.no/mrst/ad-eor/
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Fig. 10: Verification of the MRST solver against a commercial simulator for a 2D
Cartesian example. Here, water is colored blue, oil is red, and gas is green.

5.1 Example 1: Verification against commercial simulator

A 2D example with heterogeneous porosity and permeability (Figure 10) is de-
signed for the development and verification of the present model. In this example,
the dimensions of the grid is 20 × 1 × 5. The size of the domain is 4000 m ×
200 m × 125 m. One injection well is located in the bottom two layers and one
production well is located in the top two layers. Hydrostatic equilibration is used
for initialization.

The polymer injection schedule follows a typical polymer waterflooding strat-
egy. As shown in Figure 10, the flooding process begins with the primary water
flooding (1260 days). Then a 1700-day polymer injection process with concentra-
tion 1 kg/m3 is performed. Water injection is continued after the polymer injection.
The injection well is under rate control with target rate 1000 m3/day and upper
limit of 450 bar on the bottom-hole pressure (bhp), whereas the production well
is under pressure control with target bottom-home pressure 260 bar.

For comparison, two groups of simulations are performed with MRST and
the commercial simulator. The first does not include shear effects (brown lines
in Figure 10), and in the other one, shear effect is taken into consideration (blue
lines in Figure 10). The results from MRST are indicated with solid lines and the
results from the commercial simulator with dashed lines. From the results, it can be
observed that the bottom-hole pressure for the injection well increases drastically
when the polymer injection starts. When the bottom-hole pressure reaches the
upper limit, the injection well switches to bottom-hole pressure control and the
water injection rate drops rapidly. This can be explained in a natural way with the
employed well model (3). The dissolution of the polymer increases the viscosity of
the injecting water and as a result, the mobility of the water phase is decreased.
According to (3), higher bottom-hole pressure is required to maintain the target
injection rate. When the bottom-hole pressure reaches the limit, the water injection
rate will drop rapidly as a result of the decreased mobility.
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As shown in Figure 10, the results from MRST and the commercial simulator
agree well. Abrupt changes when the polymer injection begins and ends are cap-
tured accurately. Both simulators predict the same shear-thinning behavior, which
significantly improves injectivity and results in a much higher water rate during
polymer injection.

5.2 Example 2: Sector model

In this example, we consider 3D synthetic sector model generated with MRST. The
model has a physical extent of 1000 m × 675 m × 212 m, contains four vertical
faults that intersect in the middle of the domain, and is represented on a 30×20×6
corner-point grid, in which 2778 cells are active. There is one injection well located
in the center of the sector and is perforated in the bottom three layers, and two
production wells located to the east and west and perforated in the top layers; see
Figure 11. The injector is under rate control with target rate 2500 m3/day and
bottom-hole pressure limit 290 bar, whereas the producers are under bottom-hole
pressure control with target pressure 230 bar.

To investigate the effects of the polymer injection and different types of fluid
rheology on the waterflooding process, four different simulations are performed
with both MRST and the commercial simulator. The first simulations describe
pure waterflooding. The second simulations describe polymer injection, but do
not account for non-Newtonian fluid rheology during the injection process. The
third and the fourth simulation setups assume that the polymer exhibits shear-
thinning and shear-thickening behavior, respectively. Figure 11 reports water rate
and bottom-hole pressure in the injector and water cut in the two producers.

For pure waterflooding, the bottom-hole pressure decays fast to a level be-
low 250 bar during the first 150 days and then starts to gradually increase after
approximately 400 days to maintain the specified injection rate until the end of
simulation. In the polymer-flooding scenarios, the injectivity decreases dramati-
cally once the polymer injection begins because of the increased viscosity of the
polymer–water mixture. If the diluted polymer behaves like a Newtonian fluid, the
bottom-hole pressure will quickly reach the upper limit and force the injector to
switch from rate to pressure control, which in turn causes an immediate drop in
the injection rate. As a result, the oil production declines during the injection of
the polymer slug, but increases significantly during the tail production in both pro-
ducers. Likewise, we see delayed water production in both producers. In the case
of shear-thinning fluid rheology, the bottom-hole pressure also increases rapidly,
but manages to stay below the bhp limit, which means that the targeted injection
rate can be maintained. As a result, we maintain the initial oil production and
achieve a better tail production as a result of improved displacement efficiency
and volumetric sweep. When polymer with shear-thickening rheology is injected,
the injectivity is drastically reduced, and in this case, the commercial simulator
was not able to finish the simulation. A few report steps after the polymer in-
jection starts, the simulator computes bottom-hole pressure values that are not
well-behaved, which causes it to stop. MRST, on the other hand, manages to finish
the simulation despite the somewhat unphysical setup.
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Fig. 11: Verification of the MRST polymer simulator against a commercial simu-
lator with a 3D synthetic example with different types of polymer injected.

Table 1: Fluid densities and viscosities used in Example 3.

Water Oil Gas
Compressibility — 10−4 /bar 10−3/bar

Viscosity 1 cP 5 cP 0.2 cP
Density (at 250 bar) 1033 kg/m3 860 kg/m3 400 kg/m3

5.3 Example 3: Unstructured grids

The main purpose of the third example is to demonstrate that the polymer simula-
tor is capable of simulating grids with general polyhedral geometries. To this end,
we consider a vertical cross-section of a reservoir with dimensions of 1000×100 me-
ters. There is an injector-producer pair included, where the producer has a curved
well trajectory spanning a relatively large region of the reservoir. We consider a
scenario in which one pore volume of water is injected over five years, a polymer
slug added to the initial 7.5 months, and fluids are produced at a fixed bottom
hole pressure of 250 bar. Table 1 lists fluid densities and viscosities.

To represent the reservoir, we consider four different grids: a fine Cartesian
grid with 20 000 cells, a coarse Cartesian grid with 231 cells, an unstructured
perpendicular bisector (PEBI) grid with 1966 cells refined around the wells, and
a composite grid in which the coarse Cartesian grid is refined locally around the
wells by adding Voronoi cells, giving in total 921 cells. The two latter grids were
constructed using a new module in MRST for generating 2D and 3D Voronoi
grids with cell centers and/or cell faces conforming to geological structures like
well paths, faults, fractures, etc. The grid factory routines handle intersection of
multiple faults, intersections of wells and faults, and faults intersecting at sharp
angles; see [1,5]. Figure 12 shows the four grids, along with snapshots of the phase
saturations partway into the simulation. (In our color convention, water is blue,
oil is red, and gas is green. The convention also applies to other examples in the
paper.) Well responses are plotted in Figure 13.

Comparing the results from all four grids, we see that there are significant
differences in the predicted injector bottom-hole pressures. The injector is best
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Fig. 12: The four grids considered in Example 3, along with the phase saturations
computed after the injection of 0.60 PVI.

approximated by the PEBI grid, which uses 88 cells that align locally with the
curved well path. The fine Cartesian grid approximates the well path in a stair-
stepped manner using 74 cells, which on average are twice as large as the perforated
PEBI cells. The composite grid also adapts to the well path, but here the 30 well
cells are less regular and on average nine times larger than in the PEBI grid. In-
terestingly, the resulting bottom-hole curve is not significantly different from the
coarse Cartesian grid, which only has 8 perforated cells. One possible explanation
is that the default well indices computed by Peacemann’s formula are only strictly
correct for hexahedral cells. Likewise, since the initial fluid distribution is com-
puted by sampling at the cell centroids, the oil–water contact is sharply resolved
only on the fine Cartesian grid and is non-flat on the two unstructured grids.

Looking at the oil production, we see that all three coarse grids predict a too
rapid initial decay and smooth the subsequent buildup and decay compared with
the fine Cartesian grid. The result is that all three coarse grids slightly overpre-
dict the cumulative oil production. The coarse Cartesian grid gives the largest
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Fig. 13: Well curves for the structured and unstructured grids of Example 3.

deviations in gas production, whereas the unstructured PEBI grid has the largest
deviation in water rate. Altogether, it seems like the composite grid gives the
closest match with the fine Cartesian grid.
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Fig. 14: Geological model and well setup for the Norne example. Colors show the
horizontal permeability. To better distinguish zones of high and low permeability,
the color axis is set to be between 0 and 1000 md; the actual permeability values
extend to 3500 md.

(a) Initial (b) After 770 days

(c) After 1170 days (d) Final, after 2260 days

Fig. 15: Saturation distribution at different times for the Norne simulation.

5.4 Example 4: Norne

Norne is an oil field located in the Norwegian Sea. The simulation model of this field
has recently been made publicly available as an open data set [20]. Here, we will
use a slightly simplified version of this simulation model, in which we have removed
one tiny disconnected region and disabled some features related to flux regions,
fault multipliers, equilibration regions, and so on. Furthermore, we replace the
fairly complicated well-control schedule representing the real field history with six
wells operating under simpler control schedules. To run this example, the AGMG
multigrid solver [19] is required.

The simulation model consists of 44915 active cells and has a total pore vol-
ume of 8.16 · 108 m3. The two injection wells (shown with red color in Figure 14)
are under rate control with target rate 30000 m3/day and a bottom-hole pressure
limit of 600 bar. Four production wells (shown with blue color in Figure 14) are
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under bottom-hole pressure control with target pressure 200 bar, 200 bar, 190 bar,
and 180 bar, respectively. The injection begins with primary waterflooding for 360
days. Then, polymer with concentration 1 kg/m3 is injected for 340 days. Water-
flooding continues for another 1460 days after the polymer injection stops. The
total simulation time covers a period of 2260 days. Non-Newtonian fluid rheology
is not considered in this example.

The initial saturation is initialized with hydrostatic equilibration (Figure 15a).
The saturation distribution and polymer concentration at different times are shown
in Figure 15 and Figure 16, respectively. The evolution of water injection rate,
bottom-hole pressure in injection wells, oil production rate, and water cut are
reported in Figure 17. For comparison, the resulting well curves for a pure wa-
terflooding scenario are plotted as dashed lines. The impact of polymer injection
on the injection process, like injectivity, injection rate, and water cut is clearly
shown through the resulting well curves. The main effect of polymer is that the
reduced injectivity leads to a shift in the oil rate, which diminishes the overall
oil production. With a short time horizon of 2260 days, the suggested polymer
injection is not a good engineering solution. We emphasize that polymer injection
is not performed in reality on Norne, and the polymer scenario studied herein is
invented by the authors for illustration purposes.

Overall, our artificial polymer flooding scenario represents a computationally
challenging problem, and not surprisingly, the implicit solver struggles to converge
for some of the time steps. However, use of adaptive chopping of time steps makes
the simulator more robust and enables it to run through the specified simulation
schedule. MRST offers both reactive and predictive time-step control, similar to
those seen in many commercial simulators. The reactive part uses upper bounds on
the number of iterations allowed. If any of these bounds are exceeded, the simulator
will halve the time step, and continue to do so until the iteration bounds are
not exceeded. If the time step is reduced below a given minimum, the simulator
will stop and report convergence failure. Likewise, if the current step size has
been successfully used a given number of times, the simulator will try to increase
it by a given factor, and this is repeated until one reaches a given maximum
time step. MRST can also set upper bounds on the absolute or relative changes
one or more of the physical variables (typically saturation) are allowed to change
during one iteration and use this to predict the time-step size. Another alternative
is to set a target for the number of nonlinear iterations and let the simulator
use the previous convergence history to guess the size of the time step that will
ensure that the iteration target is met. If desired, all parameters controlling these
strategies can be prescribed by the user. In addition, one can gradually ramp up the
initial time step so that it increases geometrically towards a given target. Without
these capabilities, manual modifications of the time steps and multiple reruns
would likely have been necessary to get a simulation through. In this particular
simulation, we used an initial ramp up specified in the schedule combined with
the reactive strategy with an upper iteration bound of 15.

5.5 Example 5: Polymer flooding optimization with adjoint method

The main purpose of polymer injection is to increase the economics of the recovery
process. To measure this, we consider the net present value, which accounts for the
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(a) 370 days (b) 770 days

(c) 1170 days (d) Final time, 2260 days

Fig. 16: Polymer concentration at different times for the Norne simulation.
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Fig. 17: Well curves for the Norne case. Dashed lines represent a pure waterflooding
scenario and solid lines a polymer injection scenario.
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Table 2: Prices used in the calculation of NPV (21).

Prices (in US dollars)
Oil revenue 60 USD/stb
Gas revenue 2.8 USD/mmbtu
Polymer cost 5 USD/kg

Water injection cost 5 USD/stb
Water production processing cost 5 USD/stb

Yearly discount factor 0.05

Fig. 18: Initial saturations of for the polymer optimization example Case 1.

production revenue of oil and gas, the cost related to the injection and production
process, and the discount of value with time

NPV (T ) =

∫ T

t=0
(roqo + rgqg − (riwqiw + rwqw + ripqip))(1 + d)−tdt. (21)

Here, ro and rg are the oil and gas revenue prices and qo and qg are the oil and
gas production rates, respectively. As a result, roqo + rgqg represents the revenue
due to production of oil and gas. Moreover, riw, rw, and rip represent water
injection cost, water production processing cost, and polymer cost, respectively,
whereas d is the discount rate and qiw, qw and qip are water injection rate, water
production rate, and polymer injection rate, respectively. Hence, riwqiw + rwqw +
ripqip represents related costs during the polymer water-flooding and production
process. The values employed in this section are listed in Table 2, and are invented
by the authors for illustration purpose.

To maximize NPV, we will optimize polymer injection concentration. To this
end, we will use a rigorous gradient-based mathematical optimization method, in
which gradients of the NPV with respect to the current controls are computed
using an adjoint formulation. Adjoint formulations is part of the AD-OO frame-
work, and has previously been discussed e.g., in [15,12]. Specifically, we will use
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [18], which is a quasi-
Newton method, in combination with a line-search algorithm with termination
criteria based on the Wolfe conditions [26].

We investigate the optimization of two water-flooding cases. For both cases,
we increase the oil viscosity to be between 10 and 20 cp, while water viscosity
remains 0.318 cp. No shear effect is considered during the simulation.

Case 1: We consider a synthetic 1200 m × 1000 m × 150 m sector model
with four vertical faults intersecting in the middle of the domain similar as in
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Section 5.2 (see Figure 18). The formation is represented on a 30× 25× 6 corner-
point grid with 3528 active cells. The injector is under rate control with target
rate 2500 m3/day and bottom-hole pressure limit 600 bar, whereas the producers
are under bottom-hole pressure control with target pressure 230 bar. The total
flooding process is 5000 days. To optimize, we split the schedule to ten periods
of 500 days and try to find the polymer injection concentration for each period
that maximizes overall NPV (21). The maximum available polymer concentration
is 2.5 kg/m3.

Results from three different flooding processes are shown in Figure 19. Green
lines represent pure water flooding, whose NPV curve starts to flatten around
3000 days and reaches its peak net-present value after approximately 3600 days
(see Figure 19b). After this time, the economic value decays, mostly due to the
high water cut (Figure 19e) and low oil production rate (Figure 19d). The blue
lines represent a straightforward polymer injection strategy, in which 1 kg/m3

polymer is injected for the first half of the total flooding procedure and pure water
flooding for the second half flooding process. This improves the NPV of the whole
flooding operation (Figure 19b). From Figures 19d and 19f we see that polymer
not only improves the oil production rate, but also reduces water production. The
flooding procedure will be the starting point of the optimization process, and is
referred to as the base case.

Red lines in Figure 19 represent the optimized flooding process. Compared with
the base case, more oil is produced and the water production rate is decreased fur-
ther, which means less cost related to water production. From Figure 19a, we see
that the optimization program suggests a relatively high polymer concentration at
the beginning, lower polymer injection concentration later, and no polymer injec-
tion for the last period. When flooding with higher polymer concentration, it is not
suggested to use the highest possible polymer concentration (2.5 kg/m3). Instead,
it is suggested to use the highest possible concentration that maintains the water
injection rate around the target rate (2500 m3/day), which implies that maintain-
ing the water injection rate in this scenario is important for achieving optimal
NPV from polymer flooding operation. Notice also that the bottom-hole pressure
is kept around its upper limit when injecting with higher polymer concentration.

Figure 20a shows a breakdown of NPV into the five terms from (21), i.e., rev-
enue from oil and gas production and cost from water injection, water production,
and use of polymer. Likewise, Figure 20b shows the breakdown of the relative
increase in NPV and polymer cost from the base case to the optimized case, and
how this is balanced by increased revenue from oil production and decreased costs
for water injection and production (difference in revenue from gas production was
negligible). From the breakdown, we can see, the increase in oil production and
reduction in water production play the major role in achieving higher NPV.

Case 2: We use the same grid as in Section 5.2 (Figure 11) with the same well
controls as in Case 1. Due to smaller size of the formation and less oil in place,
we change the flooding period to be 3000 days, which is split into ten even peri-
ods. The results without polymer injection, the base polymer injection procedure,
and the optimized one are shown in Figure 21. The optimized polymer injection
gives higher NPV than the base case, which in turn is better than pure water
flooding. Optimization also suggests higher polymer injection concentration in the
beginning and lower polymer injection concentration for later. However, different
from Case 1, maximum polymer concentration is used initially (Figure 21a), which
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Fig. 19: The polymer injection schedule, NPV curves, and well curves for Case 1.
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Fig. 20: Breakdown of NPV for the three different flooding processes, and changes
in revenues and costs from base case to optimized flooding for Case 1.
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Fig. 21: The polymer injection schedule, NPV curves, and well curves for for Case 2.
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Fig. 22: Breakdown of NPV for the three different flooding processes, and changes
in revenues and costs from base case to optimized flooding for Case 2.
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reduces both the water injection rate (Figure 21c) and NPV (Figure 21b) during
the first three periods (900 days). Breakdown in the increase of NPV and polymer
costs from the base case to the optimized one is shown in Figure 22b. Compared
with Case 1 (Figure 20b), the relative increase in oil production is smaller, while
a larger fraction of the NPV increase can be attributed to a decrease in water
injection.

6 Concluding Remarks

In an earlier paper [11], we presented the free, open-source MRST software, which
has later become a community code and is used by many researchers within the
computational geosciences.

Recently, the software has been modernized with several new features such as
discrete differential operators, automatic differentiation, and an object-oriented
programming framework, which contribute to make MRST a perfect platform for
fast development and prototyping simulators capable of running industry-grade
simulations. Herein, we have discussed in detail how this framework can be uti-
lized to develop a flexible simulator for polymer flooding, whose main intent is to
serve as a research tool for developing new models and computational methods
for simulating water-based EOR processes. To enable other researchers to benefit
from our work, we have described key components of MRST in some detail and dis-
cussed the key steps necessary to extend an existing black-oil simulator to polymer
flooding, including effects such as viscosity enhancement, adsorption, inaccessible
pore space, permeability reduction, and non-Newtonian fluid rheology. The re-
sulting simulator is released as part of a new EOR module in MRST (ad-eor),
which also includes a few surfactant models. Using the flexible platform design
of MRST, we believe that it is not very difficult to extend the capabilities of the
ad-eor module to models with similar flow physics, including surfactant-polymer,
alkali-surfactant-polymer, etc.

To prove the validity of the polymer simulator, we have benchmarked it against
a leading commercial simulator and shown that it produces virtually identical re-
sults for two test cases in 2D and 3D, including three fluid phases, water flooding
or polymer flooding, with and without shear effects. Flexibility with respect to
different grids was demonstrated in a test case involving unstructured grids with
polyhedral cell geometries. We also showed that the simulator is capable of han-
dling industry-relevant simulations by posing a polymer flooding scenario on a
model with reservoir geometry and petrophysics of a real oil and gas field. Finally,
we utilized the optimization module from MRST to optimize the polymer flooding
process for two synthetic sector models, and discussed and analyzed differences
in the resulting injection strategies. Evidence that the simulator framework is a
good platform for testing new computational methods can also be found in [3].
Here, the framework is used to develop a new and efficient multiscale method for
polymer flooding relying on a sequentially implicit formulation instead of the fully
implicit formulation described herein.



38 Kai Bao et al.

7 Acknowledgments

The work has been funded in part by the Research Council of Norway under grant
no. 244361. The authors want to thank Statoil (operator of the Norne field) and
its license partners ENI and Petoro for the release of the Norne data. Further,
the authors acknowledge the IO Center at NTNU for coordination of the Norne
cases and Statoil for releasing the simulation model under an open data licence
as part of the Open Porous Media (OPM) initiative. We also appreciate helpful
discussions and suggestions from Stein Krogstad (SINTEF) regarding the polymer
optimization examples.

References

1. Berge, R.L.: Unstructured PEBI grids adapting to geological features in subsurface reser-
voirs. Master’s thesis, Norwegian University of Science and Technology (2016)
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