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Abstract Flow diagnostics refers to a family of numerical methods that within
a few seconds can compute visually intuitive quantities illuminating flow patterns
and well connections for full 3D reservoir models. The starting point is a flow field,
extracted from a previous multiphase simulation or computed by solving a simpli-
fied pressure equation with fixed mobilities. Time-of-flight (TOF) and stationary
tracer equations are then solved to determine approximate time lines and influence
regions. From these, one can derive sweep or drainage regions, injector-producer
regions, and well allocation factors, as well as dynamic heterogeneity measures
that characterize sweep and displacement efficiency and correlate (surprisingly)
well with oil recovery from waterflooding processes.

This work extends flow diagnostics to polymer flooding. Our aim is to develop
inexpensive flow proxies that can be used to optimize well placement, drilling se-
quence, and injection strategies. In particular, we seek proxies that can distinguish
the effects of improved microscopic and macroscopic displacement. To account for
the macroscopic effect of polymer injection, representative flow fields are com-
puted by solving the reservoir equations with linearized flux functions. Although
this linearization has a pronounced smearing effect on water and polymer fronts,
we show that the heterogeneity of the total flux field is adequately represented.
Subsequently, transform the flow equations to streamline coordinates, map satura-
tions from physical coordinates to time-of-flight, and (re)solve a representative 1D
flow problem for each well-pair region. A recovery proxy is then obtained by accu-
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mulating each 1D solution weighted by a distribution function that measures the
variation in residence times for all flow paths inside each well-pair region. We ap-
ply our new approach to 2D and 3D reservoir simulation models, and observe close
agreements between the suggested approximations and results obtained from full
multiphase simulations. Furthermore, we demonstrate how two different versions
of the proxy can be utilized to differentiate between macroscopic and microscopic
sweep improvements resulting from polymer injection. For the examples consid-
ered, we demonstrate that macroscopic sweep improvements alone correlate better
with measures for heterogeneity than the combined improvements.

Keywords Flow diagnostics, tracer distributions, time-of-flight, polymer
flooding, simplified physics proxy

1 Introduction

Modern reservoir simulators provide detailed forecasts of hydrocarbon recovery
based on a description of reservoir geology, flow physics, well controls, and cou-
plings to surface facilities. To interpret these simulations, it is common to study
well profiles and 3D visualization of pressure, saturation, and component distri-
butions in the reservoir. However, this is seldom sufficient to develop an under-
standing of how the reservoir reacts to changes in production strategies. A reser-
voir engineer will also want to know which injection and production wells are
in communication; what is the sweep and displacement efficiency within a given
drainage, sweep, or well-pair region; which regions of the reservoir are likely to re-
main unswept, and so on. Likewise, one must understand how different parameters
in the reservoir model and their inherent sensitivity affect the recovery forecasts.
Detailed simulations of field models take hours or days, and this limits the abil-
ity to iteratively perturb simulation input to evaluate and build cause-and-effect
knowledge of the model. Rapid screening capability and simple, efficient, and in-
teractive tools that can be used to develop basic understanding of how the fluid
flow is affected by reservoir geology and how the flow patterns in the reservoir re-
spond to engineering controls are needed to accelerate modelling workflows, make
better use of time-consuming simulation runs, and provide better data for decision
support.

The term flow diagnostics, as used here, denotes a class of simple and con-
trolled numerical flow experiments run to probe a reservoir model, establish con-
nections and basic volume estimates, and quickly provide a qualitative picture of
the flow patterns in the reservoir, either as a standalone prescreening tool or to
post-process standard multiphase simulations [32, 22]. Flow diagnostics can also
be used to compute quantitative information about the recovery process in settings
somewhat simpler than what would be encountered in actual fields, or be used to
perform what-if and sensitivity analyzes in a parameter region surrounding a pre-
existing simulation. As such, these methods offer a computationally inexpensive
alternative to full-featured multiphase simulations to provide flow information in
various reservoir management workflows.

Two quantities are fundamental in flow diagnostics: time-of-flight and volumet-
ric (tracer) partitions. Time-of-flight τ denotes the time it takes a neutral particle
to flow from the nearest inlet to a given point in the reservoir and defines natural
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time lines that describe how displacement fronts will propagate under prevailing
flow conditions for an instantaneous flow field v. Time-of-flight has traditionally
been associated with streamline methods [8, 35], but can equally well be computed
by standard finite-volume methods [24, 25, 32]. Using a finite-volume formulation
extends better to unstructured grids and provides more seamless integration with
standard modelling tools currently used in industry. On differential form, τ is given
as

v · ∇τ = φ, τ |inflow = 0, (1)

where φ is the porosity of the reservoir. Similarly, we can define an equation that
follows the reverse velocity field −v from the outflow boundary to compute travel
time from a point in the reservoir to the outflow boundary.

Volumetric partitions and measures of to what extent each cell in the reservoir
is in communication with the different fluid sources and sinks can be determined by
computing numerical tracer distributions. These distributions can be though of as
resulting from artificial tracer injections continued until time infinity under steady
flow conditions. Normalized tracer concentrations are given by simple advection
equations on the form

v · ∇c = 0, c|inflow = 1. (2)

The tracer concentration will equal one in all points in communication with the
inflow boundary and be undetermined elsewhere. The inflow boundary typically
consists of multiple wells, or well segments, and/or interfaces between the reser-
voir and aquifers. To derive a volumetric partition, we associate a unique tracer
to each part of the inflow boundary (e.g., one tracer for each injector), and solve
the corresponding tracer equations numerically by a finite volume method. The
default choice would be the single-point upwind method commonly used in multi-
phase reservoir simulators. If a grid cell is in communication with a single injector
only, the corresponding tracer concentration equals one and the others are zero. If
a grid cell is in communication with multiple injectors, each nonzero tracer value
is the fraction of the volumetric flow through the cell that can be attributed to the
corresponding injector. Tracer distributions associated with outflow boundaries
(producers) are computed similarly from the reverse flow field. From time-of-flight
and tracer distributions, one can derive various quantities that express volumet-
ric connections and flow patterns such as drainage and sweep regions, well-pair
connections and flow volumes, and well-allocation factors, which all are visually
intuitive quantities giving enhanced understanding during pre- and post-processing
[22]; see the illustration in Figure 1.

The ultimate goal of most reservoir simulation studies is to contribute to max-
imize profit given a set of operational and economic constraints. To this end, one
needs to explore various production strategies and perform a number of what-if
and sensitivity analyzes. Sweep theory from classical reservoir engineering includes
a number of heterogeneity measures for the variation in petrophysical properties
like flow and storage capacity, the Lorenz and Dykstra–Parsons coefficients, etc.
[17]. It has been shown that time-of-flight can be used to generalize this the-
ory to a dynamic setting to provide measures of the heterogeneity in flow paths
rather than in static reservoir properties. Heterogeneity measures like sweep effi-
ciency, Lorenz coefficient, and vorticity index have proved to correlate well with
recovery [13, 29, 22]. These measures are all inexpensive to compute, and with a
finite-volume formulation it is also straightforward to develop adjoint equations
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tracer concentration, P2 drainage regions for P1 to P3 well-pair regions: I1→P1 and I2→P2
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Fig. 1: Conceptual illustration of flow diagnostics. Time-of-flight gives travel time
along streamlines, whereas numerical tracers provide partition of unity for the
reservoir volume. From these quantities, one can derive residence times of flow
paths, drainage and sweep regions, well-pair regions, etc. The F-Φ diagram shows
how y percent of the flow can be attributed to x percent of the flow volume. The
Lorenz coefficient, which is twice the area between this curve and the straight line
y = x, correlates well with oil recovery in waterflooding. The lower plots show well
connections and flux allocation for one injector in a field model.

to compute gradients and parameter sensitivities, which in turn can be utilized in
effective optimization methods. In previous research [22], we have used this idea
to develop efficient workflows for optimizing well placement, drilling sequence, and
production rates. We have also shown how effective proxies for economic objectives
like net-present value can be derived from time-of-flight and tracer partitions, and
how these in turn can be used to formulate highly efficient optimization loops for
suggesting plausible sequences of rate targets, which subsequently can be slightly
adjusted by a full-fledged simulation to derive production schedules that fulfill
multiphase well constraints. Often, it is more difficult to formulate the objective
and economic and engineering constraints in a precise mathematical form than
solving the resulting problem. Exploring a large number of alternative formula-
tions is usually prohibitive when relying on full-fledged multiphase simulators.
Various forms of flow diagnostics, on the other hand, are inexpensive to compute
and therefore ideal in the exploratory part of an optimization workflow.

Using time-of-flight and tracer distributions to generate flow-based proxies for
accelerating reservoir management workflows is not a new idea. Diagnostic tools
formulated on top of streamline simulation have been applied in ranking and up-
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scaling of geostatistical models [11, 1], to optimize well rates in waterflooding
[36, 26, 13, 37], for flood surveillance on a pattern-by-pattern basis [3], and to
optimize fracture stages and well completions in tight gas reservoirs [31].

Herein, we will discuss to what extent flow-diagnostic ideas developed for wa-
terflooding scenarios can be extended to polymer flooding. To this end, we first
discuss alternative ways of computing the distribution of time-of-flight and resi-
dence times (i.e., the time a neutral particle spends traveling from an inflow to an
outflow point) that utilize ideas from tracer modelling [33, 10]. Then, we move on
to discuss how to forecast the macroscopic effect of polymer flooding and provide
inexpensive forecasts of hydrocarbon recovery. Viscosity change due to polymer
flooding improves both the microscopic and macroscopic sweep efficiency [34, 17].
Polymers increase the viscosity of the displacing fluid and hence increase the frac-
tional flow of oil to the flow of the displacing fluid, which in turn improves the
microscopic sweep efficiency [27]. This effect is most pronounced when the water-
flooding has an unfavorable mobility ratio.

Polymers also improve the macroscopic sweep by reducing channeling through
heterogeneous reservoirs and through viscous cross-flow between layers of different
permeability [7]. We investigate polymer efficiency by comparing polymer flooding
simulations to corresponding waterflooding scenarios. As numerical examples we
apply both single layers from SPE 10 Model 2 [6] and the more complex Norne
field model [12]. By comparing an explicit proxy that only accounts for the im-
proved microscopic sweep along streamlines to an implicit calculation that also
accounts for macroscopic effects, we can distinguish the microscopic and macro-
scopic polymer effects. As the macroscopic effects are linked to viscous cross-flow
and conformance, they are expected to correlate with heterogeneity measures [38].
Correlation with the Lorenz coefficient and the vorticity index [28] is explored for
the models under consideration.

2 Time-of-flight and distributions of residence time

Time-of-flight can essentially be computed in three different ways for an instanta-
neous flow field v. The most obvious approach is to trace streamlines and compute
time-of-flight τ in a pointwise sense by integrating the interstitial velocity field
along these streamlines [8]

dx

ds
= v(x),

dτ

ds
=

φ(x)

|v(x)| , (3)

where s denotes curve length along individual streamlines. Using streamlines to
compute τ gives high pointwise accuracy. Unfortunately, it is not always straight-
forward to trace streamlines in complex reservoir grids having polyhedral cell ge-
ometries and all sorts of challenging degeneracies. In particular, it is challenging
to reconstruct a consistent velocity field v from the numerical fluxes that are typ-
ically available from a finite-volume reservoir simulator, associate the correct flux
to each flow path, etc. There are general and versatile methods available, see e.g.,
[15], but these are relatively expensive for large and complex geological models.
Likewise, there are problems associated with distributing well fluxes to streamlines
and ensuring mass conservation, see e.g., [14].
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Alternatively, one can use a finite-volume discretization of (1), which approx-
imates the volume-averaged value of τ in each grid cell. Assuming incompressible
flow, (1) can be written ∇ · (τv) = φ. Integrating this equation over a single cell
Cj and using the divergence theorem gives us∫

∂Cj

τv · n ds =

∫
Cj

φdx,

where n is the normal vector to the cell faces. Using the same finite-volume method
as for multiphase flow with upwind evaluation of fluxes (i.e., the single-point up-
wind method in [32]), we can write the flux over the face Γjk between cells Cj and
Ck as ∫

Γjk

τv · n ds =

{
vjkτj , if vjk ≥ 0,

vjkτk, otherwise,
vjk = |Γjk|(v · n)|Γjk

.

In vector notation1 , this discretization readsAτ = Vφ, whereA is the flux matrix,
τ is the vector of unknown TOF values, and Vφ is the vector of pore volumes
per cell. The discretization of the tracer equation is similar. This discretization
preserves the causality of the underlying continuous equation (1) (all information
follows streamlines), which in turn ensures that the resulting linear system can be
permuted to (block) triangular form by performing a topological sort of the grid
cells. Hence, (1) can be solved very memory-efficiently in O(n) operations for a
grid with n cells, see [24, 25, 22]. This solution procedure is also possible if one
uses a higher-order discontinuous Galerkin discretization.

To shed more light into the finite-volume approach and its potential limita-
tions, let us consider a discrete incompressible flux field v and a grid cell j with
total influx vj . Let c(j) denote the vector of backward tracer concentrations cor-
responding to an imaginary experiment in which a tracer is injected in cell i and
allowed to flow in the reverse direction of v. Moreover, let

Aτ = Vφ and AT c(j) = ejvj (4)

be the discrete TOF equation and the backward tracer-equation, respectively. Here,
ej is a unit vector equal one in cell j and zero elsewhere. For the TOF-value τj of
cell j, we then have the following:

τj = eTj A
−1Vφ =

1

vj
cT(j)Vφ. (5)

Accordingly, τj equals the pore volume of the upstream region of cell j (i.e., the
drainage region) divided by the flux. For a highly heterogeneous drainage region,
this means that τj will be the average of a distribution of potentially large variance.
This averaging introduces a systematic bias in dynamic heterogeneity measures,
which may be acceptable in some applications and can be somewhat reduced by
a higher-order spatial discretization [30].

Despite this bias, dynamic heterogeneity measures like the Lorenz coefficient
computed from the average residence time defined in each grid cell (more details
will be given below), have previously shown to correlate well with secondary oil

1 Henceforth, we will use the notation that a bold italic symbol v denotes a discrete quantity,
whereas a bold upright symbol v denotes a continuous vector in physical space.
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recovery by waterflooding [13, 22]. However, as we will see later (e.g., in Figure 9),
these simple measures do not provide satisfactory correlation with tertiary recovery
by polymer flooding. In the next section we therefore develop a simplified physics
proxy that maps one-dimensional displacement profiles onto time-of-flight. For this
purpose it is not sufficient to know the average TOF values. Instead, we need to
know the distribution of breakthrough times for all flow paths. Hence, to provide
more accurate production forecasts, we consider the distribution of τ for each
grid cell and in particular for cells containing production wells. At an outflow
boundary, τ equals the residence time, i.e., the total time a neutral particle has
spent traveling from the inflow to the outlet.

Let v be an incompressible flux field in a 3D domain Ω with ∇·v = 0 inside the
domain, v ·n = qi on the inlet boundary Γi and v ·n = qo on the outlet boundary
Γo, and v · n = 0 elsewhere on ∂Ω. Consider the linear transport equation

φ
∂c

∂t
+ v · ∇c = 0, c|Γi

= δ(t), (6)

with c(x, 0) = 0. Thus, (6) describes the transport of a unit pulse through Ω. For
each point x, the TOF-distribution p(·; x) is simply the Dirac function

p(t; x) = c(x, t) = δ
(
t− τ(x)

)
, (7)

while at the outlet Γo, the TOF/residence-time distribution is given as

po(t) =
1

Fo

∫
Γo

c v · n ds, Fo =

∫
Γo

v · n ds. (8)

It follows from the definition of the Dirac distribution that
∫
po(t) dt = 1. More-

over, for the mean t̄ of the distribution we have

t̄ =

∫ ∞
0

t

Fo

∫
Γo

cv · n ds dt

=
1

Fo

∫
Γo

∫ ∞
0

tδ(t− τ)v · n dt ds

=
1

Fo

∫
Γo

τv · n ds =
1

Fo

∫
Ω

v · ∇τ dx =
1

Fo

∫
Ω
φ dx. (9)

Accordingly, the mean of po(t) is given by t̄ = Φt/Fo, where Φt is the total pore
volume.

To develop discretized equations for the TOF/residence-time distribution, we
write the semi-discrete version of the pulse-equation (6) as a linear set of ODEs
of the form

dc

dt
+Mc = 0, c(0) = c0 =

qi
Vφ

, (10)

where M = V −1
φ A is the discretization of the linear operator 1

φv · ∇ and qi is
the vector of injection source terms. The discrete linear operator M is constructed
using the standard upwind scheme introduced for A above. The solution of (10)
is given in terms of matrix exponentials by c(t) = e−tMc0. Hence, the discrete
counterparts of (7)–(8) can be represented by

pj(t) = eTj e
−tMc0 and po(t) = qTo e

−tMc0/q
T
o e, (11)
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where pj is the distribution in cell number j, po is the distribution in the producers
(fluid sinks) and qo the corresponding vector of source terms, and e is a vector
of ones. Given the distribution po at the outlet, we can define flow capacity and
storage capacity curves as [33]

F (t) =

∫ t

0
po(s) ds, Φ(t) =

Fo
Φt

∫ t

0
s po(s) ds, (12)

where Φt is the total pore volume of the reservoir volume that is drained by the
outflow boundary Γo and Fo is the corresponding total outflux. Notice that both
quantities are normalized so that F (∞) = Φ(∞) = 1. From this definition, it also
follows that the mean value of po(t) corresponds to the time t = Φt/Fo it takes to
inject one pore volume, which we will later refer to as 1 PVI.

For efficient computation of residence-time distributions we employ a rational
Padé approximation to evaluate the action of the matrix exponential. By collecting
all the pj ’s in a vector p, the first equation in (11) can be reformulated and
approximated as follows

p(t+∆t) = e−∆tMp(t) ≈ P (−∆tM)Q(−∆tM)−1p(t), (13)

for suitable polynomials2 P and Q. Herein, we use first-order polynomials to reduce
fill-in, i.e., P (x) = 1 + x/2 and Q(x) = 1 − x/2. Accordingly, for each successive
value of the distribution we compute, we need to solve a linear system. However,
for the problems we consider, the matrix M is triangular possibly after permuta-
tion [25], and hence each linear solve is highly efficient. The approximation (13)
obviously depends on the choice of ∆t. For the cases considered here, we found
(heuristically) that splitting the time-interval of interest into 200 uniform steps,
gave sufficient accuracy for the approximation.

The upper plots in Figure 2 show po(t) as function of dimensionless time (PVI)
for two different permeability fields. The solid lines are distribution computed nu-
merically by (13), i.e., by tracing a unit pulse through the model. For comparison,
we also include estimates of the same distributions obtained by first solving the
forward and backward TOF equations, A±τ± = Vφ, to obtain the total travel
time τr = τ+ + τ−, and then use the relationship Fj = Vφ,j/τrj to back out the
flux Fj associated with cell j. In principle, the residence-time distributions is now
obtained by sorting the τrj values in ascending order and plotting Fj against τrj
normalized by 1 PVI. The resulting plots are highly irregular, and in Figure 2 we
have therefore binned the τr values and instead plot the total flux associated with
each bin, shown as dashed lines. It is clear, especially from the most heteroge-
neous case, that the averaging in the TOF-equation introduces a delay in e.g.,
breakthrough-time. By construction, the mean of the distributions equals 1 PVI,
shown as red dashed lines in the figure. This may not be apparent from the plots
since particularly the channelized case has a very long tail. The lower plots in the
figure show the resulting F -Φ diagrams and report the Lorenz coefficient, defined
as twice the area between the curve F (Φ) and the straight line F = Φ. This co-
efficient is a measure of dynamic heterogeneity and has previously been shown to
correlate well with recovery for waterflooding [13, 29, 22]. Even though there are
large differences in the residence-time distributions computed by the two methods,
the F -Φ diagrams and Lorenz coefficients are not very different.

2 We note that P = 1 + x and Q = 1 gives forward Euler for linear equations, whereas
P = 1 and Q = 1− x gives backward Euler.
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Fig. 2: The upper plots report residence-time distributions (8) for two different
permeability fields in a left-to-right displacement scenario. Solid lines are obtained
by tracing a unit pulse through the reservoir to determine the distribution at the
outlet, whereas dashed lines are obtained by solving the time-of-flight equation
by a finite-volume method and backing out data for representative flow paths
through each of the cells of the model. The lower plots show comparisons of the
corresponding flow F-Φ diagrams and Lorenz coefficients.

Distributions of residence times are used e.g., in the study of chemical reactors
and tracer tests [33, 10]. We end the section by going through some derivations
that hopefully contribute to tie connections for those familiar with analysis of
tracer tests. To see the connection between (1) and (6), we consider the first-order
moment m1 =

∫∞
0 tc dt, which can be obtained by multiplying (6) with t and

taking the integral∫ ∞
0

[
φ
∂c

∂t
t+ v · ∇(tc)

]
dt = φ

(
[tc]∞t=0 −m0

)
+ v · ∇ (m1) = 0. (14)

This equation simplifies to

v · ∇m1 = φ, m1|Γi
= 0, (15)

since m0 =
∫∞
0 c dt = 1 and limt→∞ c(t) = 0. Accordingly, m1 equals τ as defined

by (1). Equation (15) is the first of a family of moment equations [18], for which
the higher-order (raw) moments can be computed according to

v · ∇mk = k φ mk−1, mk|Γi
= 0. (16)
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Note that by (7), for any point x, mk(x) = 0 for k ≥ 2, while this is not the case
for residence-time distributions of the form (8).

Analogous to (16), the moments mo,k of po(t) for k ≥ 1 can be obtained by

mo,k =
qTpmk

qTp e
, Mmk = kmk−1, (17)

with m0 = e. We note that an alternative approach to using matrix exponentials
is to solve the truncated moment problem, i.e., to compute the first n moments of
the distribution from (16), and then try to find a distribution sharing the same
moments. One approach towards this is the maximum entropy method (see e.g.,
[20]), which involves solving a set of n non-linear equations. In our initial tests,
however, we found that obtaining convergence for these equations could be difficult,
especially for distributions with long, slim tails towards infinity. This is typically
the case for residence-time distributions from highly heterogeneous permeability
fields like the one shown to the right in Figure 2.

3 A recovery proxy for polymer flooding

In the following, we will use the residence-time distribution to develop a proxy for
evaluating the performance of polymer flooding. The word ’proxy’ is often used
to denote response surface models derived from a series of full flow simulations.
Herein, we will use the same word to denote a reduced model with simplified flow
physics that can approximate recovery curves.

To describe polymer flooding, we consider an immiscible, two-phase model with
three fluid components (oil, water, and polymer) on the form,

∂t(φbαsα) +∇ · (bαvα)− bαqα = 0, α = o, w

vα = −λαK(∇pα − ραg∇z),
∂t(φdpvbwswcp) + ∂t(ρrca(1− φr)) +∇ · (bwcpvp)− bwqp = 0,

vp = −λpK(∇pw − ρwg∇z).

(18)

This model is sufficiently general to incorporate most of the fluid effects found in
commercial simulators, like adsorption of polymer onto the reservoir rock, reduc-
tion in permeability, inaccessible pore space, mixing of polymer in water, compress-
ibility of fluids and rock, as well as pseudoplastic effects of the diluted polymer
solution. As our multiphase reference, we will use an open-source simulator [2]
that includes all these effects.

3.1 Capturing macroscopic sweep effects in a single step

The first goal of the current flow-diagnostics approach is to efficiently obtain a flux
field that takes into account changing mobility effects originating from injection
of polymer. To simplify our discussion, we omit adsorption, dead pore space, and
pseudoplastic effects. In addition, the proxy will neglect gravity and compressibility



Efficient Flow Diagnostics Proxies for Polymer Flooding 11

for efficiency (our reference simulations does not). Equation (18) can then be
written in total flux form:

v = −[λw(s, cp) + λo(s)]K∇p, ∇v = q,

∂t(φsw) +∇ · (vfw) = qw, ∂t(φswcp) +∇ · (vfpcp) = qwcp,inj,
(19)

where v = vw + vo is the total flow rate of both phases and we have introduced
the fractional flow functions fw = λw/(λw + λo) and fp = λp/(λw + λo). (For the
model used herin, fp(s, c) = m(c)fw(s, c), where m(c) = λp/λw.)

Although the equations in (19) are greatly simplified compared to (18), they
are still highly nonlinear, and obtaining a flux field v at some finite end time T
requires a simulation. To reduce the computational cost of the proxy, we will try
to perform this simulation as efficient as possible. Assuming constant well controls
and injection compositions, we use a single implicit time step ∆t = T . To enable
this computation for large ∆t, we linearize fw and fp between their endpoints. The
fully-coupled system is still nonlinear, but using linear flux functions improves the
convergence of the nonlinear Newton solver. As an alternative or complement to
linearization of the flux functions, one could use a trust-region solver [21], which
recently has been extended to include all the pertinent flow physics in (18), see [16].
Taking extremely long time steps like this will obviously lead to severe smearing
of saturation and concentration fronts, and hence the solution cannot be used to
predict fluid production in wells. However, the sole purpose of the computation is
to obtain representative flux fields that account for how polymer injection and/or
other changes in the injection setup affect the time-of-flight and tracer distributions
in the reservoir.

To illustrate, Figure 3 depicts how the instantaneous residence-time distribu-
tions vary throughout a polymer injection scenario following an initial waterflood-
ing phase for the two permeability fields in Figure 2. Residence-time curves are
specific to instances in time, and curves are obtained at different times by ex-
tracting instantaneous velocity fields and then using each such field to trace a
unit pulse through the whole domain from inlet to outlet. The solid blue curves
represent the velocity field at the end of waterflooding, whereas the gray curves
represent instantaneous velocity fields from times equally spaced throughout the
polymer injection period. As can be observed, the residence-time distributions can
vary substantially during the polymer injection period. However, if we average all
the instantaneous velocity fields, the residence-time distribution (solid red lines)
associated with this averaged flow field seems to be well matched by the corre-
sponding distribution (dashed red lines) computed for the velocity field used in our
one-step proxy. In the next step of the proxy, we reevaluate the fluid distribution
based on the residence-time distributions for the flux field v obtained from (19).

3.2 Mapping 1D displacement fronts to residence-time distributions

To account more accurately for the fluid transport, we compute numerical tracers
for all wells and use these to partition the flux field for each simulation period
into injector–producer interaction regions, and solve representative 1D transport
problems along τ for each region. The interaction regions are obtained by solving
(forward and backward) stationary tracer equations, see [22] for details. Let c(x, t)
be the solution of the delta-pulse equation (6), and s(x, t) a saturation field in Ω
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Fig. 3: Residence-time distributions for the two permeability fields of Figure 2.
Blue line is initial distribution (prior to polymer injection), gray lines show distri-
butions at selected times during the injection period, red line is the distribution
for the average flux field over the period, and finally, the red dashed line shows
the distribution obtained from the single-step proxy.

(or any other time-dependent field on Ω). Then, the corresponding 1D field s(τ, t)
along τ can be computed by

s(τ, t) =

∫
Ω
s(x, t)c(x, τ) dx. (20)

Correspondingly, a 1D field s(τ, t) is mapped to s(x, t) by

s(x, t) =

∫ ∞
0

s(τ, t)c(x, τ) dτ. (21)

For a true delta pulse (exact solution of Eq. (6)), the composition of the mappings
(21)–(20) equals identity, while the opposite composition equals identity only if the
field s(x, t) is aligned with τ(x), i.e., constant along the time-of-flight contours. For
the discrete case, however, compositions (in either direction) will only approximate
identity since the delta pulses are approximated by smooth functions.

Disregarding compressibility, the recovered oil r(t) from time t0 to time t, can
be estimated by

ro(t) =

∫
Ω
φ∆s(x, t) dx, (22)

where ∆s(x, t) = s(x, t)− s(x, t0) is the pointwise saturation change. The integral
(22) can be transformed to an integral in τ (i.e., omitting the mapping (21)) as
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follows

ro(t) =

∫
Ω
φ(x)∆s(x, t) dx

=

∫
Ω
φ(x)

∫ ∞
0

∆s(τ, t)c(x, τ) dτ dx (23)

= −
∫
Ω
φ(x)

∫ ∞
0

(∫ τ

0
∆s(τ̃ , t) dτ̃

)
∂τ c(x, τ)dτ dx (24)

= −
∫
Ω

∫ ∞
0

S(τ, t)φ(x)∂τ c(x, τ)dτ dx (25)

=

∫ ∞
0

S(τ, t)

∫
Ω

v · ∇c(x, τ) dx dτ (26)

=

∫ ∞
0

S(τ, t)

∫
Γo

c(x, τ)v · n dΓo dτ

= qo

∫ ∞
0

S(τ, t)po(τ) dτ. (27)

In the above derivation, (24) follows from (23) by partial integration in τ and that
c(x, 0) = limτ→∞ c(x, τ) = 0, and S(τ, t) denotes the integral function of ∆s(τ, t)
such that ∂τS = ∆s. Moreover, (26) follows from (25) by equation (6), and finally
qo is the total production rate and po(τ) the residence-time distribution as defined
in (8). Accordingly, the recovery can be estimated solely by considering the TOF
distribution at producers and the (integral of the) 1D solution profile along τ .

To sum up, a single step of the suggested proxy proceeds as follows. First, by
solving a series of normalized tracer equations (2) using the representative velocity
field, we split the reservoir into a set of well-pair regions with associated total fluxes
qi = qo. For each well-pair region, we perform the following three steps:

1. Compute the TOF/residence-time distribution for the region.
2. Map the saturation/concentration fields of the region onto a 1D TOF-grid

using (20), i.e., s(x, 0) 7→ s(τ, 0) and cp(x, 0) 7→ cp(τ, 0). Run a 1D simulation
from time zero to time T . As a result, we get the saturation changes as a
function of τ , i.e., ∆s(τ, T ) = s(τ, T )− s(τ, 0).

3. Estimate the total volume of produced oil for the region by (27). That is, the
produced volume of oil ro from the beginning of the period (time 0) to the end
of the period (time T ) for the region is estimated as

ro = qo

∫ ∞
0

S(τ, T )po(τ) dτ, (28)

where qo is the total production rate and S(τ, T ) =
∫ τ
0 ∆s(τ̃ , T ) dτ̃ . This oil

production is computed for each well-pair region and summed up to give total
field production.

The overall procedure for evolving saturation and concentration during a sin-
gle simulation period is illustrated in Figure 4 and has obvious similarities with
streamline simulation (think of each region as a bundle of streamlines). If neces-
sary, the proxy can be refined by computing the volumetric partition based on well
segments instead of individual wells.
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Residence-time distribution
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Fig. 4: Illustration of the recovery proxy. The reservoir is partitioned into injector–
producer regions. Then, residence-time distributions and representative 1D dis-
placement profiles are computed for each region and convolved to compute the
recovery proxy.

3.3 Overall procedure

The overall procedure for computing the proxy is summarized in Figure 5. For
efficiency, our default setup is to use a single time step to compute the flux field
from (19). In the numerical examples presented in the next section, the proxies are
applied only to cases with continuous water injection or continuous polymer injec-
tion. To handle cases in which the well controls and injection compositions vary
significantly throughout the simulation period (injection of polymer slugs, injec-
tion of chase water, etc), multiple time-steps must be considered. In this situation,
one can divide the simulation history into multiple periods, and approximate each
period with the proxy. Between periods, the one-dimensional displacement profiles
must then be mapped back to the physical grid by (21) as illustrated by the red
box in Figure 5. This is analogous to streamline methods. However, our proxy is a
more crude appxoimation and cannot generally be expected to provide the same
spatial accuracy as a multiphase streamline simulation. Restarting from inaccurate
saturation/concentration fields will eventually affect the accuracy of the linearized
multiphase simulation used to compute a representative velocity field for the next
proxy stage. Hence, accuracy is generally expected to decay somewhat when the
proxy is applied to simulate multiple injection periods. Likewise, the computa-
tional cost will increase since one would need to recompute representative velocity
fields and the residence-time distributions for each simulation period.

To discriminate macroscopic displacement effects, we introduce a second proxy
that follows the same steps outlined above, but computes each flow field explicitly,
i.e., using mobility resulting from the fluid distribution at the outset of each sim-
ulation period. This proxy does not account for the fact that injected fluids will
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Solve flow problem
(19) to compute v

Compute tracer distributions from
(2) for all producers and injectors

Determine well-pair regions

Compute residence-time
distribution from (13)

Map: (s, c)(x, 0) −→ (s, c)(τ, 0)

Solve 1D flow problem

Compute recovery from (28)

Map: (s, c)(τ, T ) −→ (s, c)(x, T )

Fig. 5: Flow-chart for the proxy computation. The blue boxes represent key steps
in the method. The red box is an optional step the could be included to make our
proxy behave more like a streamline method.

affect the flow paths during the simulation period, but only accounts for changes
in displacement efficiency along each flow path through the 1D simulations.

In our explanation of the proxy method, we neglected various polymer effects
to make the presentation as brief as possible. All the effects of the underlying
multiphase model can in principle be included in the proxy, and most of them are
implemented in our prototype code.

4 Numerical examples

To validate the practical usefulness of flow diagnostics for EOR, the methods in-
troduced above were implemented as an enhancement to the diagnostics module
from the open-source Matlab Reservoir Simulation Toolbox (MRST) [23, 19]. The
multiphase reference simulations reported in the following were conducted with
the ad-eor module of MRST [2], and include the effects of dead pore space, grav-
ity, and fluid compressibility, but not pseudoplasticity. The explicit and implicit
proxies include dead pore space, but neglect gravity and compressibility.

4.1 Horizontal layers from SPE 10

In our first numerical example, we consider the horizontal layers of the synthetic
Brent model used in the 10th SPE Comparative Solution Project [6]. The full
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Fig. 6: Relative permeability (left) and water viscosity multiplier as function of
polymer concentration (right).

model consists of a grid with 60 × 220 × 85 cells, where the top 35 layers repre-
sent the shallow-marine Tarbert formation, which has a log-normal permeability
distribution, while the lower 50 layers represent the fluvial Upper Ness formation
with distinct permeability distributions for the high-permeable channels and the
lower-permeable background. For the experiments, we utilize relative permeabili-
ties and water viscosity multiplier as function of polymer concentration as depicted
in Figure 6.

The water and oil viscosities are set to 0.5cp and 1.5cp, respectively, while
water, oil and rock compressibilities are set to cw = 4.94 × 10−10 bar−1, co =
6.65 × 10−10 bar−1 and cr = 6.82 × 10−10 bar−1. We consider a scenario with a
single injector and a single producer, each well perforating an entire side of the
model (see Figure 7). The injector is controlled by a constant (surface) volume
rate (3m3/day), while the producer is controlled by a constant pressure (150bar).
Initially, the fluid mixture is assumed to be at connate water saturation of 0.15 at
270 bar. The reference simulations are run as follows

1. From t0 = 0, inject water only until the water cut in the producer reaches 0.9,
which defines a time t1.

2. From t1, inject water with a polymer concentration 1 kg/m3 until a total of
51 000 kg polymer has been injected. For most layers this amounts to approxi-
mately 0.8 PVI (t2). For comparison, we also simulate a scenario in which pure
water is injecated also during the period [t1, t2].

The middle and right plots in Figure 7 show the reference solution with and
without polymer depicted as solid and dashed lines, respectively, for one layer in
each of the two different formations. Next, we evaluate the proxy for all layers.
For comparison and subsequent approximation of macroscopic versus microscopic
sweep improvements, we compute both the implicit proxy, which accounts for
changes in flow paths due to changes in mobility, and the explicit proxy, in which
the flow pattern will be locked to the current state and not represent changes in
streamlines due to mobility changes. This way, the explicit version will only include
the effect of improved microscopic sweep due to changes in fractional flow and not
reflect improved macroscopic sweep. We note that for evaluation purposes, results
from the explicit proxy were compared to results from a sequential simulator which
was modified to use fixed velocity for all time steps. This comparison (not reported
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here) showed close agreement between the proxy and modified simulation. The
proxies are run as follows:

1. For the first period [0, t1], we evaluate the explicit and implicit proxies using
flux fields computed over various time horizons T <= t1.

2. For the second period [t1, t2], we start from the state computed by the multi-
phase simulator and evaluate the explicit and implicit proxies using flux fields
computed over various time horizons T <= t2 − t1 both with and without
polymer injection.

Figure 7 shows the proxy predictions for Layers 23 and 75 for the first period
(water only) and for the second period (polymer or water only). As observed,
there is little difference between explicit and implicit during the first period, which
indicates that the injected water causes insignificant changes in the flow paths and
residence-time distribution. For the polymer injection in the second period, the two
proxies differ substantially for the highly heterogeneous Upper Ness case (Layer
75), but only marginally for the more homogeneous Tarbert case (Layer 23). This
indicates that the recovery increase due to polymer for Layer 23 is mainly caused by
improvements in microscopic sweep, whereas improvements in macroscopic sweep
dominates for Layer 75.

Figure 8 shows the correlation between recovery factors computed by the prox-
ies and reference recovery factors obtained from full simulations for all layers. The
upper row shows all proxy evaluations for the waterflooding scenario. For the first
period (upper right), a (slight) bias is observed when the flux field is computed
with the longer time steps. Note however, that the reservoir is almost completely
flooded during this period (water cut from zero to 0.9), so some discrepancies are
expected when using the flux field with strong inter-well water communication to
compute residence-time distributions. For the second period (upper left), the proxy
predictions are very well correlated with the reference. Note also that there are
no significant differences between the explicit and implicit proxies for these cases.
The lower-left figure compares recovery factors predicted by the implicit proxy
and by a full multiphase simulation. Results from the explicit proxy are omitted
since they fail to give adequate predictions. Although the implicit proxy correlates
well with full multiphase simulations, it has a tendency to overpredict recovery if
the flux is computed over a shorter time horizon (prior to polymer breakthrough).
This effect becomes more pronounced when we plot the predicted increase in oil
recovery due to polymer, i.e., recovery from polymer injection minus recovery from
water only (lower-right plot).

Finally, we wish to isolate the macroscopic and microscopic sweep improve-
ments by comparing the implicit and explicit proxies. Since a standard simulator
cannot give predictions of these quantities, we rather compare them with measures
of heterogeneity, i.e., the Lorenz coefficient and the vorticity index. As above, we
estimate the improvement in total recovery by comparing the implicit proxy for
polymer injection to the implicit proxy for pure water injection. We estimate the
improved recovery due to microscopic effects by comparing the explicit proxy for
polymer injection to the implicit proxy for pure water injection. And finally, we
estimate the improved recovery due to macroscopic effect as the difference between
total improved recovery and recovery improved by microscopic effects. Figure 9
depicts the resulting improved recoveries for all layers. As expected, there is no ap-
parent correlation between heterogeneity and improvements in microscopic sweep.
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Fig. 7: Well setup for each layer of the SPE10 model (left), and reference and proxy
output for Layer 23 (middle) and Layer 75 (right). Dashed black line is reference
recovery factor without polymer injection, solid black line is reference recovery for
polymer injection starting at t1 (water cut 0.9). Red dots (polymer injection) and
circles (water injection) show proxy predictions for various time horizons using the
implicit proxy, while blue dots and circles correspond to explicit proxy.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

explicit

implicit

0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

explicit

implicit

0.3 0.4 0.5 0.6 0.7
0.3

0.4

0.5

0.6

0.7

0 0.05 0.1 0.15
0

0.05

0.1

0.15

Water flooding: period 1 Water flooding: period 2

Polymer flooding: period 1 Improved oil recovery

Fig. 8: Correlation between recovery predicted by the proxy (y-axis) and by a full
simulation (x-axis) for all horizontal layers of the SPE 10 model. The proxy is run
with different end times for the one-step computation of the representative flow
field, varying from short (blue) to the whole period (yellow).



Efficient Flow Diagnostics Proxies for Polymer Flooding 19

0.04 0.06 0.08 0.1

Recovery increase

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L
o

re
n

z 
co

ef
fi

ci
en

t

corr = 0.78

0.04 0.06 0.08 0.1

Recovery increase

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
o

rt
ic

it
y

 c
o

ef
fi

ci
en

t

corr = -0.79

Lorenz coefficient Vorticity index

0 0.02 0.04 0.06 0.08

Micro sweep increase

0.1

0.2

0.3

0.4

0.5

0.6

L
o

re
n

z 
co

ef
fi

ci
en

t

0 0.02 0.04 0.06 0.08

Micro sweep increase

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
o

rt
ic

it
y

 c
o

ef
fi

ci
en

t

0 0.02 0.04 0.06

Macro sweep increase

0.1

0.2

0.3

0.4

0.5

0.6

L
o

re
n

z 
co

ef
fi

ci
en

t

corr = 0.92

0 0.02 0.04 0.06

Macro sweep increase

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
o

rt
ic

it
y

 c
o

ef
fi

ci
en

t

corr = -0.83

Fig. 9: Plot of heterogeneity measure (Lorenz coefficient or vorticity index) versus
estimated increase in total (top), microscopic (middle), and marcroscopic (bottom)
recovery due to polymer. Red dots correspond to the fluvial Upper Ness layers,
blue to log-normal permeability fields of the Tarbert formation.

The best correlation (for both measures) is observed between heterogeneity and
macroscopic improvements. Accordingly, these results illustrate that the largest
gain for polymer injection is obtained for high heterogeneity. We note that the
line of best fit for macroscopic improvements versus Lorenz coefficient does not
pass trough the origin, hence it appears that the relation is not linear even though
the two different estimates are strongly correlated.
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Fig. 10: Grid and well positions for the Norne model (left), and evolution of total
field recovery factors from simulations and proxies (right).

In the experiments reported above, we used constant injection rates to make
sure that equal amounts of fluids were injected in all layers. The SPE 10 model has
very strong heterogeneity and this inevitably caused injection pressures to exceed
what realistic ranges in several layers. (As a result, the commercial simulator we
used to verify our multiphase simulations in MRST failed to converge for some
of the layers.) In a sense, the above experiments can therefore be considered as
hard test cases, and we believe that the validy of our approximations would be at
least as good for simulations conducted with more realistic simulation setups with
the same type of polymer model. Similar considerations apply also in the next
example.

4.2 The Norne field model

In this example we adapt a model of the Norne field [12], to test our suggested
proxy in a realistic setting with multiple wells (see Figure 10). Again, we con-
sider waterflooding with subsequent polymer injection of a reservoir that initially
is filled with oil. Relative permeabilities, viscosity multipliers and PVT-properties
are the same as in the previous example. The wells included in the experiment cor-
responds to those active in the benchmark-case [12] at simulation date 25.04.2006.
The injection rates for the experiment are set equal to those in the benchmark at
this date which gives a total field injection rate of about 3.7 × 104 m3/day. Pro-
ducers are set to operate under constant bhp at 150 bar. Also for this experiment,
we assume that the initial fluid mixture is uniform at connate water saturation
(sw = 0.15), and initial reservoir pressure about 270bar. Water is injected at con-
stant rate for approximately 20 years, while producers are shut when a water-cut
of 0.9 is reached. As a result, at the end of the first period, five of the nine pro-
ducers have been closed due to excess water-cut. In the second period, all wells
are opened, and set to produce at a constant liquid rate for about 40 years (about
0.8 PVI). As in the previous example, we use the proxy to predict both pure wa-
ter and polymer injection. In the polymer case, all six injectors are set to inject
a mixture of concentration 1 kg/m3. Starting from the multiphase simulation at
20 years, the implicit and explicit proxies are run with time horizons of 10, 20, 30
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Fig. 11: Estimated evolution of recovery (simulation and proxy) for four of the
producers.

and 40 years for the flux calculation for both injection scenarios. With six in-
jectors and nine producers, there are potentially 54 well-pair regions. However,
in the current scenarios there are 14 producer-injector pairs with zero or negligi-
ble communication, and hence residence-time distributions and 1D displacement
profiles are computed for 40 regions for each proxy evaluation. In our current MAT-
LAB implementation, the computation of interaction regions and corresponding
residence-time distributions takes about 5 seconds on a standard laptop using the
built-in linear solver in MATLAB. We anticipate, however, that employing a tai-
lored solver based on optimal ordering [24] can speed up this process substantially.
In lack of an efficient 1D solver, each of the displacement profiles are computed
using a fully implicit solver (with large relative overhead for small problems) and
hence constitutes the bottleneck of the current implementation. Again, a tailored
solver, as used in streamline simulators [8], would eliminate this bottleneck, and
as a result, a single proxy evaluation for a model of this size should be on the order
of a second in an efficient implementation.

In Figure 10 (right), the evolution of the overall recovery factor is shown.
Similarly to the previous example, the proxy for polymer injection slightly over-
estimates the recovery for the shortest time horizon, but matches perfectly as the
polymer mixture reaches most producers. We also observe a considerable differ-
ence in explicit versus implicit proxy, suggesting macroscopic sweep improvement
due to polymer are present.
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Fig. 12: Estimated evolution of partial recovery for producer B-2H from the three
most contributing injectors.

Since the proxy computes recovery for each (communicating) well-pair region,
we can also estimate recovery for each of the wells. Figure 11 reports cumulative
recovery factors for four of the producers. For wells D-1CH and B-1BH, we observe
that the polymer injection has a somewhat marginal effect, while the opposite is
true for B-2H and D-2H. Note that the large improvements seen in these plots not
only come from improved sweep in the drainage regions, but also from the fact
that the drainage regions are enlarged.

Last, we look more closely at the recovery profile of producer B-2H (Figure 11,
top-left) and decompose it according to the communicating injectors. The three
injectors contributing most to production in B-2H (measured in total flux) are
C-1H, F-2H and C-4AH. Recovery plots for the corresponding interaction regions
are shown in Figure 12. Since our multiphase simulator cannot provide us with
recovery estimates broken down to individual well-pair regions, only the proxy-
values for the second period are plotted. We observe that the polymer injection
apparently has a large influence on the recovery from these regions.

5 Concluding remarks

Reduced-order and proxy type methods have received much attention as an ap-
proach to accelerate forward simulations in optimization and data assimilation
workflows. Many such methods – like the trajectory piecewise linearization method
[4, 5] – require an initial stage in which a (potentially extensive) set of multiphase
simulations is run to tune the proxy model. The proxy can then be expected to
provide fast and accurate predictions for simulation input in the neighborhood of
the tuning run(s). The proxy method presented herein serves a different purpose,
as it does not require tuning and hence can be used to quickly screen a number
of very different polymer injection scenarios, including new well placements, etc.
Technically, our method is somewhat similar to the recent INSIM method [9] in the
sense that it relies on one-dimensional simulations within well-pair regions. How-
ever, unlike the INSIM method, our method assumes that a geo-cellular model is
available and tries to utilize as much information about flow paths from this model
as possible. This is a key characteristics of all flow-diagnostics computational tools.
Our new proxy also takes inspiration from streamline methods, but utilizes the
same grid and finite-volume discretization as a conventional reservoir simulator,
and hence accounts for the effects of heterogeneity in the same way.
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For the examples considered, the implicit version of the proxy appeared to ap-
proximate both water and polymer flooding to a fair degree of accuracy. Thus it
appears as a good candidate for optimization applications. In addition, the combi-
nation of the explicit and the implicit proxies appeared to adequately differentiate
between macroscopic and microscopic sweep improvements. This could be used to
asses the impact of reservoir heterogeneity on polymer efficiency.

Apart from the flow model used, there is nothing specific to polymer in our
proxy, and we therefore expect that similar ideas can be applied also to other (sim-
ilar) EOR processes. The main limitation is in the ability to obtain representative
flow fields, and if the proxy is applied in multiple stages, in the ability to predict
fluid compositions at the end of each stage that are sufficiently accurate to not
have a strong adverse effect on the approximate flow field computed for the subse-
quent step. Likewise, using multiple stages will incur a higher computational costs
since we then need to compute additional flow fields and associated residence-time
distributions. As discussed herein, our proxy used a unique 1D transport solve for
each well-pair region. Higher granularity can easily be added by subdividing the
well-pair regions further, e.g., by considering regions associated with subsegments
of the well, or even individual well perforations. We have used such subregions in
our previous work on flow diagnostics visualization, but have not yet investigated
their use together with the proxy for polymer flooding.
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