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Abstract. We continue the work that was initiated in [7] on a marching method
for simulating two-phase incompressible immiscible flow of water and oil in a porous
medium. We first present an alternative derivation of the marching method that
reveals a strong connection to modern streamline methods. Then, through the study
of three numerical test cases we present two deficiencies: (i) the original marching
algorithm does not always compute the correct solution of the underlying difference
equations, and (ii) the method gives largely inaccurate arrival times in the presence
of large jumps within the upwind difference stencil. As a remedy of the first problem
we present a new advancing-front method, which is faster than the original marching
method and guarantees a correct solution of the underlying discrete linear system.
To cure the second problem we present two adaptive strategies that avoid the use
of finite-difference stencils containing large jumps in the arrival times.

The original marching method was introduced as a fast tool for simulating two-
phase flow scenarios in heterogeneous formations. The new advancing-front method
has limited applicability in this respect, but may rather be used as a fast and
relatively accurate method for computing arrival times and derived quantities in
heterogeneous media.
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1. Introduction

The mathematical model for porous media flow considered herein de-
scribes the flow of two inviscid, incompressible and immiscible fluids in
a domain Ω ⊂ R3 filled with a porous medium. In reservoir simulation,
these fluids are typically oil and water. Neglecting capillary pressure
and gravity, the motion of the two fluids is governed by the scalar
conservation law

∂S

∂t
+ v(x) · ∇f(S) = 0, (1)

where S is the saturation of water and f is the fractional flow function
accounting for different flow resistance of the two fluids. A complete
model must also include an equation for the fluid velocity v. The most
commonly used model is a constitutive relation known as Darcy’s law
that relates v to the fluid pressure. The continuity equation can then
be stated as

∇ · (λT∇P ) = 0 in Ω, (2.1)
v = −λT∇P, (2.2)

where P is the total fluid pressure and λT is the total mobility, which
depends on the absolute permeability as well as on S. We model injec-
tion and production of fluids with Neumann boundary conditions on
Γ+ = {v · n > 0} and Γ− = {v · n < 0} respectively. The equations
(2.1)–(2.2) yield a divergence free irrotational velocity field. We refer
to [1, 3] for more general models.

The model (1)–(2.2) is solved most effectively by applying a spe-
cialized numerical method to each equation, which accurately resolves
important features of the equation, see for example [5] and references
therein. Recently, Karlsen, Lie and Risebro [7] proposed a new nu-
merical method for the solution of (1) for a fixed velocity field v. Their
approach was an attempt to apply the level-set technology of Osher and
Sethian [10], together with the fast-marching method [13, 16, 17, 6],
to the propagation of curves of constant water saturation S = σ. In
the absence of shocks, each point on these level curves moves with a
characteristic speed f ′(σ)v. Thus, tracking a saturation contour for a
fixed saturation σ can be recast as tracking the zeroth level set of a
function φ that is described by the linearized transport equation

∂φ

∂t
+ f ′(σ)v · ∇φ = 0. (3)

In general, the solution obtained by tracking all saturation contours
according to (3) will lead to a multivalued solution. To compute the
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Fast computation of arrival times 3

entropy solution of (1) we must modify the wave speed f ′(σ)v when
shocks form, i.e., when level sets for different σ coincide. To avoid this
complication we henceforth assume that the relative speeds of the level
sets are monotone in σ. A simple way to ensure this is to consider only
initial saturations formed by two constant states, say σ+ in W and σ−

in Ω \ W, separated by a contour at ∂W. Then, all initial level sets
of the saturation coincide with ∂W. For this Riemann-like initial value
problem, the relative speed of each contour is constant: If σ+ > σ− (or
σ+ < σ−), the relative speed is given as the derivative of the upper
convex (or lower concave) envelope fc of f between σ− and σ+. The
single-valued solution of (1) in Ω \W can then be obtained by solving

∂φ

∂t
+ f ′c(σ)v · ∇φ = 0 (4)

for all saturation contours. From a physical point of view, this corre-
sponds to injection of a fixed liquid mixture into a reservoir containing
another homogeneous fluid mixture. Note that we must have Γ+ ⊆ W
since fluid must flow out of W. From here on, we will simply use
W = ∂W = Γ+.

Since the motion of the level sets are identical up to a constant in
the wave speed, we should be able to compute them all in one go. If
we require that v · n > 0 on the initial contour ∂W = Γ+, a level set
will not pass any point in the domain more than once. Then we can set
φ(x, t) = T (x)/f ′c(σ)− t for some function T independent of σ, and (4)
is reduced to a linear boundary-value problem

v · ∇T = 1 in Ω, T = 0 on Γ+. (5)

In this case T represents the motion of a level set with unit relative
speed. Thus, we can interpret T (x) as the time needed for a passive
test particle to travel from some point on Γ+ to x. We will there-
fore denote this quantity by arrival time or time-of-flight and (5) as
the arrival-time equation. Ultimately, it is the saturation that is to
be computed. We recover the saturation by determining for which
saturation the corresponding level set has reached a given point x
at time t; that is, by solving 0 = T (x)/f ′c(σ) − t for σ. This is the
well-known Buckley–Leverett profile, see [7] for more details. With
this approach, the amount of work has been reduced to the solution
of the boundary value problem (5) and the inversion of a function f ′c
(which can be done analytically). In [7], (5) was solved using a marching
algorithm that has an asymptotic cost of O(N logN) operations for N
unknowns. While the numerical examples in [7] were two-dimensional,
some three-dimensional examples with the same method were presented
in [8]. In [2] the method was extended to incorporate capillary forces
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4 Berre, Karlsen, Lie and Natvig

(i.e., viscous terms in the transport equation) through the use of the
transport-collapse operator.

In this paper we will first give an alternative derivation of the march-
ing method presented in [7] that will demonstrate a close connection
between modern streamline methods and the marching approach. For
an overview of the research on streamlines methods, we refer to [9] and
the references therein. We then continue with an investigation of the
marching method. In [7, 8], numerical tests showed that the method
was fast and reliable and had acceptable accuracy. Unfortunately, the
formulation of a boundary value problem for the arrival time and the
subsequent fast-marching-like solution procedure is not as robust as
first reported. A more detailed analysis of the discretization and the
solution procedures reveals two problems. These problems are not ap-
parent in the presentation of [7]. The first problem is related to the
discretization of (5) for discontinuous media. The second problem is
that the discretization of (5) lacks the causality principle that the
fast-marching method hinges on. The purpose of the current paper
is to point out and discuss these problems and to present possible
improvements to avoid (or reduce) the defects of the method in [7].
Since these problems are related to the arrival-time equation (5), we
will in the rest of this paper focus attention on arrival times and not on
the computation of saturations. To simplify the presentation, we only
consider arrival times in two spatial dimension. The extension to three
spatial dimensions is straightforward.

The outline of the paper is as follows: In Section 2 we describe
the concept of time-of-flight and how this can be used to split the
saturation equation in two simpler problems. Then, in Section 2.1 we
present the discretization of the arrival-time equation and demonstrate
its shortcomings. In Section 2.2 we give a brief outline of the fast-
marching method and explain why the marching method of [7] does not
perform well for strongly varying velocity fields. In Section 3 we propose
an alternative fast(er) solution method for the discretized equations
that does not suffer from the same deficiency as the fast-marching-like
algorithm employed in [7]. In Sections 3.2 and 3.3, we propose two
ways to reduce the large discretization error we have observed. Finally,
Section 4 is devoted to discussions relating our numerical approach to
modern streamline methods.

2. Reformulation of the saturation equation

The marching method in [7] was motivated as a level-set/fast-marching
formulation of the saturation equation (1). In this section we present
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Fast computation of arrival times 5

the method from a slightly different perspective, using the time-of-flight
formalism [4], which has made a profound impact upon the develop-
ment of modern streamline methods. We therefore start by introducing
streamlines and the time-of-flight formalism in some detail. (A more
thorough introduction is given in [9]).

A streamline Ψ is the path traced out by a passive test particle
moving with the flow given by a forcing velocity field v such that the
vector v is tangential to Ψ at every point. Along each streamline one
can reparametrize the space coordinate by introducing the travel time,
which is commonly referred to as the time-of-flight. In [7] this quantity
is referred to as arrival time. The time-of-flight T (x) measures the time
it takes a passively particle to travel along a streamline from its initial
position on Γ+ to a given point x. This travel time can be defined by
the following integral along a streamline Ψ,

T (x) =
∫
Ψ

ds

|v(x(s))|
. (6)

Thus, for our two-phase model (1)–(2.2), the arrival time gives a picture
of the forcing velocity field, while not taking into account the nonlinear
effects of f caused by the relative mobilities of water and oil. Alter-
natively, the arrival time is given by the differential equation (5) (see
[7, 9])

v · ∇T = 1 in Ω, T = 0 on Γ+.

To derive this equation, we can consider an infinitesimal movement of
the test particle. If s denotes the distance in the direction given by
the normalized velocity vector n = v/|v|, we have by definition that
∂s/∂T = |v|, or in other words

1 = |v| ∂T
∂s

= |v|
(
∇T · v

|v|

)
= ∇T · v.

Changing perspective, T (·) maps each level set of T to a positive
real number. Thus, T can be understood as the coordinate mapping
that transforms (1) into a family of one-dimensional conservation laws,
where T takes the role of the space coordinate. To see this, let T be the
time-of-flight. If we consider the saturation equation along a streamline
for v, it takes the form

∂σ

∂t
+ |v|∂f(σ)

∂s
= 0.

Then we can substitute the equation for the time-of-flight along a
streamline to get

∂σ

∂t
+
∂f(σ)
∂T

= 0. (7)
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6 Berre, Karlsen, Lie and Natvig

The data for these one-dimensional problems are derived from the data
for (1). If we supply the following initial and boundary values for (1):

S(x, 0) = S0(x) in Ω,
S(x, t) = SD(x, t) on Γ+,

the corresponding data for (7) are

σ(T, 0) = σ0(T ) = S0(Ψ(T (x))),
σ(0, t) = σD(t) = SD(Ψ(0), t).

The method in [7] computes the map T (x) for all x, but does not
solve for individual streamlines Ψ. In other words, the method does
not explicitly associate a unique flow-path with each x. Therefore all
streamlines are treated as one when computing the saturation, and we
must require that the data σ0 and σD are the same for all Ψ. This is a
slight generalization from [7], where the data was restricted to constant
injected fluid mixture σD and constant initial saturation σ0(t) = σ0 in
all of Ω. In the present formulation it is evident that we can solve any
initial-value problem that has equal data σD and σ0 for all streamlines.
Another level-set approach that is capable of treating more general
initial-value problems for the saturation equation is presented in [2].

2.1. The discrete arrival-time equation

To solve the boundary value problem (5) for the arrival time T , an
upwind discretization can be constructed once a fluid velocity v is
given by looking in the direction from which the information should be
coming. In two spatial dimensions the main discretization used in [7, 8]
can be constructed as follows. Let the domain be regularly partitioned
into grid blocks of dimensions ∆x and ∆y and let the nodes for arrival
time be located in the center of each grid block. Assume that we trace
a streamline Ψ from the center xk of block k to a point y in the upwind
direction −v. We can call the segment of the streamline from xk to y
for ψk. The upwind discretization of (5) can then be written as

Tk = T (xk) = T (y) + ∆Tk, (8.1)

∆Tk =
∫
ψk

ds

|v(x(s))|
. (8.2)

To complete the scheme, we must specify how to compute T (y) and
how to evaluate the integral (8.2).

The point y is assumed to lie on the straight line connecting two
neighboring nodes xi and xj of xk and is therefore given as y = αxi +
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Fast computation of arrival times 7

(1− α)xj for some scalar α ∈ [0, 1]. To compute T (y) we use a simple
linear interpolation from the nodes i and j near y,

Tk = αTi + (1− α)Tj + ∆Tk, (9)

where Ti and Tj are the arrival times of node i and j, respectively. In
three dimensions we use a similar bilinear interpolation in the triangle
spanned by three neighboring nodes in one of the axial planes.

The upwind discretization gives a consistent way to compute the
arrival time in the whole domain. The difference scheme can be written
as a linear system of equations∑

j

AijTj = ∆Ti, i = 1 . . . N, (10)

where A = {Aij} contains the coefficients of (9).
Before we take a closer look at the marching algorithm from [7], we

will examine how the difference scheme compares to a direct evaluation
of (6). To evaluate the integral in (6), we use a standard approximate
algorithm for integrating streamlines, as first reported by Pollock [12].
In each grid cell, Pollock’s method assumes a piecewise linear approx-
imation of the velocity v in each direction and uses this to compute
streamlines analytically on a cell-by-cell basis. This approximation en-
sures that different streamline fragments never intersect, or in other
words, that we have a consistent approximation of streamlines. For this
reason, when evaluating the integral (8.2), we also replace the linear
ray approximation of a streamline segment applied in [7, 8] by the more
accurate streamline approximation due to Pollock.

We present three numerical test cases: one with a smooth velocity
field, one with a mildly heterogeneous velocity field, and one with a
nonsmooth velocity field. For all three cases, the solution of the linear
system (10) is computed using an iterative solver. To have a measure
of the discretization error associated with (9), we compute the residual

r = |ATa −∆T |, (11)

where Ta is an approximation of (6) evaluated in each node in the
grid. This will give us an idea of the accuracy we can expect from the
difference scheme (8.1), which was the basis for the marching method
in [7].

Case 1 To demonstrate that the scheme (10) works well for smoothly
varying velocity fields v, we first compute T for a homogeneous quarter-
five spot. We set Ω = [0, 1] × [0, 1] with no-flow boundaries. In the
lower-left corner we place an injector and in the upper-right corner we
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Figure 1. Convergence study for the homogeneous quarter-five spot (Case 1) with
mesh spacing h = 0.04 (upper left), h = 0.02 (upper right), and h = 0.01 (lower
left). The lower-right plot shows the arrival time computed by direct evaluation of
(6) with h = 0.02. Contours are only drawn for T ≤ 0.74.

place a producer. These are modeled as point sources with intensity
+1.0 and −1.0 respectively. This means that one pore volume of fluid
is injected per time unit. The corresponding data for the arrival-time
equation (5) is a homogeneous Dirichlet boundary Γ+ around the in-
jector. The velocity field v is computed using Darcy’s law (2.2). To
discretize (5) we have used mesh spacing ∆x = ∆y = h. Figure 1
shows the solution of the linear system (10) for three different grid
resolutions: h = 0.04, h = 0.02, and h = 0.01. For comparison, we
have also computed the time-of-flight by direct evaluation of (6). The
streamlines Ψ have been approximated using Pollock’s method [12] with
mesh spacing h = 0.02. As we can see from the right column in Fig-
ure 1, the two solution strategies are almost visually indistinguishable
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Figure 2. Logarithm of the permeability field for Case 2. The permeability is given
on a grid with h = 0.04. This permeability field is used for the finer grids as well.

as expected. From the three plots, we observe that the discretization
(8.2)–(9) seems to converge as the grid is refined. In Figure 5 we have
plotted the discretization error (11) for h = 0.02. As we can see, the
error is small throughout the domain.

Case 2 In our second test case we consider a quarter-five spot problem
as in Case 1, but now with a heterogeneous permeability field as shown
in Figure 2. The permeability varies between 40mD and 15D. Figure 3
shows solutions of (10) on three different grids compared with an ap-
proximation obtained by direct evaluation of the streamline integrals
(6). Again, we observe that our upwind scheme seems to converge as the
grid is refined. However, the convergence is a bit slower than in Case 1.
In Figure 5 we have plotted the discretization error (11) for h = 0.02.
The error is clearly larger than for Case 1, but still of order h.

Case 3 Our third test case is taken from [7] and describes flow in a
porous cross-shaped channel defined on Ω = (0, 1)× (0, 1). The perme-
ability is equal 100 mD in the beams of the cross and 0.01 mD outside.
Injectors are placed in the lower and left-hand beams and producers
are placed in the upper and right-hand beams. The corresponding flow
field is almost discontinuous along the walls of the channel and smooth
inside. We compute T on three uniform grids with spacing h = 0.02,
h = 0.01, and h = 0.005, respectively, by solving the linear system
(10) and compare the results with an approximation to (6) as before.
Figure 4 shows contour plots of the computed time-of-flights. As we can
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Figure 3. Convergence study for the heterogeneous quarter-five spot (Case 2) with
h = 0.04 (upper left), h = 0.02 (upper right), and h = 0.01 (lower left). The
lower-right plot shows the arrival time computed by direct evaluation of (6) with
h = 0.02. Contours are only drawn for T ≤ 0.70.

see, the solution computed using the difference scheme is reasonably
accurate in some parts of the channel, and wrong in others.

Figure 5 gives a plot of the associated residual (11) for h = 0.1. The
residual is dominated by large discretization errors on the diagonal and
in six narrow layers of grid blocks along the walls of the channel. These
layers coincide with the part of the wall where the difference formula
(9) includes a node both inside and outside the high-permeability chan-
nel, or in other words, where the difference scheme has a stencil that
covers a region where T has a large jump! Thus the discretization error
increases from O(h) to O(1) in a layer of cells along the wall. The large
discrepancy observed in Figure 4 between the difference scheme and
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Figure 4. Convergence study for the channel problem (Case 3) with h = 0.02 (upper
left), h = 0.01 (upper right), and h = 0.005 (lower left). The lower-right plot shows
the arrival time computed by direct evaluation of (6) with h = 0.01. Contours are
only drawn for T ≤ 0.24.

the direct evaluation of (6) is caused by the discretization errors along
the walls, and these errors are convected in the direction of the flow.

The numerical results for Cases 1 to 3 demonstrate that while the
difference scheme is accurate for smooth data, it has low accuracy for
layered permeability fields with high permeability contrasts. In cases
where the fluid velocity is nearly parallel to the layers, there will be
a large shear in the velocity that makes interpolation of time-of-flight
between adjacent streamlines inaccurate. In addition, any errors that
occur in the computation accumulate in the direction of flow. Thus the
arrival time will be more and more smeared out downstream. Note also
that if these arrival times were to be used to compute saturations, the
resulting computations would have large mass balance errors. Case 3
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Figure 5. Logarithm of the residual residual (11) for the three test cases: Case 1
with h = 0.02 (upper left); Case 2 with h = 0.02 (upper right); and Case 3 with
h = 0.01 (bottom). For Case 3, the residual is only plotted inside the channel.

therefore demonstrates that for certain boundary value problems with
large jumps in the velocity, the method (10) is inferior to methods
that approximate (6) directly. A fast method based on reordering of
unknowns will, if consistent, give no better results than a direct solution
of (10), for the discretization (8.1).

At the time of publication of [7, 8] these problems were unknown
to the authors. In fact, the early results obtained by the new method
looked very promising. We will come back to the reason why the prob-
lems went unnoticed at the end of the next section, where we discuss
another fundamental problem with the approach in [7].

2.2. The fast-marching method

In [7] the difference scheme (9) was solved using a marching method
similar to the standard fast-marching method [13, 16, 17, 6]. In this
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section, we explain why this method method may be inappropriate for
solving the arrival-time equation (5).

Originally, the fast-marching method was developed as an efficient
method to compute the solution of the Eikonal equation,

|∇φ| = 1
c(x)

, in Ω \ Ω0, φ = 0 on ∂Ω0, (12)

where Ω0 is some reasonable subset of Ω and c(x) is the local wave
speed. The Eikonal equation is the first-order term in a geometrical-
optics approximation to the wave equation. It characterizes the motion
of wave fronts originating from ∂Ω0. At any time t ≥ 0, the shape and
position of the wave front is given by the contour {φ = t}. Equation
(12) states that the wave front propagates in its normal direction with
the spatially varying speed c. The front may develop corners and cusps
even for smooth wave-speeds c and initial domains ∂Ω0. The charac-
teristics of the Eikonal equation are perpendicular to the level sets of
φ, and φ is strictly increasing along the characteristics. Thus, consider
a characteristic ψ within the simplex spanned by three points, say xij ,
xi−1,j , xi,j+1. If the wave speed c is constant within the simplex, then
ψ will be a straight line. It follows that if ψ passes through xij and φ
is increasing along ψ toward xij , then

φij ≥ max(φi−1,j , φi,j+1). (13)

This property is referred to as causality in the fast-marching terminol-
ogy, and depends only on the assumption that each such simplex in
the grid has no obtuse angles. To solve equation (12) on a Cartesian
grid Λ = {i∆x, j∆y}, we set φij = φ(i∆x, j∆y) and use the following
first-order upwind-discretization√

max(D−x
ij φ,−D

+x
ij φ, 0)2 + max(D−y

ij φ,−D
+y
ij φ, 0)2 =

1
cij
, (14)

where D+x
ij φ = (φi+1,j − φij)/∆x, D−x

ij φ = (φij − φi−1,j)/∆x, etc.
The extension to three spatial dimensions is straightforward. A simple
method to solve this set of equations would be to apply a fixed-point
iteration. However, based on the above observations one can do better.

The causality property ensures that the solution of the upwind dif-
ference scheme can be computed in one node at a time by applying (14)
to the unknowns {φij} in the order of increasing values of φij . In other
words, we can compute the solution of (14) in N operations if we can
determine an optimal ordering of the unknowns. This optimal ordering
is characterized by increasing values of φij . The fast-marching method
hinges on this idea to construct the solution as an advancing front.
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14 Berre, Karlsen, Lie and Natvig

Introducing a narrow-band strategy, the solution can be computed in
O(N logN) operations, where logN is the cost of the ordering. For a
throughout description of the fast-marching method and many of its
applications, we refer to the books [11, 15].

In [7], the apparent similarities between the arrival equation (5) and
the Eikonal equation (12) led the authors to apply the fast-marching
method to (5). To justify this, the arrival-time equation was written as

|∇T | = |∇T |
v(x) · ∇T

=
1

F (x)
.

This reformulation hides an important fact: Whereas the speed function
c in (12) is isotropic, i.e., independent of orientation, F depends on T
and is therefore anisotropic. Furthermore, F is not bounded away from
zero and ∇T can be almost perpendicular to v. If this is the case,
the correct value of Tk may be smaller than the maximum of the two
values Ti and Tj used to compute Tk according to (9). In other words,
Tk may depend on values that are yet to be computed by the marching
algorithm. Thus, the causality property does not in general hold for the
discretization (9) of (5), and we cannot assume that the upwind scheme
is decoupled by arranging the unknowns in the order of increasing T .
Notice that the arrival-time equation (5) has a causality principle along
streamlines, but not across streamlines. This rules out the use of the
fast-marching method to solve (10). On reasonably smooth velocity
fields, this defect in [7] does not severely affect the fast-marching solu-
tion of (10) as the results in [7] show. However, as the next example
shows, for nonsmooth velocities, the error is significant.

Case 1 to 3, revisited We apply the marching method in [7] to Case
1 to 3 in Section 2.1. If the method is correct, we would expect to
get identical results as with a direct solution of the linear system (10).
Contour plot of the arrival times computed with the marching method,
together with a direct solution of the linear system (10), are shown in
Figure 6 for the three cases. As one can see, the method produces wrong
solutions for all three tests, and the errors become more pronounced
for the heterogeneous and layered Case 2 and Case 3.

The reason for these errors is, as has been pointed out, that the
causality that the fast-marching method is based on, does not hold for
the discretized arrival-time equation (5). The causality breaks down
when the fluid velocity is nearly perpendicular to ∇T . When this
happens, the nodes i and j in the difference formula (9) of Tk may
have larger arrival time than Tk. Thus, Tk may be computed based on
values Ti and Tj that are not yet correct. To illustrate this in Figure 6,
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Figure 6. Arrival times computed with the marching method (left) and by direct
solution of (10) (right). From top to bottom, the plots correspond to Cases 1–3. The
shaded regions correspond to nodes where the causality property (13) is violated.
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16 Berre, Karlsen, Lie and Natvig

we have shaded the regions where the causality principle (13) is not
fulfilled, i.e., where Tk < max(Ti, Tj).

These problems went unnoticed in [7, 8] due to an unforeseen side-
effect of a trick used to speed up the computations of saturations. In [7]
the saturation computation was viewed as the numerical evolution of a
level set. The authors observed that in order to compute the saturation
at a given point in time t, one only needs to compute the arrival times
for nodes that have been passed by the saturation front; that is, nodes
that have time-of-flight less than or equal to Tmax = tmax f ′. For the
other (unflooded) nodes, the saturation is given by the initial saturation
distribution. Thus, some nodes were left undefined in the algorithm
(as they were not needed). The algorithm in [7] filled these undefined
nodes with a value Tmax+ε, where ε is an arbitrary small number. If the
flooded nodes had fulfilled the causality principle, that is, had they only
depended on values with lesser T , this fill-inn would have had no effect.
However, although the causality principle is true for the continuous
problem, the discretization stencil frequently involves undefined nodes
corresponding to larger time-of-flights, as seen in Figure 6.

The effect of the fill-in was that the magnitudes of the largest (non-
computed) arrival times were significantly reduced. This corresponds
almost to a one-sided interpolation of T (y) from the “correct” side.
Therefore the results of the example in Section 5.3 of [7] look seemingly
reasonable. However, the results reported in [7] are not solutions of the
linear system (10).

3. An improved method

The question remains: Is it possible to repair the deficiencies in the
marching method from [7] ? The answer is yes and no. The problem
with lack of causality in the fast-marching method can be circumvented.
In the current section we present a new advancing-front method for
the linear system (10), which will in fact be faster than the original
marching method.

The inaccuracies in the interpolation scheme in the presence of large
jumps in the arrival times are harder to eliminated in a good manner.
In Section 3.2 we present one alternative based upon tracking longer
local streamlines in the upwind direction. The method is accurate, but
expensive. Then in Section 3.3 we present an alternative method based
upon using a zeroth-order interpolation in the presence of large jumps
in the local interpolation stencil. This approach gives no extra work,
but reduces the formal accuracy locally.
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3.1. Advancing front solution

To improve the results from the previous sections, we have implemented
a different strategy for solving (5). First, as discussed in Section 2.1,
we replace the linear ray approximation of a streamline segment by a
more accurate streamline approximation due to Pollock [12].

Since the upwind scheme (9) can be constructed a priori, the cor-
responding discretization of (5) can be written as a system of linear
equations. We know that the velocity field v is divergence free and ir-
rotational, from which it follows that no nodes are mutually dependent.
For instance, if Tk is computed from Ti and Tj , then neither Ti nor Tj
will depend on Tk. From this we can deduce that it will be possible to
compute the solution T one node at a time; that is, there must exists a
reordering of the unknowns that renders the system of linear equations
(10) triangular. If we can determine this ordering, we can construct the
solution of (10) directly.

The appropriate reordering can be found by traversing the nodes in
the Cartesian grid Λ as an advancing front. Assume that we know the
correct time-of-flight in a subset A ⊂ Λ of nodes. Initially, this set is
the set of nodes lying on the Dirichlet boundary Γ+. In addition, there
will be some nodes that depend on nodes in A; this set of nodes will
be denoted F . In F there are nodes that depend only on nodes in A. If
we apply upwind update (9) to these nodes, we get the correct solution
of (10), and we can consider the values in these nodes known. This is
the basic idea that we apply to construct the solution in N steps.

To be more precise, in each step of the algorithm we pick a node
k ∈ F that depends only on nodes in A through (9). In other word,
if Tk depends on Ti and Tj in (9), then {i, j} ⊆ A. Thus, if we apply
(9) to node k, we can be certain that the computed value Tk is the
k’th component of the solution of (10). To update F and A we then
move k from F to A and add to F any nodes that depend on k. If we
proceed in this manner, we can construct the solution in all of Λ in
O(N) operations.

In a sense, this advancing front approach is a combination of a
reordering algorithm and a back-substitution. Note that the work re-
quired for this approach is considerably reduced compared with the
O(N logN) operations required by the marching algorithm in [7]. In
this algorithm, the F-nodes are sorted in ascending order with respect
to estimated arrival times, and the next node processed in the algo-
rithm is always the one with the lowest estimated arrival time. This
sorting requires in general O(logN) operations. In the advancing front
algorithm, no sorting is required since we pick the next node at random.

The advancing-front algorithm reads:
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18 Berre, Karlsen, Lie and Natvig

A = {Nodes on the boundary Γ+}
F = {All nodes in AC that depend on nodes in A}
repeat

repeat
pick some (random) k ∈ F
S = {all nodes in stencil of k}

until S ⊆ A
F = F \ {k}
A = A ∪ {k}
apply (9) to Tk
F = F ∪ {nodes that depend on k}

until F = ∅
The algorithm will terminate if the velocity field has zero rotation and
sufficient boundary data is described. At every step in the algorithm, A
is the set of nodes for which the solution is computed, while unknowns
in AC have not been computed yet. The set F ⊆ AC depends on
A through (9). By construction, this algorithm computes the correct
solution of (10) in N operations. The reason for this is that the “pick”
operation in the fifth line can be performed in O(1) operations. Note
also that if we order the unknowns in the order that they are processed
in the outer loop, we get a triangular system.

Case 3, revisited We can now recompute the solution of (10) for the
channel-flow problem with the advancing-front algorithm instead of the
iterative linear solver. On all three grids, the advancing-front algorithm
gives identical results with no discrepancy in the sup norm.

3.2. Longer streamline fragments

In the previous section we introduced a new advancing-front algorithm
that computes the correct solution to the linear system (10) in O(N).
We have thus cured one of the deficiencies of the fast-marching-like
method of [7]. The remaining problem related to the discretization error
is not as easy to cure. This problem is essentially a problem of too low
grid resolution. Our first attempt to improve the method is based on
adaptivity: We wish to trace streamline segments ψ backward until a
sufficiently accurate interpolation can be made. Since the time-of-flight
is actually an integrated quantity, the solution does not only depend
on local properties of the medium, but also on properties ’upstream’
along a streamline. Therefore T can have large jumps transverse to
the streamlines; over one grid block T can be discontinuous to grid
resolution even if the permeabilities locally is continuous. Since we have
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Figure 7. Arrival times for the homogeneous quarter-five spot (Case 1). The left plot
shows the solution computed by the adaptive algorithm with C = 0.1. Contours are
drawn for T ≤ 0.74. The shaded region shows nodes that have been updated by
using longer streamline fragments. The right plot shows the difference in solutions
computed by the adaptive scheme and by direct evaluation of (6), together with a
plot of the contour T = 0.74 for the direct evaluation. The mesh spacing is h = 0.02.

no precise a posteriori error measure for the difference scheme (9) the
adaptive approach must necessarily involve some ad hoc features.

The proposed algorithm is essentially the same as the advancing
front approach, with one exception: For each unknown that is to be
computed, we trace a streamline backwards until the interpolation
seems to be reasonably accurate. A very rough indicator of whether
the discretization error is large or small is to compare ∆Tk of (8.2) to
|Ti−Tj | in (9). If ∆Tk > C|Ti−Tj | for some fixed C we accept the the
update formula based on the nodes i and j. Otherwise, we trace the
streamline ψk further back. We emphasize that this indicator for the
interpolation error is ad hoc and does not have a rigorous basis.

Cases 1–3, revisited We apply the improved method of Sections 3.1
and 3.2 to our three test problems. For all the three cases we let C = 0.1,
and, as an additional test, we also try C = 1.0 for the heterogeneous
quarter-five spot (Case 2). The left columns in Figures 7, 8 and 9 show
contour plots of corresponding approximate arrival times. For extra
illustration, we have shaded the regions where nodes have been updated
using longer streamline fragments. In the right columns in Figures 7–9,
we have plotted the difference between the solutions computed by the
adaptive scheme and by direct evaluation of (6). In the regions where
the difference between the two solutions is larger than O(h), the nodes
generally have large arrival times.

The results demonstrate that the adaptive scheme gives reasonably
good results, both for the channel problem and for the heterogeneous
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Figure 8. Arrival times for the heterogeneous quarter-five spot (Case 2). The plots
in the left column show solutions computed by the adaptive algorithm. Contours are
drawn for T ≤ 0.70. The shaded regions show nodes that have been updated by using
longer streamline fragments. The plots in the right column show the difference in
solutions computed by the adaptive scheme and by direct evaluation of (6), together
with a plot of the contour T = 0.70 for the direct evaluation. The mesh spacing is
h = 0.02. The threshold parameters are C = 0.1 (upper row) and C = 1.0 (lower
row).

medium. However, the added computational cost of the adaptive al-
gorithm is quite high. As expected, tracking of longer streamlines is
mostly initiated in areas where ∇T is almost perpendicular to v. In
other words, the added work is spent in regions where there is a large
shear in the flow. These areas seem to be of little significance in the
early stages of a reservoir production, since the corresponding nodes
are flooded long after water breakthrough. Another problem with this
method is that the parameter C is hard to specify in advance. For a
specific example, one may adjust the accuracy by adjusting the param-
eter, but there is no guarantee that this C-value will yield good results
for a different example. Thus, the C-parameter may have to be tuned
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Figure 9. Arrival times for the channel-flow problem (Case 3). The left plot shows
the solution computed by the adaptive algorithm with C = 0.1. Contours are drawn
for T ≤ 0.24. The shaded region shows nodes that have been updated by using longer
streamline fragments. The right plot shows the difference in solution computed by
the adaptive scheme and by direct evaluation of (6) together with a plot of the
contour T = 0.24 for the direct evaluation. The mesh spacing is h = 0.01.

on a case-to-case basis. To be practical, the method must include a
more precise error measure that is inexpensive to compute.

3.3. Local zeroth order interpolation

As we have seen earlier, it is possible that a node is assigned a smaller
arrival time than one of the nodes in the interpolation scheme when
arrival times are computed with the advancing-front algorithm from
Section 3.1. Even though the causality that the algorithm is based
on is not broken, the physical “upwinding” for the flow is. However,
this will not result in large interpolation errors unless v is close to
perpendicular to ∇T . These regions can be detected by our previously
given error measure.

As an attempt to cure the problem of discretization error in a man-
ner that will not affect the efficiency of the algorithm, we can use local
interpolation of zeroth order for nodes where the error measure for the
interpolation is large.

Case 3, revisited Figure 10 shows results obtained using the adaptive
algorithm with zeroth order interpolation for the channel-flow problem.
The results demonstrate that even though we locally reduce the order
of accuracy for the interpolation, the resulting scheme gives visually
good results even for the most challenging of our test cases.
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Figure 10. Arrival times for the channel-flow problem (Case 3). The left column
shows solutions computed by the adaptive algorithm with zeroth order interpolation
and error threshold C = 0.01 (upper row) and C = 0.1 (lower row). Contours are
drawn for T ≤ 0.24. The shaded regions show nodes that have been updated using
zeroth order interpolation. (right) Difference between the adaptive scheme and the
direct evaluation of (6) together with a plot of the contour T = 0.24 for the direct
evaluation. The mesh spacing is h = 0.01.

4. Discussion and relation to streamline methods

In this paper we have carefully investigated and extended the fast sat-
uration solver presented in [7]. In our analysis, we have interpreted the
method in terms of the time-of-flight formalism. It is evident from this
interpretation that there is a clear relation between streamline methods
and our marching method(s). Therefore, it is natural to compare the
possibilities and limitations of the marching methods presented herein
with those of streamline methods.

The original idea in [7] was to develop a fast saturation solver for im-
miscible, incompressible, two-phase flow. In this respect, the marching
and advancing-front method have limited applicability. The reason is
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that the splitting technique applied in [7] and in this paper is limited to
initial-boundary-value problems with an inherent (radial) symmetry in
terms of the time-of-flight coordinate. This symmetry ensures that the
three-dimensional initial-boundary-value problem for the saturation
equation can be decomposed into a single one-dimensional conservation
law for the behavior along any streamline and the computation of an
appropriate coordinate transform. This coordinate transform allows us
to map the one-dimensional solution into three-dimensional space. The
approach presented herein differs from streamline methods mainly in
the calculation of the coordinate transform. For streamline methods
the transform is obtained by tracing individual streamlines explicitly.
In the current paper, the coordinate transform is found by solving
the arrival-time equation. As demonstrated, it is possible to construct
special-purpose solvers for this equation, which seem to be fast and
reliable for permeability fields that are either homogeneous or vary
relatively smoothly. However, for layered media with high permeability
contrasts and flow parallel to the layers, the marching method produces
inaccurate solutions. The reason for this is that the time-of-flight is less
smooth for these problems resulting in large discretization errors.

As these problems are caused by discretization errors, we have pro-
posed an adaptive scheme that changes the difference formula in the
presence of large variations in time-of-flight. The adaptivity reduces
the problems with the discretization errors by avoiding interpolation in
regions where an interpolation will result in large discretization errors,
typically where the gradients in time-of-flight are nearly perpendic-
ular to the fluid velocity. The adaptive scheme based upon tracing
streamlines longer into the upstream direction seems to be able to
better compute time-of-flight than a fixed difference scheme, but the
adaptivity is quite expensive. Most of the extra work is spent in re-
gions with high arrival times due to the rough error measure used
here. Because of the extra work, the speed of the method is reduced,
and is probably comparable to, if not slower than other methods like
streamline methods. A more accurate error measure is therefore needed
to make the method practical. The adaptive method based upon zeroth
order interpolation is as fast as the fixed-stencil method, and although
the formal accuracy of the interpolation may be reduced locally, the
effect on the overall accuracy seems to be small. The method may
therefore be used as a fast grid-based method for computing time-
of-flight and derived quantities (volumetric sweeps, drainage volumes,
reservoir compartmentalisation, etc) in heterogeneous porous media.

Streamline methods share many properties with the advancing-front
method and the method presented in [7], but do not suffer from the
same limitations. To be more specific, streamline methods map one-
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dimensional solutions back to three-dimensional space by computing
particle paths (streamlines). These computations make streamline meth-
ods more expensive than the fast finite-difference solver presented in
Section 3.1. However, the computation of streamlines is well-behaved
for all the examples presented in the paper, and streamline methods
will therefore resolve the time-of-flight accurately in all examples. Fur-
thermore, the tracking of individual streamlines leaves room for more
general problems where a different one-dimensional solution must be
computed for each path. Thus, if one is interested in simulating flow of
more than one phase, methods based on integration along streamlines
are more robust and general than the new advancing-front method. If
one, on the other hand, is merely interested in computing time-of-flight
(and derived quantities), the question is more open.
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