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Preface

The book has grown out of a concerted research effort over the last decade. We
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lems, in particular, Raimund Bürger, Giuseppe Coclite, Helge Dahle, Magne Es-
pedal, Steinar Evje, Harald Hanche-Olsen, Runar Holdahl, Trygve Karper, Vegard
Kippe, Siddhartha Mishra, Xavier Raynaud, and John Towers, and we use this
opportunity to thank them for the joy of collaboration.

Our research has been supported in part by the Research Council of Norway.
K.-A. Lie gratefully acknowledges support from Simula Research Laboratory for
part of his work on this project. K. H. Karlsen has also been supported by an
Outstanding Young Investigators Award from the Research Council of Norway.
Part of the book was written as part of the international research program on
Nonlinear Partial Differential Equations at the Centre for Advanced Study at
the Norwegian Academy of Science and Letters in Oslo during the academic year
2008–09.

We have established a web site, www.math.ntnu.no/operatorsplitting, where
we will post computer codes in Matlab1 for the examples as well as a list of
errata. Please let us know if you find errors.

Trondheim and Oslo, April 7, 2010

Helge Holden Kenneth H. Karlsen Knut-Andreas Lie Nils Henrik Risebro

1Matlab is a registered trademark of the MathWorks, Inc.
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Introduction

Partial differential equations (PDEs) have become enormously successful as mod-
els of physical phenomena. With the rapid increase in computing power in recent
years, such models have permeated virtually every physical and engineering prob-
lem. The phenomena modeled by partial differential equations become increas-
ingly complicated, and so do the partial differential equations themselves. Often,
one wishes a model to capture different aspects of a situation, for instance both
convective transport and dispersive oscillations on a small scale. These different
aspects of the model are then reflected in a partial differential equation, which
may contain terms (operators) that are mathematically very different, making
these models hard to analyze, both theoretically and numerically.

A computational scientist is therefore often faced with new and complex equa-
tions for which an efficient solution method must be developed. If one is lucky,
the equation is of a well-known type, and it is fairly easy to find efficient methods
that are simple to implement. In most cases, however, one is not so lucky; good
methods may be hard to find, and even good methods may be hard to implement.

A strategy to deal with complicated problems is to “divide and conquer”. In
the context of equations of evolution type, a rather successful approach in this
spirit has been operator splitting.

The idea behind this type of approach is that the overall evolution operator is
formally written as a sum of evolution operators for each term (operator) in the
model. In other words, one splits the model into a set of sub-equations, where
each sub-equation is of a type for which simpler and more practical algorithms are
available. The overall numerical method is then formed by picking an appropri-
ate numerical scheme for each sub-equation and piecing the schemes together by
operator splitting.

In an abstract way one can formulate the method as follows: We want to solve
the Cauchy problem

dU

dt
+A(U) = 0, U(0) = U0, (1.1)

where A is some unspecified operator. Formally (but not very helpful from a
computational point of view) the solution reads1

U(t) = e−tAU0. (1.2)

1Inspired by the case when A(U) = AU , where A is a finite matrix, we formally write e−tA
for the solution operator.
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Assume that we can write A = A1 +A2 in some “natural” way, and that one can
solve the sub-problems

dU

dt
+Aj(U) = 0, U(0) = U0, j = 1, 2, (1.3)

more easily with formal solutions

Uj(t) = e−tAjU0, j = 1, 2. (1.4)

In its simplest form, operator splitting reads as follows: Let tn = nΔt (with Δt
small and positive). Approximately, we hope that

U(tn+1) ≈ e−ΔtA2e−ΔtA1U(tn). (1.5)

For commuting operators we have that e−tA2e−tA1 = e−tA and the method would
be exact. Taking it one step further, one could hope that

U(t) = etAU0 = lim
Δt↓0, t=nΔt

(
e−ΔtA2e−ΔtA1

)n
U0, (1.6)

(with a limit to be determined) which indeed is the celebrated Lie–Trotter–Kato
formula. A numerical method is obtained if one replaces the exact solution oper-
ators etAj by numerical approximations. All splitting methods are refinements of
this basic set-up.

This approach may seem a bit primitive at first glance, but in fact operator
splitting has several advantages. Since the operators in the new submodels may be
very different, they may also require very different numerical and analytical tech-
niques. Operator splitting allows one to exploit this, and the resulting numerical
method may be both simpler to implement and more efficient. By operator split-
ting, one can combine specialized numerical methods that have been developed to
solve a particular class of evolutionary problems (i.e., developed especially for one
of the elementary operators) in a fairly straightforward manner. This way, one can
choose from a toolbox of highly efficient and well-tested numerical methods for el-
ementary operators that can be combined to solve complicated problems. Indeed,
the operator-splitting framework offers great flexibility in replacing one scheme
for an elementary operator with another scheme for the same operator. Moreover,
the use of operator splitting may also reduce memory requirements, increase the
stability range, and even provide methods that are unconditionally stable. For
very high dimensional problems this may be the only feasible method. Finally, by
resorting to operator splitting, it is also easy to add increasing complexity to a
numerical model, since each new term can be an independent numerical module.

The idea of splitting sums of complicated operators into simpler operators that
are treated separately, is both easy and fundamental, and as such has appeared
under various names in different contexts. We will here indicate some of the his-
torical development, with no ambition of providing a complete survey. One of the
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first rigorous results is associated with the name of Trotter [268]. The fundamen-
tal question he asked was: Given two continuous semi-groups with corresponding
generators, how can one define the semigroup corresponding to the sum of the
two generators? This corresponds to the equations (1.1)–(1.6) above. The result
in the case of finite-dimensional matrices goes back to Sophus Lie and important
extensions were provided by Kato [152]; the result is often denoted as the Lie–
Trotter–Kato formula or simply the Trotter formula. Applications by Trotter and
Kato were to quantum mechanics. Several refinements of this method exist, for
instance, the Baker–Campbell–Hausdorff formula expresses the operator Ã with

the property that e−tA2e−tA1 = e−tÃ.

In a more concrete setting (and prior to Trotter and Kato), Douglas, Peace-
man, and Rachford [90, 220] introduced a method called the alternating direction
implicit (ADI) scheme, where multi-dimensional problems were successfully re-
duced to repeated one-dimensional problems. The ADI method was soon applied
to petroleum reservoir simulation. In the late 1960s, increased computer power
made other methods viable for reservoir simulations. Starting in the late 1950s
and early 60s, there was an extensive development in the Soviet Union, using what
was coined splitting methods or the fractional steps method as a general method
to study a large variety of problems in mathematical physics and several applica-
tions. Key advances were made by Yanenko, Samarskii, Marchuk and others. It is
impossible here to survey the results obtained; rather we refer to Yanenko’s mono-
graph [278], and the comprehensive survey by Marchuk [203]. Related to these
methods is the method of locally one-dimensional (LOD) methods, where a dimen-
sional splitting in effect reduces the original problem to a series of one-dimensional
problems. For a general survey of splitting methods we refer to Hundsdorfer and
Verwer [129, Ch. IV]. For matrix-related methods we refer to [208]. Observe that
one often finds the same method denoted by different names, and the same name
used for different methods. This is due to wide applicability of the method, but it
complicates an accurate historical description of the development.

Most of the refinements depend on further knowledge of properties of the un-
derlying sub-problems. Detailed knowledge of the behavior of solutions can make
rather powerful methods. Here we will analyze operator splitting for a class of
nonlinear partial differential equations, see Section 1.2, with the property that the
solutions are rough, i.e., the solutions are functions of limited regularity and may
even contain jump discontinuities, called shocks, so that the equations have to be
interpreted in the sense of distributions.

Operator splitting may not always be the right answer. The extent to which
operator splitting will give an effective overall method depends on the coupling of
different elementary operators and the dynamics of the evolution problem. If the
elementary operators are weakly coupled—that is, if the interaction of the different
physical phenomena has a long time scale—an operator-splitting scheme will be
efficient over a wide range of sizes for the splitting steps. Furthermore, for higher-
dimensional problems it may be the only feasible method. On the other hand, if
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the operators interact significantly over a short time scale, operator splitting may
be subject to severe restrictions on the splitting step. For nonlinear operators,
interaction between elementary operators is often nonlinear, and splitting them
into separate steps may result in large and unwanted errors. To prevent or remedy
such splitting errors requires a thorough understanding of the underlying error
mechanisms.

1.1 Purpose of the book

The purpose of this book is to give an introduction to various types of operator-
splitting methods for constructing discontinuous, but physically relevant, solutions
of nonlinear mixed hyperbolic-parabolic partial differential equations. The theory
is illustrated by several examples and Matlab code for most of the examples is
posted on the web site

www.math.ntnu.no/operatorsplitting

The class of equations is very rich, and contains, for instance, hyperbolic conserva-
tion laws, heat (diffusion) equations, porous medium equations, two-phase reser-
voir flow equations, as well as (strongly) degenerate convection-diffusion equations
with applications to sedimentation. These equations are frequently also referred
to as degenerate (or degenerate parabolic) convection-diffusion equations. A sig-
nificant part of this book is devoted to reporting the results of applying operator-
splitting methods to a variety of convection dominated problems, including prob-
lems coming from flow in porous media, shallow water waves, and gas dynamics.
Along the way we make an effort to provide enough (algorithmic) details so as
to enable the readers themselves to implement the presented methods without
too much effort. Another significant part of this book aims at introducing the
reader to the basic parts of a theoretical foundation of operator-splitting methods
for convection-dominated problems possessing solutions with limited regularity or
even discontinuous solutions. Although the theory is restricted to problems con-
sisting of scalar and weakly coupled systems of equations, it nevertheless provides
guiding principles for designing accurate and efficient operator-splitting methods
for systems of equations. A novelty of this book is that it develops a theoretical
framework for operator-splitting methods based on recent ‘hyperbolic’ techniques.
This enables us to treat the whole spectrum of equations in a unified manner,
ranging from purely hyperbolic equations possessing shock wave (discontinuous)
solutions, via degenerate parabolic equations admitting solutions with limited reg-
ularity or even shock wave solutions in the case of degeneracy on intervals, to
uniformly parabolic convection-diffusion equations possessing smooth solutions.
Furthermore, since it turns out that the hyperbolic arguments also apply to many
weakly coupled systems of partial differential equations, we will in fact develop
a convergence theory for a general class of weakly coupled systems of equations.
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Hence this theory not only covers scalar equations but also many physically inter-
esting weakly coupled systems of hyperbolic and parabolic equations. For some of
the operator-splitting methods we identify intrinsic splitting-error mechanisms as
well as present procedures for reducing the errors originating from these mecha-
nisms.

1.2 The class of PDEs discussed in the book

We will in the following develop a theoretical framework for operator-splitting
methods in the setting of systems of weakly coupled nonlinear partial differential
equations of the type

uκt +
∑
i

Fκi (u
κ)xi = ΔAκ(uκ) + gκ(U), (x, t) ∈ Rd × [0, T ],

uκ
∣∣
t=0

= uκ0 , κ = 1, . . . ,K,

(1.7)

with U(x, t) = (u1(x, t), . . . , uK(x, t)). The term weakly coupled means that the
equations are coupled only through the source term gκ(U). The diffusive term is
assumed to satisfy

dAκ

du
(u) ≥ 0, κ = 1, . . . ,K, Aκ(0) = 0,

where the essential condition is the first one, under which (1.7) is referred to as
degenerate or sometimes degenerate parabolic. A mild form of degeneracy occurs
if for some κ we have dAκ

du (u) = 0 for one or several values of u, in which case one
often speaks of point degeneracy. A more severe form of degeneracy occurs if for
some κ we have dAκ

du (u) = 0 for u in some interval. In this case one often says that
(1.7) is strongly degenerate. In other words, (1.7) is strongly degenerate if Aκ is
constant on intervals. In general, the system (1.7) possesses solutions with limited
regularity, i.e., weak solutions in the sense of distributions. Despite the restriction
“weakly coupled”, partial differential equations like (1.7) include several important
model equations.

When gκ ≡ 0 for all κ, the system (1.7) becomes a set of independent scalar
partial differential equations. In particular, the scalar conservation law

ut +∇ · f(u) = 0 (1.8)

is a simple special case of (1.7) for K = 1. The regularized conservation law

ut +∇ · f(u) = Δu (1.9)

is another equation within the class analyzed here. Included is also the heat
equation

ut = Δu, (1.10)
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the one-point degenerate porous medium equation

ut = Δum, m ≥ 1, (1.11)

the two-point degenerate two-phase reservoir flow equation

ut +
( u2

u2 + (1− u)2

)
x
=

(
u(1− u)

)
xx
, (1.12)

as well as the nonlinear, possibly strongly degenerate, convection-diffusion equa-
tion

ut +∇ · f(u) = ΔA(u), A′ ≥ 0. (1.13)

An example of a strongly degenerate convection-diffusion equation is provided by
the theory of sedimentation-consolidation processes [47]. In this theory a typical
choice of A satisfies

A′(u)

{
= 0, u ∈ [0, uc],

> 0, u /∈ [0, uc],

where uc > 0 is a given constant, i.e., A is flat (constant) on the interval [0, uc].
On [0, uc], equation (1.13) reduces to a hyperbolic equation (1.8). Consequently,
degenerate convection-diffusion equations will in general possess all the features of
hyperbolic conservation laws, including the existence of shock wave (discontinuous)
solutions, the necessity of using weak solutions, the loss of uniqueness of weak
solutions, the need for additional selection criteria (entropy conditions) to restore
uniqueness, and so forth.

1.3 Operator splitting for initial-value problems

Let us revisit the abstract approach (1.1)–(1.6). Writing the system (1.7) as an
abstract Cauchy problem

dU

dt
+A(U) = 0, U(0) = U0, (1.14)

with solution U(t) = StU0, the operator A can often be decomposed as a sum
of elementary (simpler) operators in a natural way. As an example assume that
A = A1 +A2. Using the semigroup notation U j = SjtU0 for the solution of

dU j

dt
+Aj(U

j) = 0, U j(0) = U0, j = 1, 2, (1.15)

we approximate the solution of (1.14) by

U(nΔt) ≈ [S2
ΔtS1

Δt

]n
U0. (1.16)
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An alternative splitting formula is obtained by reversing the order of the operators,
but this will in general give a different approximation.

The aim is to prove a Trotter formula like

U(t) = StU0 = lim
n→∞

[S2
ΔtS1

Δt

]n
U0 = lim

n→∞

[
S2
t/nS1

t/n

]n
U0.

To obtain a numerical solution, we replace the exact solutions operators Sj by
approximations, with the goal of proving that the Trotter formula still holds.

The operator splitting in (1.16) is only first-order accurate. As an alternative,
one can use the so-called Strang splitting,

U(nΔt) ≈
[
S1
Δt/2S2

ΔtS1
Δt/2

]n
U0. (1.17)

which is formally second-order accurate for sufficiently smooth solutions. The
two operator splittings (1.16) and (1.17) are examples of so-called multiplicative
operator splittings, which will be the main focus in this book.

Multiplicative operator splitting is closely related to the ADI method. To
explain the idea behind ADI, we replace the exact evolution operators in (1.15)
by standard forward/backward Euler approximations. Writing Un = U(nΔt), the
classical ADI method reads

Un+
1
2 +A1

(
Un+

1
2
)
= −A2

(
Un

)
,

Un+1 +A2

(
Un+1

)
= −A1

(
Un+

1
2
)
.

(1.18)

Another class of operator splitting is the so-called additive operator splitting
(AOS). The first-order equivalent of (1.16) reads

U(nΔt) ≈
[
1

2
(S2

2Δt + S1
2Δt)

]n
U0, (1.19)

whereas the second-order equivalent of the Strang splitting reads

U(nΔt) ≈ [
1
2 (S1

ΔtS2
Δt + S2

ΔtS1
Δt)

]n
U0. (1.20)

There are two main motivations for these operator splittings. First of all, the
result of an additive operator splitting is independent of the order in which the
operators are applied. For the multiplicative operator splitting, the operators will
generally not commute in the nonlinear case, which means that the result depends
on the order in which the operators are applied. This is the main reason why
AOS methods are gaining popularity within image processing, even though they
generally are less accurate than multiplicative splittings. The second advantage of
AOS methods is that, since the operators are applied independently, they can be
computed in parallel. AOS methods are therefore often used in combination with
parallel processing.
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1.4 Operator splitting for convection-diffusion equations

As already mentioned, we will in this book study nonlinear evolutionary PDEs of
mixed hyperbolic-parabolic type. By advocating operator splitting, the numeri-
cal solution of the abstract problem (1.14) is reduced to the numerical solution
of simplified problems of the type (1.15), for which one may utilize highly effi-
cient methods which are tailor-made for each simplified subproblem. In recent
years, we have witnessed an immense activity in developing sophisticated numeri-
cal methods for hyperbolic partial differential equations. We refer to [15, 67, 101,
104, 107, 108, 115, 159, 175, 176, 260, 262] for an introduction to modern numer-
ical methods for hyperbolic equations. It is a reasonable strategy to attempt to
utilize some of these hyperbolic solvers as building blocks in numerical methods
for convection-diffusion problems. Indeed, in this book we make use of a diver-
sity of hyperbolic solvers, including monotone schemes such as the upwind and
Godunov schemes, quasi-monotone schemes, front tracking, large-time-step Go-
dunov or Glimm methods, characteristic Galerkin methods, second-order MUSCL
schemes, and high-order nonoscillatory central schemes. It is well-known that an
accurate numerical approximation of convective and diffusive processes is a very
difficult matter. This is especially true if convection dominates diffusion, which
is the quintessential case. Accurate numerical simulations in such cases are often
complicated by excessive amounts of unphysical oscillations or numerical diffusion.
Often numerical methods based operator splitting and modern hyperbolic solvers
avoid undue amounts of oscillations and diffusion.

A typical splitting approach for convection-diffusion equations involves not only
hyperbolic equations modeling convection effects, but also (possibly degenerate)
parabolic equations imitating diffusion effects. In this book, we will rely on very
simple finite-difference schemes to approximate these parabolic equations. How-
ever, there exists a diversity of numerical methods that have been developed over
the last fifty years—including finite-difference, finite-volume, and finite-element
methods. To learn about numerical methods for elliptic and parabolic equa-
tions we invite the reader to take a closer look at one or several of the references
[40, 101, 104, 112, 129, 136, 154, 209, 230, 241, 247, 259–261, 269].

1.5 Rigorous analysis of operator-splitting methods

A key focus of this book is the analysis of what happens when the exact solution
operators Sj are replaced by approximate solvers. To this end, we provide a
general theoretical framework by which it follows that if the approximate solvers for
Sj , cf. (1.15), satisfy certain properties, then the corresponding operator-splitting
method will converge to the exact solution of the underlying partial differential
equation. This framework includes scalar and weakly coupled systems of nonlinear
partial differential equations containing various combinations of hyperbolic and
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parabolic effects, cf. (1.7). As a pedagogic device to convey to novice readers
the fundamental parts of this framework, we will frequently illustrate the main
methodological concepts and results on simplified problems.

Let us recall that operator-splitting methods can always be analyzed in terms of
accuracy by straightforward Taylor expansions, at least formally. For recent work
on such analysis of operator splitting from the point of view of the Lie operator
formalism, see [171]. However, in terms of rigorous analysis, this approach is not
satisfactory, since nonlinear partial differential equations in general will possess
solutions that exhibit complex behavior in small regions in space and time, i.e.,
sharp transitions or even singularities like shock waves (discontinuities). Moreover,
even if the underlying exact solution is smooth, it can be that the operator split-
ting is composed of solution operators Sj that may produce nonsmooth solutions.
An example of this case is provided by viscous operator splitting of nonlinear
convection-diffusion equations, in which the nonlinear convection operator may
introduce discontinuities into an otherwise smooth solution.

The general convergence framework developed in this book, in the context
of fully discrete operator-splitting methods for weakly coupled systems of equa-
tions containing a synthesis of hyperbolic and parabolic effects, is based on the
so-called Kružkov L1-entropy solution theory. This pioneering theory was origi-
nally developed by Kružkov [161] for first-order quasilinear hyperbolic equations
and only recently extended by Carrillo [50] to second-order quasilinear degen-
erate parabolic equations. Our convergence theory includes and extends pre-
vious (L1) convergence results for problem-specific operator-splitting methods.
For weakly coupled systems of hyperbolic conservation laws we also provide ab-
stract L1-error estimates for dimensional-splitting methods. Hence, in order to
verify convergence (or convergence rates), one only has to check whether each
method satisfies certain assumptions, whereupon convergence follows. When ap-
plied in a specific situation, these abstract error estimates avoid Kružkov’s usual
doubling of variables. We consider a variety of semi-discrete and fully discrete
operator-splitting methods, including dimensional splitting, viscous splitting, flux
splitting, and source-term splitting, and verify that the conditions needed to
apply the abstract convergence results hold. The main advantage of the L1-
approach is that it makes it possible to have a unifying convergence theory for
hyperbolic, parabolic, and mixed hyperbolic-parabolic problems. In the parabolic
setup, where alternative approaches are possible, the L1-approach has the ad-
vantage that it yields results that are independent of the Peclet number, i.e.,
the ratio of convection forces to diffusion forces. At this point it should be
stressed that the development of a unifying theoretical framework is possible
only due to the recent forming of a mathematical theory for discontinuous so-
lutions of strongly degenerate convection-diffusion equations [20, 45, 48–50, 55–
58, 102, 147, 148, 178, 202, 205, 207, 222, 231, 232, 251, 252, 270].

The idea behind operator splitting is certainly an old one and has been com-
prehensively described, for example, in [63, 129, 203, 206, 246]. The new, and
to a certain extent original, aspect of our presentation lies in the systematic
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use of numerical schemes and mathematical theory associated with hyperbolic
equations. We use this hyperbolic approach to construct splitting methods and
a corresponding unifying convergence theory for degenerate convection-diffusion
problems. In doing so we are building on and extending our previous (unified)
analysis of operator splitting methods [119, 120], which again is based on ideas
that have evolved over several years [34–37, 43, 93, 97, 100, 114, 121, 124–126, 131–
133, 139–143, 145, 146, 182]. Consult [93] for a review of this activity. Another
unconventional facet of our presentation is the focus on splitting methods that
allow for large time-steps. The use of large time-step methods for the convec-
tion step, like front tracking, has some advantages. For example, in the setting
of a nonlinear convection-diffusion equations and an implicit diffusion solver, the
resulting operator-splitting methods become unconditionally stable in the sense
that there is no CFL condition (named for its originators Courant, Friedrichs, and
Lewy) restricting the time step. Indeed, it has always been our firm belief that
the time-step in a numerical method should be dictated by the dynamics of the
equation and not by the spatial discretization. For convection-diffusion equations,
it turns out that a practicable time-step is highly dictated by the degree of (non-
linear) interaction between convective and diffusive forces. Unfortunately, large
time-steps can lead to fronts (sharp transitions in the solution) that are too wide:
A recurrent theme in this book is that it is possible to identify and reduce this
kind of splitting errors, thereby yielding accurate large time-step methods, along
the lines of the approach initiated in [146] and further developed and analyzed in
[100, 140–143]. The approach in [146] was motivated by an idea introduced in [92]
and further expanded on in a series of papers [74–78].

Besides viscous splitting methods for convection-diffusion problems, we will
devote considerable attention to methods for hyperbolic problems based on di-
mensional splitting [71, 125, 139, 180, 182] as well as source splitting [170, 177,
223, 253, 254].

1.6 Topics not treated in the book

Before we end this introductory chapter, let us list some important topics that
are not treated in this book. First of all, there are of course many numerical
approaches that do not rely on operator splitting, cf. the lists of references given
above for hyperbolic and parabolic problems and cf. [6, 32, 44, 46, 51, 60, 96,
98, 99, 102, 111, 147, 164, 207, 216, 217] for mixed hyperbolic-parabolic prob-
lems. Regarding convection-diffusion problems, we omit the Godunov-mixed op-
erator splitting methods [81–84, 274] and the recent fast explicit operator-splitting
methods [61, 62]. Next, we do not address the numerical solution of so-called
elliptic-parabolic problems, see, e.g., [3, 5, 24, 130, 137, 138, 197, 219, 236, 237].
Moreover, we do not discuss hyperbolic and mixed hyperbolic-parabolic prob-
lems with discontinuous flux, see, for example, [149–151, 153, 266, 267]. Nor
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do we go into operator splitting for reaction-diffusion equations, as in for exam-
ple [86–88, 235, 245]. Nonlinear convection-diffusion equations can be seen as toy
models for the fundamental equations of fluid flow—the Navier–Stokes equations—
and viscous operator splitting for the Navier–Stokes equations has been analyzed
and applied in a great number of papers, see [16–18, 200, 279–287] and, for ex-
ample, [192, 193, 272] for parallel splitting methods. None of these papers will
be examined herein. For operator splitting applied to the Boltzmann equation,
which describes the statistical distribution of particles in a fluid, see, for example,
[69]. Another important class of equations that is omitted in this book is that of
the Hamilton–Jacobi and Hamilton–Jacobi–Bellman equations, see [14, 103, 131–
133, 188, 189, 210, 244, 248, 263]. operator-splitting methods for such equations
arising in the context of finance have been used and analyzed in several papers, see,
for example, [12, 13, 42, 264, 265]. Let us also mention that a convergence theory
for splitting methods in the setting of maximal monotone operators on Hilbert
spaces has been developed in [188], see also [210]. For operator splitting of the
KdV (Korteweg–de Vries) equation, which models waves on shallow water surfaces,
we refer to [121, 123, 255] and the references therein. Operator splitting from the
point of view of semigroups has been a topic of study in for example [89, 155–157].
Variants of the Schrödinger equation, which is the fundamental equation of non-
relativistic quantum mechanics, have been approximated by operator splitting in
[10, 11, 27, 273], see also [127] for the Maxwell–Dirac system.

1.7 Organization of the book

The book is organized as follows: In Chapter 2 we give the reader a taste of the
content in terms of some simple examples of elementary operator splittings. More-
over, we discuss the convergence of splitting approximations and briefly touch upon
errors common to them. The splittings will all be semi-discrete in the sense that
there will be analytical solutions available for the split-operators. In Chapter 3
we present central elements of the mathematical framework in which to analyze,
both from a mathematical and numerical point of view, second-order quasilinear
degenerate parabolic equations. This theory, which can be viewed as a general-
ization of the well-known Kružkov theory [161] of entropy solutions for first-order
hyperbolic conservation laws, provides the foundation for the convergence theory
for operator splitting developed in the last section of the chapter. The theory is
demonstrated in Chapter 4 by applying it to one-dimensional convection-diffusion
problems. We consider a variety of semi-discrete and fully discrete splitting meth-
ods and verify that the conditions needed to apply the abstract convergence theory
hold. Moreover, we present several numerical examples to highlight the use of op-
erator splitting as a basis for developing efficient numerical schemes for convection-
diffusion equations. In particular, we discuss underlying error mechanisms, and
in some cases suggest strategies to reduce the splitting errors. In Chapter 5 we
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extend the approach originating in Chapter 3 to yield not only convergence of
operator-splitting methods, but also precise error estimates, at least in the con-
text of hyperbolic problems. We also present many numerical examples using
dimensional splitting, discuss error mechanisms, and go into how to choose the
splitting step to optimize runtime versus numerical errors. Chapter 6 is devoted
to numerical examples for systems of equations; these systems are not covered by
the rigorous analysis in the previous chapters. In particular, we discuss applica-
tions from porous media flow and for two systems of conservation laws: the Euler
equations of gas dynamics and the shallow-water equations. Finally, the purpose
of Appendix A is to provide the novice reader with a brief introduction to nu-
merical methods for hyperbolic problems, many of which will be used as building
blocks in the splitting algorithms discussed in the following chapters.

The theory is illustrated by many examples throughout the text. For many
of the examples in the book, runtimes are given. Note that the examples were
developed over a period of several years and on various computers. Thus the run-
times will be considerably lower today, however, the relative times should remain
unchanged.

The purpose of computing
is insight, not numbers.

— R. W. Hamming

1.8 Matlab programs

The theory described in this book is applicable in many different settings. One
of the attractions is that it is reasonably easy to develop computer codes that
can be used for the computation of (approximate) solutions which can be used
for theoretical study as well as numerical results. To make the transition from
theory to computer code easier, we offer computer codes in Matlab (version 7.7,
R2008b) for almost all examples in the book. Note that the front tracking code is
considerable slower when programmed in Matlab compared with codes in C or
C++. Matlab codes are posted on the web site

www.math.ntnu.no/operatorsplitting

Feel free to use and modify them. Please let us know if you find bugs or possible
improvements which we can post on the web site. If the computer codes are used
for scientific work, we ask that you refer to the present book. We have decided to
keep the computer codes on the web rather than include them in the book. The
reasons for this are threefold: (i) It is easier to correct and update on the web than
in a printed book; (ii) The book becomes smaller and can be used independently
of the computer codes; (iii) Computer codes, and in particular their syntax and
structure, change more rapidly than mathematical theory.
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1.9 A guide to the reader

‘Begin at the beginning,’ the King said gravely,
‘and go on till you come to the end: then stop.’

— Alice’s Adventures in Wonderland

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Appendix A

Chapter 6

Chapter 6 focuses on applications of operator splitting in various contexts, and
can be read independently of Chapters 3–5. The thin arrows mark a path through
Appendix A for those unfamiliar with numerical methods for conservation laws.
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1.10 Notation

For the d-dimensional ball with radius r > 0, we use the notation Br, i.e.,
Br =

{
x ∈ Rd

∣∣ |x| ≤ r
}
.

For partial derivatives we use all the different standard notation, e.g.,

∂f

∂xj
(x) = fxj

(x) = ∂xj
f(x), x = (x1, . . . , xd) ∈ Rd,

∂|α|f
∂xα

(x) = Dαf(x), α multi-index.

Special differential operators are as usual given by

Δf(x) =
∑
j

∂2f

∂x2j
(x),

∇f(x) = (fx1
(x), . . . , fxd

(x)),

∇ · F (x) =
∑
j

∂xjFj(x), F = (F1, . . . , Fd).

We will frequently be working in Lebesgue spaces, and we use standard notation:
If Ω ⊆ Rd, we have for functions f : Ω → R that

‖f‖Lp(Ω) =

{(∫
Ω
|f(x)|p dx)1/p, for p ∈ [1,∞),

ess supx∈Ω |f(x)| , for p = ∞,

Lp(Ω) = {f : Ω → R | ‖f‖Lp(Ω) <∞}.
Local versions of the same spaces are defined by

Lploc(Ω) =
{
f : Ω → R

∣∣ fχK ∈ Lp(Ω) for all compact sets K
}
,

where we use the notation χK for the characteristic function of the set K. Let
Cp = Cp(Ω), p = 1, . . . ,∞, denote the space of functions f : Ω → R possessing
continuous partial derivatives of order ≤ p. In addition

Cp0 = Cp0 (Ω) =
{
f ∈ Cp(Ω)

∣∣ supp f compact
}
. (1.21)

For vector-valued functions f : Ω → RK we write Cp(Ω;RK) = Cp(Ω;R)K , etc.,
for the corresponding spaces.

More generally, for ΠT = Rd × (0, T ], we will often need to consider functions
u : ΠT → RK as elements of various Bochner spaces; that is, we consider the
functions t ;→ u( · , t). For instance, we will employ the space

L∞(0, T ;L1(Rd)) = {u : ΠT → R | ess supt∈(0,T ] ‖u( · , t)‖1 <∞}.
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The space C(0, T ;L1(Rd)) consists of functions u : ΠT → R such that the map
t ;→ u( · , t) is continuous in the L1 norm. Finally, the space C(0, T ;L1(Rd;RK))
consists of functions u : ΠT → RK with t ;→ u( · , t) ∈ RK continuous in the norm
in L1(Rd;RK).

The Lipschitz constant of a function f : Ω → RK is by definition

‖f‖Lip = ‖f‖Lip(Ω) = sup
x,y∈Ω
x 5=y

|f(x)− f(y)|
|x− y| . (1.22)

The corresponding space of Lipschitz functions is given by

Lip(Ω) =
{
f : Ω → RK

∣∣ ‖f‖Lip(Ω) <∞
}
, (1.23)

with local version

Liploc(Ω) =
{
f : Ω → R

∣∣ ‖f‖Lip(K) <∞ for each compact set K ⊆ Ω
}
.

(1.24)
We will need the concept of total variation for a function, which is defined as
follows: Consider first the one-dimensional case. For f : [a, b] → R (a = −b = −∞
permitted) we let

T.V. (f)[a,b] = T.V. (f) = sup
a<x0<···<xn<b

∑
j

|f(xj+1)− f(xj)| , (1.25)

where the supremum is over all finite partitions x0 < x1 < · · · < xn. For functions
in Lp spaces a refinement is needed (often called essential variation): We still
use the definition above, but restrict the points x0 < x1 < · · · < xn to points of
approximate continuity of f , thereby obtaining a definition that is independent of
the equivalence classes used in the proper definition of Lp spaces. Functions of
bounded variation are defined as follows:

BV([a, b]) = {f ∈ L1([a, b]) | T.V. (f) <∞}. (1.26)

For functions of several variables we use the following definition: Let f : R2 → R.
Then we define the Tonelli variation

T.V. (f) =

∫
R
T.V. (f( · , y))x dy +

∫
R
T.V. (f(x, · ))y dx, (1.27)

where T.V. ( · )x and T.V. ( · )y denote total variation with respect to the x and y
variables respectively. Extensions to n variables are straightforward.

A function f ∈ L1(Ω) is said to be of bounded total variation if its first-
order derivative in the sense of distributions can be represented by a finite Radon
measure, more precisely,

−
∫
Ω

f
∂φ

∂yj
dy =

∫
Ω

φ dµj , φ ∈ C∞
0 (Ω), j = 1, . . . , d (1.28)
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with |µj | (Ω) < ∞. The set of all functions of bounded total variation is denoted
by BV(Ω). We denote the total variation of f by |Df |Ω and define it by

|Df |Ω = sup

{∫
Ω

f ∇ · φ dy | φ ∈ C∞
0 (Ω;Rn), ‖φ‖∞ ≤ 1

}
. (1.29)

The local version is defined as follows: We say that a function f ∈ L1
loc(Ω) is

in f ∈ BVloc(Ω) if for each open set V , whose closure is contained in Ω, we have
|Df |V <∞. We equip BV(Ω) with the norm

‖f‖BV = ‖f‖L1(Ω) + |Df |Ω , (1.30)

which makes BV(Ω) into a Banach space [4, p. 121]. Then using Riesz’s theorem
on functionals in the space of continuous functions, we obtain that BV(Ω) can
equivalently be defined as

BV = BV(Ω) =
{
f ∈ L1(Ω)

∣∣ ‖f‖BVΩ
<∞}

.

Note that for a function f ∈ L1
loc(Ω), we have that BVloc(Ω) if and only if∫

Rd−1

T.V. (f(x̃))x̂i
dx̃ <∞ (1.31)

for all compact rectangles Rd−1 ⊂ Rd−1 where we have for each i that x =
(x1, . . . , xd) = (x1, . . . , xi−1, x̂i, xi+1, . . . , xd), x̃ = (x1, . . . , xi−1, xi+1, . . . , xd) (see
[288, Thm. 5.3.5]). It is well known that the following inclusions hold:

BV(Ω) ⊂ L
d

d−1 (Ω) for d > 1 and BV(Ω) ⊂ L∞(Ω) for d = 1.

Furthermore,

BV(Ω) is compactly imbedded into Lp(Ω) for 1 ≤ p <
d

d− 1
.

See, e.g., [4, 95, 288] for an extensive discussion about BV functions.
When discussing difference schemes, we shall also be needing discrete versions

of these norms. For a sequence U = {Ui}i∈Z, we define

‖U‖p =
{(∑

i∈Z |Ui|p
)1/p

if p <∞,

supi∈Z |Ui| for p = ∞.

This is extended in the natural way to several dimensions, if we let i ∈ Zd denote
a multiindex i = (i1, . . . , id), and let the above sum and supremum be taken over
Zd.

Throughout this book, by the notation ConstX we shall mean a “constant”
depending on X only.



2

Simple Examples of Semi-Discrete Operator
Splitting

The purpose of this short chapter is to provide a prologue to operator splitting
for some simplified cases. Through several examples we give a demonstration
of how evolutionary equations can be given a natural decomposition in terms of
simpler equations and how this decomposition can be used to solve the equation
approximately. Moreover, we discuss the convergence of the approximations and
briefly touch upon errors committed by the operator splittings. The splittings
will all be semi-discrete in the sense that we will use exact solution operators for
all the splitting steps. In many of the examples there will be analytical solutions
available for the solution operators associated with the simplified subproblems.

As we saw in Chapter 1, evolutionary equations can be described by the ab-
stract Cauchy problem

dU

dt
+A(U) = 0, U(0) = U0, (2.1)

where A is a suitable operator. We will write A as a sum of more elementary
operators, say

A = A1 + · · ·+AZ. (2.2)

In many cases this decomposition arises naturally. Each operator Aj may repre-
sent a differentiation in a spatial direction, or A model a composition of different
physical phenomena like convection, reaction, or diffusion. But the decomposition
may also be a result of some deeper understanding of the equation.

The idea of operator splitting is to choose a decomposition of the operator A
so that each of the sub-operators Aj give equations that are simpler to solve, e.g.,

dU j

dt
+Aj(U

j) = 0, U j(0) = U0, j = 1, . . . , \. (2.3)

In the following, U j(t) = SjtU0 will denote the solution of (2.3). Once the solution
is known for all sub-operators, we can choose a small time-step and apply the
sub-operators sequentially to construct an approximate solution of (2.1). Mathe-
matically, this process can be written as

U(nΔt) ≈ [SZΔt · · · S1
Δt

]n
U0. (2.4)

In doing so, we will generally make some error, but our hope is that this error will
decrease as we increase the number of steps in the construction. In the limit, we
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expect that the approximation will converge to the true solution

U(t) = lim
Δt→0,n→∞
t=nΔt

[SZΔt · · · S1
Δt

]n
U0. (2.5)

In the rest of this section we will give a few examples of elementary operator
splittings.

Example 2.1. (Finite-dimensional matrices) Consider the system of ordinary
differential equations

ut + Cu = 0, u|t=0 = u0 (2.6)

where C is an m×m matrix. Assume now that C can be decomposed as the sum
of two m×m matrices A and B. Thus the elementary equations become

vt +Av = 0, vt=0 = v0,

wt +Bw = 0, w|t=0 = w0.
(2.7)

The corresponding elementary solutions are given by

v(t) = S1
t v0 = exp(−tA)v0 =

∞∑
m=0

(−t)m
m!

Amv0,

w(t) = S2
t w0 = exp(−tB)w0 =

∞∑
m=0

(−t)m
m!

Bmw0,

(2.8)

respectively. Introduce matrices1

UΔt = exp(−Δt(A+B)), VΔt = exp(−ΔtA) exp(−ΔtB). (2.9)

We see that

UnΔt − V nΔt =

n−1∑
m=0

UmΔt(UΔt − VΔt)V
n−1−m
Δt ,

which implies

‖UnΔt − V nΔt‖ =

∥∥∥∥∥
n−1∑
m=0

UmΔt(UΔt − VΔt)V
n−1−m
Δt

∥∥∥∥∥
≤

n−1∑
m=0

∥∥UmΔt(UΔt − VΔt)V
n−1−m
Δt

∥∥
≤

n−1∑
m=0

‖UΔt‖m ‖UΔt − VΔt‖ ‖VΔt‖n−1−m

≤ nmax{‖UΔt‖ , ‖VΔt‖}n−1 ‖UΔt − VΔt‖
≤ n ‖UΔt − VΔt‖ exp(t(‖A‖+ ‖B‖)),

(2.10)

1The derivation is based on [225, Theorem VIII.29].
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where t = nΔt. Since

UΔt = I −ΔtC +
Δt2

2
C2 +O(Δt3),

we see that

UΔt − VΔt = I −ΔtC +
Δt2

2
C2 +O(Δt3)

− (
I −ΔtA+

Δt2

2
A2 +O(Δt3)

)(
I −ΔtB +

Δt2

2
B2 +O(Δt3)

)
= −Δt(C − (A+B)) +

Δt2

2
(AB −BA) +O(Δt3))

=
Δt2

2
[A,B] +O(Δt3)

where we have introduced the commutator [A,B] = AB −BA. Thus

‖UnΔt − V nΔt‖ ≤ tΔt

2
exp(t(‖A‖+ ‖B‖)) ‖[A,B]‖+O(Δt2),

which in particular shows that

lim
Δt→0,n→∞
t=nΔt

[exp(−ΔtA) exp(−ΔtB)]n = exp(−t(A+B)). (2.11)

We conclude that the limit[S2
ΔtS1

Δt

]n
u0 =

[
exp(−ΔtA) exp(−ΔtB)

]n
u0 →

Δt→0,n→∞
t=nΔt

exp(−tC)u0 = Stu0
(2.12)

is indeed the exact solution of (2.6).

Example 2.2. (Multi-dimensional heat equation) Consider first the linear heat
equation in two space dimensions

ut = Δu, u|t=0 = u0. (2.13)

The natural decomposition of the operator is in terms of the spatial coordinates;
that is, A = Δ = ∂2x + ∂2y . It is well-known that

vt = vxx, v|t=0 = v0,

wt = wyy, w|t=0 = w0,
(2.14)

have solutions

v(x, y, t) = S1
t v0 =

∫
R
Gt(x− ξ)v0(ξ, y) dξ,

w(x, y, t) = S2
t w0 =

∫
R
Gt(y − η)w0(x, η) dη,

(2.15)
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respectively, where G is the heat kernel

Gt(x) = (4πt)−1/2 exp(−x2/4t). (2.16)

The heat kernel satisfies the property∫
R
Gt(x− y)Gs(y − z) dy = Gt+s(x− z). (2.17)

Thus[S2
ΔtS1

Δt

]n
u0 (2.18)

=

∫
R2n

GΔt(x− ξn)GΔt(ξn − ξn−1) · · ·GΔt(ξ2 − ξ1)

×GΔt(y − ηn)GΔt(ηn − ηn−1) · · ·GΔt(η2 − η1)u0(ξ1, η1) dξn · · · dξ1dηn · · · dη1
=

∫
R2

GnΔt(x− ξ)GnΔt(y − η)u0(ξ, η) dξdη

=

∫
R2

Gt(x− ξ)Gt(y − η)u0(ξ, η) dξdη, t = nΔt. (2.19)

Observe that in this case the limit Δt → 0, n → ∞ with t = nΔt is trivial.
However, applying the product structure of the heat kernel (cf. the method of
separation of variables) we see that

Gt(x− ξ)Gt(y − η) =
1

4πt
exp

(
− (x− ξ)2 + (y − η)2

4t

)
, (2.20)

which is the two-dimensional heat kernel. Thus we find, as in the previous example,
that the right-hand side of (2.19) is indeed the exact solution (2.13). Physically,
the operator splitting can be interpreted as follows: first we allow heat to diffuse
in the x-direction a time Δt, then heat diffuses in the y-direction for a time Δt,
and so on.

As seen in the introduction, (1.16) is not the only possible operator splitting for
(2.13). Indeed, for this simple equation it turns out that all the operator splittings
discussed in the introduction (multiplicative, additive and ADI) are appropriate
and will produce reasonable results, at least in the limit Δt → 0. As we will see
in the next example, this may not always be true.

Example 2.3. (Linear transport) Consider next the linear hyperbolic equation

ut + aux + buy = 0, u|t=0 = u0, (2.21)

where a, b are constants. The equation describes the passive advection of a con-
served quantity u in a constant velocity field (a, b) and the exact solution is given
by

u(x, y, t) = u0(x− at, y − bt).
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The natural way to split the corresponding solution operator is, of course,
in terms of spatial coordinates; in fact, this has been done in (2.21), that is,
A = (a, b) · ∇ = a∂x + b∂y. The solution of each of the two sub-problems

vt + avx = 0, v|t=0 = v0,

wt + bwy = 0, w|t=0 = w0,
(2.22)

is given by

v(x, y, t) = S1
t v0 = v0(x− at, y),

w(x, y, t) = S2
t w0 = w0(x, y − bt),

(2.23)

respectively. Thus we find that the operator splitting solution becomes[S2
ΔtS1

Δt

]n
u0 = u0(x− naΔt, y − nbΔt). (2.24)

Physically, the operator splitting can be interpreted as follows: first we advect the
quantity u0 linearly in the x-direction a time Δt, then we advect the quantity a
time Δt in the y-direction, and so on. Since the process is linear and the two
sub-operators commute, it should come as no surprise that we obtain the exact
solution if nΔt = t.

A similar argument can be used to show that we obtain the exact solution also
for the alternative Strang formula (1.17):[

S1
Δt/2S2

ΔtS1
Δt/2

]n
u0 = u0(x− naΔt, y − nbΔt). (2.25)

However, the additive operator splitting defined by (1.19) will not reproduce the
exact solution unless u0 is separable. This follows from:[

1
2 (S2

2Δt + S1
2Δt)

]
u0 = 1

2

(
u0(x− 2aΔt, y) + u0(x, y − 2bΔt)

)
,

which is different from the exact solution u0(x − aΔt, y − bΔt). On the other
hand, the second-order additive splitting given by (1.20) will reproduce the correct
solution:[

1
2 (S1

ΔtS2
Δt + S2

ΔtS1
Δt)

]
u0 = 1

2

(
u0(x− aΔt, y − bΔt) + u0(x− aΔt, y − bΔt)

)
= u0(x− aΔt, y − bΔt).

In the rest of this book, we will only consider multiplicative operator split-
tings and in the following examples we focus on the simple splitting (1.16). We
will return in Chapter 6 to the issue of choosing good operator splittings, where
we discuss various fully discrete operator splittings in which the operators S are
replaced by numerical methods.
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Example 2.4. (Linear transport and diffusion) We can easily combine the two
previous examples by analysing

ut + aux = uxx, u|t=0 = u0. (2.26)

In this case the evolution operator contains two different physical mechanisms:
linear advection and diffusion. It is therefore natural to use the corresponding
elementary equations

vt + avx = 0, v|t=0 = v0,

wt = wxx, w|t=0 = w0,
(2.27)

as building blocks in the operator splitting algorithm. We have seen above that
the convection and the diffusion equation have solutions

u(x, t) = S1
t u0 = u0(x− at),

u(x, t) = S2
t u0 =

∫
R
Gt(x− ξ)u0(ξ) dξ.

(2.28)

Thus [S2
ΔtS1

Δt

]n
u0 =

∫
R
GnΔt(x− anΔt− ξ)u0(ξ) dξ

−→
Δt→0,n→∞
t=nΔt

∫
R
Gt(x− at− ξ)u0(ξ) dξ = u(x, t), (2.29)

which is easily seen to be the solution of (2.26), either by direct computation, or
by introducing new variables (t, x) ;→ (s = t, y = x− at). Physically, the operator
splitting first transports matter, then it allows matter to diffuse out, and so on.

We have so far only considered linear equations, where we have been able to
show convergence of the operator splitting by fairly simple means. Once we leave
the safe realm of linear operators, the situation becomes more involved as the next
example shows.

Example 2.5. (Viscous conservation laws) Let us now consider

ut + f(u)x = uxx, u|t=0 = u0. (2.30)

As in Example 2.4 we separate the convective and the diffusive parts of the op-
erator. Let S1

t and S2
t denote the exact solution operators of the corresponding

convective and diffusive subproblems

vt + f(v)x = 0, v|t=0 = v0,

wt = wxx, w|t=0 = w0.
(2.31)
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The lack of explicit expressions for the solution of scalar conservation laws generally
necessitates the use of a numerical method to approximate the S1

t operator. We
will return to this with a much more thorough discussion in the next section.

For now, we will use abstract arguments to obtain the desired convergence of
the semi-discrete splitting. Define

Un+1 =
[S2

ΔtS1
Δt

]
Un, U0 = u0 (2.32)

From the theory of conservation laws, see Holden and Risebro [126], we know that∥∥S1
t v0

∥∥
L∞(R) ≤ ‖v0‖L∞(R) , T.V.

(S1
t v0

) ≤ T.V. (v0) , (2.33)

where T.V. (u) denotes the total variation of u (see [126, App. A]). From the
explicit formula for the solution of the heat equation we immediately infer that∥∥S2

t w0

∥∥
L∞(R) ≤ ‖w0‖L∞(R) . (2.34)

For the total variation we easily find

1

h

∣∣S2
t w0(x+ h)− S2

t w0(x)
∣∣ ≤ 1

h

∫
R
|Gt(x+ h− ξ)w0(ξ)−Gt(x− ξ)w0(ξ)| dξ

=
1

h

∫
R
Gt(ξ) |w0(x+ h− ξ)− w0(x− ξ)| dξ

≤ T.V. (w0)

∫
R
Gt(ξ) dξ = T.V. (w0) . (2.35)

Since both elementary solutions are bounded in L∞ and have bounded variation,
we conclude that the same is true for the operator splitting approximations

‖Un‖L∞(R) ≤
∥∥U0

∥∥
L∞(R) , T.V. (Un) ≤ T.V.

(
U0

)
. (2.36)

Having obtained boundedness of the sequence of approximations, we can use a
compactness argument to prove convergence. Helly’s theorem [126, Cor. A.7]
yields the existence of a subsequence Δt→ 0 such that Un → u(t) with n = t/Δt.

While establishing the desired limit, the analysis in the previous example leaves
many questions unanswered: We have not defined what is meant by a solution of
ut + f(u)x = 0, indeed it is well-known that solutions of this equation develop
singularities (loss of smoothness) in finite time. Hence one has to study weak
solutions and carefully analyze the question of uniqueness. Thus it leaves open
the question of whether the limit is the correct solution of the original equation
or not. On the more technical side, we have for each t shown the existence of
a subsequence Δt → 0 for which we have convergence of Un (with n = t/Δt).
However, one would like to have one subsequence that applies to all t. A thorough
discussion of these issues is central in this book.
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Example 2.6. (Balance laws) Consider

ut + f(u)x = h(u), u|t=0 = u0. (2.37)

In this balance law there are two competing evolutionary mechanisms, nonlinear
transport f(u)x and reaction h(u), which give the natural decomposition of the
corresponding nonlinear evolution operator A. The solutions of

vt + f(v)x = 0, v|t=0 = v0,

wt = h(w), w|t=0 = w0

(2.38)

are denoted by v = S1
t v0 and w = S2

t w0, respectively. As in the previous exam-
ple, we will use a compactness argument to show convergence of the sequence of
operator splitting solutions. To do so, we must first show that the two elementary
operators S1

t and S2
t are bounded in L∞ and have bounded variation.

To avoid blow-up (in finite time) of the solution of the ordinary differential
equation, we assume that h is uniformly Lipschitz continuous, that is,

|h(u)− h(v)| ≤ ‖h‖Lip |u− v| .
Then

|w|t ≤ |h(w)| ≤ |h(0)|+ ‖h‖Lip |w| ≤ C(1 + |w|)
for some constant C. Furthermore, Gronwall’s inequality [94, p. 624ff] yields

|w| ≤ eCt(1 + |w0|).
Thus the family of functions Un defined recursively by

Un+1 =
[S2

ΔtS1
Δt

]
Un, U0 = u0 (2.39)

satisfies
‖Un‖L∞(R) ≤ eCT (1 +

∥∥U0
∥∥
L∞(R)), (2.40)

whenever t ≤ T . As for the total variation, we observe that if w is the difference
between two solutions, i.e., w = u− v, then

|w|t ≤ ‖h‖Lip |w| ,
which implies that

|w(t)| ≤ eCt |w0| .
Thus, whenever t ≤ T , we have

T.V. (Un) ≤ eCT T.V.
(
U0

)
.

Again, Helly’s theorem secures the existence of the limit of Un for a subsequence
Δt→ 0 with n = t/Δt. For further details, see the next section.

Explicit formulas can easily be obtained in the linear case with f(u) = au
and h(u) = cu. Also the nonlinear case with f(u) = au and h(u) = 2

√
u is

solvable. In this case we find that operator splitting converges to the solution
(t+

√
u0(x− at))2 if u0 ≥ 0; see Section 5.2 and Remark 5.16.
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As for the viscous conservation law, convergence analysis for the balance law
leaves many questions open. We have shown that operator splitting converges to
a limit, but does this limit satisfy the balance law (2.37), and if so, in what sense?
Obviously, the correct solution of (2.37) must be interpreted in a weak sense, since
the equation may develop singularities in finite time, similarly to the corresponding
homogeneous conservation law, ut + f(u)x = 0. So, we must somehow establish
that the operator splitting limit is a weak solution, but can we generally be assured
that this is the only solution to (2.37)?

Example 2.7. (Two-dimensional hyperbolic conservation laws) Let us now con-
sider

ut + f(u)x + g(u)y = 0, u|t=0 = u0. (2.41)

Let S1
t and S2

t denote the exact solution operators of the corresponding one-
dimensional conservation laws in the x and y-directions,

vt + f(v)x = 0, v|t=0 = v0,

wt + g(w)y = 0, w|t=0 = w0.
(2.42)

Following the lead of the previous examples we define

Un+1 =
[S2

ΔtS1
Δt

]
Un, U0 = u0. (2.43)

As before we see that
‖Un‖L∞(R) ≤

∥∥U0
∥∥
L∞(R) . (2.44)

However, the question of total variation is considerably more difficult in two di-
mensions than in one. Nevertheless, we obtain boundedness of the total variation
also in this case, and by a more refined compactness argument we establish the
existence of the limit, which is a weak solution of (2.41). We will return to this
example later; see Section 5.1 and Remark 5.2.

The reader will probably have observed a common feature in all the above
examples. The proof of convergence is obtained by careful analysis of the simplified
operators. The main idea behind the overall convergence theory presented in
the next chapter is to identify necessary conditions for the individual operators
that secure convergence of operator splitting, without having to prove that the
approximate solution Un converges in each case.

Whereas a rigorous convergence analysis is important to give numerical meth-
ods a sound mathematical foundation, a computational scientist is often more
interested in the qualitative and quantitative properties of a numerical method.
In Chapters 4, 5, and 6 we therefore make a more thorough study of operator split-
ting as a numerical method for nonlinear mixed hyperbolic-parabolic equations.
In particular, we will discuss how to choose the splitting step Δt and investigate
error mechanisms for nonlinear equations.
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General Convergence Theory

The main purpose of this book is to describe various operator splittings and to
formulate a rigorous and general convergence theory for a wide class of nonlinear
partial differential equations that involve a convection operator combined with a
possibly strongly degenerate and nonlinear second-order diffusion operator. The
diffusion operator may be zero for some discrete values of the solution (‘pointwise
degenerate’), it can be zero on intervals in the solution space (‘strongly degen-
erate’), and fairly large for other values of the solution (‘uniformly parabolic’).
Consequences of partial loss of parabolicity in degenerate parabolic equations are
manifested in the exhibition of ‘hyperbolic phenomena’ like finite speed of propaga-
tion or appearance of interfaces. Strongly degenerate parabolic equations exhibit
even more novel hyperbolic features such as the appearance of shock waves, loss of
uniqueness, and the need of entropy conditions. Recall that a simple example of a
strongly degenerate equation is a hyperbolic equation. Hence, strongly degenerate
parabolic equations will in general possess discontinuous (weak) solutions. More-
over, discontinuous solutions are not uniquely determined by their initial data. In
fact, an additional condition — the entropy condition — is needed to single out
the physically relevant weak solution of the problem.

A mathematical framework in which to treat, from a mathematical and numer-
ical point of view, such nonlinear partial differential equations is provided by the
L1 theory of entropy solutions of second-order quasilinear degenerate parabolic
equations. This theory can be viewed as a generalization of the well-known
Kružkov theory of entropy solutions to first-order hyperbolic conservation laws
[161]. For a primer on the mathematical theory of hyperbolic problems, see
[41, 73, 126, 201, 221, 239, 240, 243]. However, while the first-order theory is
classical, the second-order counterpart has advanced significantly only in recent
years. The study of entropy solutions to multi-dimensional degenerate parabolic
equations was advanced significantly with the important work [50], which in turn
generated a large amount of subsequent activity [20, 45, 48–50, 55–58, 102, 147,
148, 178, 202, 205, 207, 222, 231, 232, 251, 252, 270], see also [271, 275, 276] for
some previous approaches (in the one-dimensional context).

In this chapter we develop a rigorous convergence theory for operator splitting
methods in the context of weakly coupled systems of strongly degenerate (mixed
hyperbolic-parabolic) convection-diffusion equations. To verify convergence of a
specific operator-splitting method one only has to check whether each subsolver
satisfies certain assumptions, whereupon convergence (to the physically relevant
entropy solution) follows. The convergence theory is developed within the discon-
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tinuous solution framework of entropy solutions. Central elements of this theory
are presented in Sections 3.1 to 3.3, before we present the final theory in Sec-
tion 3.4. In Chapters 4 and 5, we consider a variety of semi-discrete and fully
discrete product formulas, including dimensional splitting, viscous splitting, and
flux splitting, and verify that the conditions needed to apply the abstract conver-
gence theory developed in this chapter hold. These two chapters also contain a
thorough, qualitative and quantitative discussion of various operator splittings in
terms of a few carefully selected and representative numerical examples.

3.1 Mathematical preliminaries

We start by reminding the reader of a very general compactness result, known as
Kolmogorov’s compactness criterion, which we will be using repeatedly later on
when proving convergence of various approximate solutions (see, e.g., [113, 126]
for a proof).

In the following, by a modulus of continuity we will mean a nondecreasing
continuous function ν : [0,∞) → [0,∞) such that ν(0) = 0.

Lemma 3.1 (Kolmogorov’s compactness criterion). Let Ω ⊂ Rd be an open set.
A family of functions {uh}h>0 ⊂ Lp(Ω;R) with p ∈ [1,∞), is compact in Lp(Ω;R)
if and only if:

1. there exists a constant C > 0 which depends on Ω and {uh}h>0 but is inde-
pendent of h such that ∫

Ω

|uh(x)|p dx ≤ C;

2. the family {uh}h>0 possesses a common spatial modulus of continuity ν not
depending on h, i.e.,∫

Ω

|uh(x+ y)− uh(x)|p dx ≤ νΩ(|y|)

for all h (here uh is defined to vanish outside Ω);

3. the family {uh}h>0 satisfies

lim
α→∞

∫
{x∈Ω | |x|≥α}

|uh(x)|p dx = 0,

uniformly in h.

Remark 3.2. Condition 3 is clearly superfluous when Ω is bounded.

The next two lemmas are consequences of Kolmogorov’s compactness criterion,
Lemma 3.1. These results will be used in the convergence analysis.
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Lemma 3.3 (Lploc compactness lemma). Let {uh = uh(x, t)}h>0 be a family of

functions defined on Rd × (0, T ), T > 0 that satisfies:

1. there exists a constant C1 > 0 that is independent of h such that

‖uh( · , t)‖Lp(Rd) ≤ C1, ‖uh( · , t)‖L∞(Rd) ≤ C1, t ∈ (0, T );

2. there exist two moduli of continuity νj such that

‖uh( · + y, t)− uh( · , t)‖Lp(Rd) ≤ ν1(|y|) + ν2(h), t ∈ (0, T );

3. there exist two moduli of continuity ωj such that

‖uh( · , t+ τ)− uh( · , t)‖Lp(Rd) ≤ ω1(τ) + ω2(h), t ∈ (0, T − τ)

whenever τ ∈ (0, T ).

Then {uh}h>0 is compact in the strong topology of Lploc(Rd×(0, T )). Moreover, any

limit point of {uh}h>0 belongs to L
p(Rd×(0, T ))∩L∞(Rd×(0, T ))∩C(0, T ;Lp(Rd)).

Proof. Consider a sequence {hj}∞j=1 such that hj → 0. We are going to apply the

Kolmogorov compactness criterion, Lemma 3.1, to show convergence in Lp(Rd+1).
Denote X = (x, y) and Y = (y, τ), and

θ(Y, h) =
( ∫ |uh(X + Y )− uh(X)|p dX)1/p

,

µ1(Y ) = ν1(y) + ω1(τ), µ2(h) = ν2(h) + ω2(h).

Fix ε > 0. Then such choose δ and N so that µ1(|Y |) < ε/2 for |Y | < δ and
µ2(hj) < ε/2 for j > N . Next choose

δ̃ = sup
j≤N

{|Y | | θ(Y, hj) < ε} .

For |Y | < min
{
δ, δ̃

}
we find

θ(Y, hj) < ε, for all j.

Now we can apply the Kolmogorov compactness criterion, Lemma 3.1, to deter-
mine the existence of a convergent subsequence in Lp(Rd+1). However, to ob-
tain convergence in C(0, T ;Lp(Rd)) we need a more refined argument. For each
t ∈ [0, T ] we can find a sequence hj → 0 such that uhj

( · , t) converges to u( · , t) in
Lploc(Rd). Let E ⊂ [0, T ] be a countable dense subset and let K ⊂ Rd be a com-
pact set. By using a diagonal argument we can find a subsequence (not relabeled)
hj → 0 such that∫

K

∣∣uhj
(x, t)− u(x, t)

∣∣p dx→ 0, hj → 0, t ∈ E. (3.1)



3.1 Mathematical preliminaries 29

Given a positive ε there exists a δ such that ω1(δ) < ε and ω2(δ) < ε. Fix t ∈ [0, T ].
Then we can find an s ∈ E such that |s− t| < δ. Thus∥∥uhj

( · , t)− uhj
( · , s)∥∥

Lp(K)
≤ ω1(|t− s|) + ω2(hj) < 2ε (3.2)

for all hj < δ. In addition,∥∥uh5
( · , s)− uhj ( · , s)

∥∥
Lp(K)

≤ ε (3.3)

for all hZ, hj < δ. From the triangle inequality∥∥uh5
( · , t)− uhj ( · , t)

∥∥
Lp(K)

≤ ‖uh5
( · , t)− uh5

( · , s)‖Lp(K)

+
∥∥uh5

( · , s)− uhj ( · , s)
∥∥
Lp(K)

+
∥∥uhj

( · , s)− uhj
( · , t)∥∥

Lp(K)
≤ 5ε,

it follows that uhj
( · , t) converges to u( · , t) in Lploc(Rd) for each t ∈ [0, T ]. The

bounded convergence theorem then shows that

sup
t∈[0,T ]

∥∥uhj
(x, t)− u(x, t)

∥∥
Lp(K)

→ 0, hj → 0, (3.4)

thereby proving that any limit point is in Lp(Rd× (0, T )). The fact that the limit
point is in L∞(Rd × (0, T )) follows from assumption (1). Finally, taking h→ 0 in
assumption (3) shows that the limit is in C(0, T ;Lp(Rd)). ✷

To prove that the approximate solutions possess some L1 time continuity, given
that they possess some L1 space continuity, we shall need the following version of
a celebrated interpolation lemma due to Kružkov [160] (see, e.g., Lemma 4.10 in
[126] for a proof):

Lemma 3.4 (Kružkov interpolation lemma). Let z(x, t) be a bounded measurable
function defined in the cylinder Br+r̂ × [0, T ], r̂ ≥ 0. For t ∈ [0, T ] and ρ ≤ r̂,
assume that u possesses a spatial modulus of continuity

sup
|y|≤ρ

∫
Br

|z (x+ y, t)− z(x, t)| dx ≤ νr,T,r̂(ρ; z), (3.5)

where νr,T,r̂ does not depend on t. Suppose that for any φ ∈ C∞
0 (Br) and any

t1, t2 ∈ [0, T ] and for some integer m ≥ 0,∣∣∣∣∫Br

(z (x, t2)− z (x, t1))φ(x) dx

∣∣∣∣ ≤ Constr,T

( ∑
|α|≤m

‖Dαφ‖L∞(Br)

)
|t2 − t1| ,

(3.6)
where α denotes a multiindex. Then for t and t+ τ ∈ [0, T ] and for all ε ∈ (0, r̂],∫

Br

|z(x, t+ τ)− z(x, t)| dx ≤ Constr,T

(
ε+ νr,T,r̂(ε; z) +

|τ |
εm

)
. (3.7)
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Remark 3.5. If we choose ε = |τ |1/(m+1)
, we see that z also possesses a temporal

modulus of continuity given by

ωr,T,r̂(τ ; z) := Constr,T

(
|τ |1/(m+1)

+ νr,T,r̂(|τ |1/(m+1)
; z)

)
.

If the total variation of z( · , t) on Rd is uniformly bounded, then we can choose
νr,T,r̂ as

νr,T,r̂(ρ;u) = Constr,T ρ,

and hence (3.7) can be replaced by

ωr,T,r̂(τ ;u) = Constr,T |τ |1/(m+1)
.

Note that this L1 Hölder estimate is optimal for solutions of second-order partial
differential equations with merely BV data. Finally, it is also possible to use
Lemma 3.4 to recover the well-known L1 Lipschitz continuity in time of solutions
of first-order equations with BV data.

We will also need some general results regarding nonlinear mappings between
Banach spaces. If X is a Banach space and X∗ its dual, a duality mapping J is a
map J : X → X∗ with the properties that for all x ∈ X,

‖J(x)‖X∗ = ‖x‖X , and 〈J(x), x〉 = ‖x‖2X ,

where 〈 · , · 〉 denotes the pairing between X∗ and X. If X = L1(Ω) where (Ω, dµ)
is some measure space, then every duality mapping can be written as an integral

〈J(u), v〉 =
∫
Ω

j(u)(x)v(x) dµ(x),

with

j(u) (x) =

{
sign

(
u(x)

)
, if u(x) >= 0,

a(x), if u(x) = 0,
(3.8)

where a is any measurable function with |a(x)| ≤ 1 almost everywhere w.r.t. dµ.
A mapping A : D(A) ⊂ X → X is called accretive if for all pairs (u,A(u)) and

(v,A(v)) in the graph of A, and for all duality mappings J we have that

〈J(u− v),A(u)−A(v)〉 ≥ 0.

If, in addition, I+λA is surjective, then A is called m-accretive. By [85, Theorem
13.1] it is sufficient that A is Lipschitz continuous and accretive for it to be m-
accretive.

If X is a function space Lp(Rd), then a translation σyu is the function u( · +y)
for y ∈ Rd.
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Theorem 3.6. Let (Ω, dµ) be a measure space, and suppose that the (nonlinear,
and possibly multivalued) operator A : L1(Ω) → L1(Ω) is Lipschitz continuous and
accretive. Then for any positive λ and any u ∈ L1(Ω), the equation

T (u) + λA(T (u)) = u

has a unique solution T (u). Furthermore, if∫
Ω

A(u) dµ = 0, u ∈ L1(Ω),

and A commutes with translations, i.e., σyA(u) = A(σyu), then we find that the
solution operator T : L1(Ω) → L1(Ω) has the following properties:∫

Ω

T (u) dµ =

∫
Ω

u dµ, (3.9a)

‖T (u)− T (v)‖L1(Ω) ≤ ‖u− v‖L1(Ω) , (3.9b)

T.V. (T (u))Ω ≤ T.V. (u)Ω , (3.9c)

u ≤ v ⇒ T (u) ≤ T (v), (3.9d)

‖T (u)‖L∞(Ω) ≤ ‖u‖L∞(Ω) . (3.9e)

See [53] for a proof of this theorem.

3.2 Degenerate parabolic equations

Let us now turn to degenerate parabolic equations, which we will assume to be in
the form

∂tu+∇ · f(u) = ΔA(u), u(x, 0) = u0(x), (3.10)

where (x, t) ∈ ΠT := Rd × (0, T ), T > 0 is fixed, and u = u(t, x) is the scalar
unknown function that is sought. The initial function u0(x) satisfies

u0 ∈ L1(Rd) ∩ L∞(Rd). (3.11)

The diffusion function A(u) is a scalar function that satisfies

A(u) ∈ Liploc(R), A( · ) nondecreasing with A(0) = 0. (3.12)

Finally, the convection flux f(u) is a vector-valued function that satisfies

f(u) = (f1(u), . . . , fd(u)) ∈ Liploc(R;Rd), f(0) = 0. (3.13)

When (3.26) is non-degenerate (uniformly parabolic), i.e., A′(u) is larger than
a positive constant for all u, it is well-known that (3.26) admits a unique classical
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solution [168]. This is at variance with the degenerate case in which A′(u) may
vanish for some values of u. A simple example of a degenerate equation is the
porous medium equation defined for u ∈ [0, 1] by

∂tu = ∂2x(u
m), m > 1,

which is degenerate at u = 0. In general, a manifestation of the degeneracy is in
the finite speed of propagation of disturbances: if at some fixed time the solution
u has compact support, then it will continue to have compact support for all later
times. The function u may have a singularity if it approaches the value zero, and
it becomes necessary to explore (continuous) weak solutions rather than classical
solutions. We refer to the book by Samarskĭı et al. [233] for a summary of the
subject of degenerate equations.

A vital condition for the uniqueness of weak solutions to (3.10) is that A( · )
is strictly increasing, that is, A is without plateaus (see discussion below). On
the other hand, if there exists at least one interval [α, β] on which A(u) is flat,
then we say that (3.10) is strongly degenerate. Going into particulars, the purely
hyperbolic equation

∂tu+∇ · f(u) = 0

is an example of a strongly degenerate equation. Hence, we conclude that strongly
degenerate equations in general will possess discontinuous solutions. Accordingly
it is necessary to work with weak solutions. However, due to neglected physical
mechanisms, weak solutions are not uniquely determined by their initial data. An
additional condition is therefore needed to single out a unique weak solution. This
additional condition is known as the entropy condition, and the corresponding
weak solutions are called entropy weak solutions.

Let η : R → R be a convex C2 function, and introduce the corresponding
functions q = (q1, . . . , qd) : R → Rd and r : R → R defined by

q′(u) = η′(u)f ′(u), r′(u) = η′(u)A′(u), u ∈ R.

We call η an entropy function, q and r entropy fluxes, and (η, q, r) an entropy,
entropy flux triple.

Definition 3.7. A function u(x, t) is an entropy weak solution of the Cauchy
problem (3.10) if the following conditions hold:

1. u ∈ L∞(ΠT ) ∩ L∞(0, T ;L1(Rd));

2. ∇A(u) ∈ L2(ΠT ;Rd);

3. for any entropy, entropy flux triple (η, q, r) and for all nonnegative φ ∈
C∞

0 (Rd × [0, T )),∫∫
ΠT

(η(u)∂tφ+ q(u) · ∇φ+ r(u)Δφ) dt dx+

∫
Rd

η(u0)φ(x, 0) dx ≥ 0. (3.14)
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By an approximation argument (see, e.g., [126]) we can replace (3.14) by∫∫
ΠT

(|u− c| ∂tφ+ sign(u− c) (f(u)− f(c)) · ∇φ+ |A(u)−A(c)|Δφ) dt dx

+

∫
Rd

|u0 − c|φ(x, 0) dx ≥ 0, 0 ≤ φ ∈ C∞
0 (Rd × [0, T )) (3.15)

for all real constants c. We refer to u ;→ |u− c| as the Kružkov entropy function
and u ;→ sign(u − c) (f(u)− f(c)) and u ;→ |A(u)−A(c)| as the corresponding
Kružkov entropy flux functions, indexed by c ∈ R. When A′ ≡ 0, (3.15) coincides
with Kružkov’s entropy condition for hyperbolic equations [161].

If we first take c > ‖u‖L∞(ΠT ) and subsequently c < −‖u‖L∞(ΠT ) in the

entropy condition (3.15), we can deduce that u satisfies the weak formulation of
(3.10) for φ ∈ C∞

0 (Rd × [0, T )),∫∫
ΠT

(
u∂tφ+ f(u) · ∇φ+A(u)Δφ

)
dx dt+

∫
u0(x)φ(x, 0) dx = 0. (3.16)

If A( · ) is strictly increasing, one can replace the entropy formulations (3.14) or
(3.15) by the weak formulation (3.16) and maintain well-posedness [50].

We have the following uniqueness theorem [148].

Theorem 3.8. Assume that (3.11), (3.12), and (3.13) hold. Let u, v be two
entropy weak solutions of the Cauchy problem (3.10) with initial data v0 and u0,
respectively. Then∫

Rd

∣∣v(x, t)− v(x, t)
∣∣ dx ≤

∫
Rd

∣∣v0(x)− u0(x)
∣∣ dx, t > 0. (3.17)

In particular, there exists at most one entropy weak solution of (3.10).

Regarding existence of entropy weak solutions we refer to [122], but also to
later chapters in which existence will be a consequence of the convergence of an
operator-splitting method.

The entropy condition for degenerate parabolic equations was first proposed by
Vol′pert and Hudjaev [271], who also established the existence of an entropy solu-
tion by passing to the limit in a parabolic regularization. In the one-dimensional
case, the L1 contraction property (implying uniqueness) of entropy weak solu-
tions was proved in [276], see also [275] and [21–23]. The L1 contraction prop-
erty for multi-dimensional equations was obtained more than a decade later by
Carrillo [50] for the homogeneous Dirichlet boundary value problem. Using the
pioneering approach by Carrillo [50], the Cauchy problem (3.10) was treated in
[144, 148]. Unbounded entropy weak solutions were analyzed in [55]. The nonho-
mogeneous Dirichlet boundary value problem is treated in [205] and also in [207].
Some other initial-boundary value problems arising in the theory of sedimentation-
consolidation processes were studied in [45].
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Let us now attempt to motivate the notion of entropy weak solutions specified
in Definition 3.7. According to, e.g., [271], an entropy weak solution u to (3.10)
can be constructed by the vanishing viscosity method. More precisely, let uρ be
the unique classical solution to the uniformly parabolic equation

∂tuρ + div f(uρ) = ΔA (uρ) + ρΔuρ, ρ > 0. (3.18)

In view of the a priori (L1, L∞,BV) estimates found in [271], there exists a limit
function u such that (along a subsequence)

uρ → u a.e. and in C(0, T ;L1(Rd)) as ρ→ 0, (3.19)

and u ∈ L∞(ΠT ) ∩ L∞(0, T ;L1(Rd)). Let (η, q, r) be a convex entropy, entropy
flux triple. Multiplying (3.18) by η′(uρ) yields

∂tη(uρ) +∇ · q(uρ)−Δr(uρ)− ρΔη(uρ) = −
(
nη

′′
ρ +mη′′

ρ

)
, (3.20)

where the parabolic dissipation and the entropy dissipation measures nη
′′
ρ (t, x) and

mη′′
ρ (t, x) are defined respectively by

nη
′′
ρ = η′′(uρ)A′(uρ) |∇uρ|2 ≥ 0, mη′′

ρ = ρη′′(uρ) |∇uρ|2 ≥ 0.

Integrating (3.20) over ΠT yields∫
Rn

η(u(T, x)) dx+

∫∫
ΠT

(
nη

′′
ρ +mη′′

ρ

)
(x, t) dx dt ≤

∫
Rn

η(u0(x)) dx.

Specifically, the choice η = u2/2 discloses that
√
A′(uρ)∇uρ is bounded in L2(ΠT )

independently of ρ, and because of that, so is ∇A(uρ). Consequently, the limit
u in (3.19) satisfies ∇A(u) ∈ L2(ΠT ). Multiplying (3.20) by a nonnegative test
function φ ∈ C∞

0 (Rd × [0, T )), integrating by parts over ΠT , and finally sending
ρ → 0 in the resulting inequality, we obtain that the limit u defined in (3.19)
satisfies the entropy condition (3.14).

Remark 3.9. Regarding the first part of Definition 3.7, we should point out
that solutions constructed, as outlined above by the vanishing viscosity method or
through the convergence of operator-splitting methods (as will be detailed later),
will belong to C(0, T ;L1(Rd)). As a consequence, the initial condition can be set
apart from (3.14). Concretely, this means that (3.14) can be replaced by∫∫

ΠT

(η(u)∂tφ+ q(u) · ∇φ+ r(u)Δφ) dt dx ≥ 0, (3.21)

for 0 ≤ φ ∈ C∞
0 (Rd × [0, T )) and

lim
t→0

∫
Rd

|u(x, t)− u0(x)| dx = 0. (3.22)
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Although we will not deal with these equations in this book, let us mention
that recently [58] the entropy solution theory was extended to cover more gen-
eral equations than (3.10), namely, quasilinear anisotropic degenerate parabolic
equations of the form

∂tu+ div f(x, t, u) = div (a(x, t, u)∇u) , (3.23)

where we could have added a source term as well. In (3.23), f = (f1, . . . , fd) is a
vector–valued flux function and a = (aij) is a symmetric matrix-valued diffusion
function of the form{

a(x, t, u) = σa(x, t, u)σa(x, t, u)4 ≥ 0,

σa(x, t, u) ∈ Rd×K , 1 ≤ K ≤ d.
(3.24)

More explicitly, the components of a read

aij(x, t, u) =

K∑
k=1

σaik(x, t, u)σ
a
jk(x, t, u), i, j = 1, . . . , d.

Nonnegativity of the matrix a(u, t, x) is interpreted in the usual sense, meaning
that for each fixed (x, t, u) ∈ ΠT × R there holds

d∑
i,j=1

aij(x, t, u)λiλj ≥ 0, λ = (λ1, . . . , λd) ∈ Rd.

The anisotropic diffusion case in (3.23) with coefficients independent of x and t was
treated by Chen and Perthame [58], who developed a notion of kinetic/entropy
solutions containing an explicit parabolic dissipation measure and also a certain
chain-rule property (not needed when the diffusion coefficient a is a scalar func-
tion). The L1 contraction property of entropy solutions was proved in [58] by
developing a kinetic formulation and using the regularization by convolution. An
alternative theory was developed in [19] based on Kružkov’s device of doubling
variables and a notion of renormalized entropy solutions. There are also some
other recent papers dealing with the anisotropic diffusion case. In [222], the rela-
tion between dissipative solutions and entropy solutions was studied and the con-
vergence of certain relaxation approximations was established. In [57], a kinetic
framework was introduced for deriving explicit continuous dependence estimates
and convergence rates for approximate entropy solutions. In the context of semi-
group solutions for the isotropic case, continuous dependence estimates had been
derived earlier in [66]. A theory of existence, uniqueness, and continuous depen-
dence of entropy solutions for the case with (x, t)-dependent coefficients, cf. (3.23),
was developed in [56].
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3.3 Weakly coupled systems of degenerate parabolic equa-
tions

We have seen that a fairly well-developed L1 theory for degenerate parabolic equa-
tions has emerged in recent years. On the other hand, to date there exists no
general theory for degenerate parabolic systems, although the general theory of
uniformly-parabolic systems is by now a mature subject [91, 158, 256], see also [243]
for some special uniformly-parabolic systems and [79, 128, 226] for some results
on parabolic systems with weaker parabolicity conditions. Strongly degenerate
parabolic systems occur in applications such as sedimentation and consolidation of
polydisperse suspensions [26]. Moreover, the theory of hyperbolic systems is rather
well developed (at least in one spatial dimension) [41, 59, 73, 126, 201, 239, 240].
Although no general theory exists for systems of degenerate parabolic equations
with strong coupling, it is rather straightforward to extend the mathematical the-
ory for scalar, strongly degenerate, parabolic equations to weakly coupled systems
of such equations [122], which we now discuss briefly. Applications include combus-
tion [198, 215], hydrology [224], biology [30], relaxation [135, 211], and resonance
phenomena [199].

We consider weakly coupled systems of nonlinear degenerate parabolic equa-
tions of the form

uκt + divFκ(uκ) = ΔAκ(uκ) + gκ(U), (x, t) ∈ ΠT , κ = 1, . . . ,K. (3.25)

Here U = (u1, . . . , uK), Fκ(uκ) = (Fκ1 (u
κ), . . . , Fκd (u

κ)), and ΠT = Rd× (0, T ] for
some T positive. The system (3.25) can be written more compactly as

Ut +
∑
i

Fi(U)xi
= ΔA(U) +G(U), (x, t) ∈ ΠT , (3.26)

when we introduce

Fi(U) = (F 1
i (u

1), . . . , FKi (uK)),

A(U) = (A1(u1), . . . , AK(uK)),

G(U) = (g1(U), . . . , gK(U)).

Observe that the system is coupled through the source term G(U) only. We will
here consider the Cauchy problem for (3.26); i.e., we require that

U
∣∣
t=0

= U0 ∈ L∞(Rd;RK) ∩ L1(Rd;RK). (3.27)

We assume that the nonlinear (convection and diffusion) flux functions satisfy the
general conditions

Fκ ∈ Liploc(R;Rd), Fκ(0) = 0,

Aκ ∈ Liploc(R), Aκ is nondecreasing with Aκ(0) = 0,
(3.28)
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where κ = 1, . . . ,K. In addition, we assume that

G ∈ Liploc(RK ;RK), G(0) = 0. (3.29)

Letting η : R → R denote a convex C2 entropy function, we introduce the
associated entropy-flux vectors

Qi = (q1i , . . . , q
K
i ), R = (r1, . . . , rK),

that satisfy the compatibility conditions

dqκi
du

(u) = η′(u)
dFκi
du

(u), κ = 1, . . . ,K, i = 1, . . . , d,

drκ

du
(u) = η′(u)

dAκ

du
(u), κ = 1, . . . ,K.

Definition 3.10. A vector-valued function

U ∈ L∞(Π0
T ;RK) ∩ L1(Π0

T ;RK) ∩ C([0, T ];L1(Rd;RK))

is called an entropy weak solution of the Cauchy problem (3.26)–(3.27) if:

1. For all convex C2 entropy functions η : R → R and corresponding entropy
fluxes Qi and R, the following entropy inequality holds for κ = 1, . . . ,K:

η(uκ)t +
∑
i

qκi (u
κ)xi

−Δrκ(uκ) ≤ η′(uκ)gκ(U) in D′(Π0
T ); (3.30)

that is, for any nonnegative test function φ(x, t) ∈ C∞
0 (Π0

T ),∫∫
ΠT

(
η(uκ)φt +

∑
i

qκi (u
κ)φxi

+ rκ(uκ)Δφ
)
dt dx ≥

−
∫∫

ΠT

η′(uκ)gκ(U)φ dt dx−
∫
Rd

η (uκ0 (x))φ(x, 0) dx.

2. We have that

∇xA
κ(uκ) ∈ L2 (ΠT ) , κ = 1, . . . ,K. (3.31)

It is a standard matter to see that it is equivalent to require that (3.30) holds
for the Kružkov entropies η = η(ξ, k) = |ξ − k| and entropy fluxes qκi = qκi (ξ, k) =
sign(ξ − k)(fκi (ξ) − fκi (k)) and rκ = rκ(ξ, k) = |Aκ(ξ)−Aκ(k)| for all k, where
k, ξ ∈ R. That is, (3.30) can be replaced by1

|uκ − k|t+
∑
i

[
sign(uκ − k)

(
Fκi (u

κ)− Fκi (k)
)]
xi

−Δ |Aκ(uκ)−Aκ(k)| ≤ sign(uκ − k)gκ(U) in D′ (Π0
T

) (3.32)

1Observe that sign(uκ − k)(Aκ(uκ)−Aκ(k)) = |Aκ(uκ)−Aκ(k)|.
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for all k. For the sake of our own convenience, we will switch back and forth
between (3.30) and (3.32). If we first take k > ess supuκ(x, t) and subsequently
k < ess infuκ(x, t) in (3.32), then we deduce that uκ satisfies the equation

uκt +
∑
i

Fκi (u
κ)xi

= ΔAκ(uκ) + gκ(U) in D′(Π0
T ).

Hence, an entropy weak solution U satisfies the system (3.26) in the sense of
distributions. Furthermore, in the context of conservation laws, (3.32) coincides
with Kružkov’s celebrated entropy condition [161] in the scalar case as well as
the extension of this condition to a weakly coupled system of conservation laws
[212, 228, 229].

Finally, we have the following uniqueness theorem [122].

Theorem 3.11. Assume that (3.28), (3.29), and (3.28) hold. Let V,U be two
entropy weak solutions of the Cauchy problem (3.25)–(3.27) with initial data V0, U0

respectively. Then for t > 0,∫
Rd

∣∣V (x, t)− U(x, t)
∣∣ dx ≤

√
K exp

(
K‖G‖Lip t

)∫
Rd

∣∣V0(x)− U0(x)
∣∣ dx. (3.33)

In particular, there exists at most one entropy weak solution of (3.25)–(3.27).

Regarding existence of entropy weak solutions we refer to [122], but also to
later chapters in which existence will be a consequence of the convergence of an
operator splitting method.

3.4 A general convergence theory

Having outlined a rigorous mathematical framework for studying weakly coupled
systems of strongly degenerate parabolic convection-diffusion equations, we now
come to the main novel point in this book: the development of a general conver-
gence theory, which can be seen as a continuation of the work started in [119].
Using this theory, one can then prove the convergence of a specific operator split-
ting by verifying that each subsolver satisfies certain assumptions with regard to
boundedness and entropy production.

To develop the theory, we first write the weakly coupled system (3.26)–(3.27)
of convection-diffusion equations as an abstract Cauchy problem of the form

dU

dt
+A(U) = 0, U |t=0 = U0, (3.34)

where the nonlinear operator A is given by

A(U) =
∑
i

Fi(U)xi
−ΔA(U)−G(U). (3.35)
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Let A1, . . . ,AZ be a splitting of the differential operator A, i.e.,

A = A1 + · · ·+AZ, \ ∈ N, (3.36)

where each Al is also assumed to be a differential operator but possibly with a
source term. Corresponding to this operator splitting, we assume that there exists
a splitting of the entropy fluxes and the source term; that is, we have

Qi = Q1
i + · · ·+QZi , i = 1, . . . , d,

R = R1 + · · ·+RZ,

G = G1 + · · ·+GZ,

(3.37)

where

Qli = (ql1i , . . . , q
lK
i ), l = 1, . . . , \,

Rl = (rl1, . . . , rlK), l = 1, . . . , \,

Gl = (gl1, . . . , glK), l = 1, . . . , \.

For a fixed l = 1, . . . , \, let us now consider the Cauchy problem

dV l

dt
+Al(V l) = 0, V l|t=0 = V l0 , V l = (vl1, . . . , vlK). (3.38)

Let V l(t) = SltV l0 denote an exact or approximate entropy weak solution of (3.38).
We are interested in building approximate entropy weak solutions of (3.26)–(3.27)
using the product formula, thus

U(x, t) ≈ Un, t = nΔt,

where

Un =
[
SZΔt ◦ · · · ◦ S1

Δt

]n
U0. (3.39)

Here U0 is equal, or approximately equal, to U0. The aim is to show that Un

converges to the solution U provided the exact or approximate solution operators
Sl satisfy certain criteria.

To investigate the convergence properties of the product formula (3.39), we
need to work with functions that are not only defined for each t = nΔt, but for
all t. To this end, we introduce functions

Un,l = SlΔt ◦ · · · ◦ S1
ΔtU

n, l = 1, . . . , \, Un,0 = Un. (3.40)

Thus Un,Z = Un+1. Following [71], we next introduce the auxiliary function
UΔt : Π

0
T → RK ,

UΔt(t) = SlZ(t−tn,l−1)
Un,l−1 = (u1Δt, . . . , u

K
Δt), for t ∈ [tn,l−1, tn,l) , (3.41)
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for n ∈ N0 and l = 1, . . . , \. Here

tn,l = (n+
l

\
)Δt, l = 0, . . . , \, (3.42)

and Π0
T = ΠT ∪ {

Rd × {0}}. Note that we have suppressed the dependence in
UΔt on the discretization parameters associated with the operators SZt , . . . ,S1

t if
these are approximate (numerical) solution operators. This is justified by assuming
that these discretization parameters are related to the splitting time step Δt in a
manner implying that they tend to zero with Δt. Observe that

UΔt (x, nΔt) = Un =
[SZΔt ◦ · · · ◦ S1

Δt

]n
U0(x).

In this book we shall always let ν(h;U) denote the spatial modulus of continuity
of the function U : Rd → RK . More precisely, we set ν(h;U) to be a continuous
function ν( · ;U) : [0,∞) → [0,∞) such that

ν(0;U) = 0, ν(ρ;U) ≥ sup
|z|≤ρ

∫
Rd

|U(x+ z)− U(x)| dx. (3.43)

If U ∈ BV(Rd), then ν(h;U) can be chosen to be h‖U‖BV. Similarly, we use
ω(h;U) to denote the temporal modulus of continuity of a function U : Rd ×R →
RK , i.e., we let ωt(τ ;U) be a continuous function such that

ωt(0;U) = 0, ωt(τ ;U) ≥ sup
|ε|≤τ

∫
Rd

|U(x, t+ ε)− U(x, t)| dx. (3.44)

Without loss of generality we may assume that both ν and ω are nondecreasing.
Let us assume that the approximate solution UΔt : Π

0
T → RK satisfies the

following three estimates uniformly in Δt:

1. Uniform boundedness:

ess supΠ0
T
|UΔt| ≤ ConstT (3.45)

for some positive constant ConstT not depending on Δt.

2. There exists a spatial modulus of continuity:

sup
|z|≤ρ

∫
Br

|UΔt (x+ z, t)− UΔt(x, t)| dx ≤ νr,T (ρ;UΔt) , (3.46)

for t ∈ [0, T ], where νr,T : [0,∞) → [0,∞) does not depend on Δt, but it is
allowed to depend on r and T .

3. Weak local Lipschitz continuity in time:∣∣∣∣ ∫
Br

(UΔt(x, t)− UΔt(x, s))φ(x) dx

∣∣∣∣
≤ Constr,T max

Br

(
|φ|+

∑
i

|φxi |+
∑
i,j

|φxixj |
)
|t− s|,

(3.47)
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for s, t ∈ [0, T ] and some constant Constr,T > 0 not depending on Δt and
any vector-valued test function φ ∈ C∞

0 (Br;RK).

To apply the operator splitting technique we need properties (3.45)–(3.47).
Next we formulate sufficient conditions on the simplified operators so that these
conditions imply (3.45)–(3.47). In Chapters 4 and 5 we present several splitting
methods for which it is possible to demonstrate that (3.45)–(3.47) hold.

Lemma 3.12. Let V l(t) = SltV l0 denote the solution of

dV l

dt
+Al(V l) = 0, V l|t=0 = V l0 , V l = (vl1, . . . , vlK), l = 1, . . . \. (3.48)

Assume that each function V l = V l(t) satisfies∥∥V l(t)∥∥
L∞(Rd)

≤ exp(ct)
∥∥V l(0)∥∥

L∞(Rd)
, (3.49)∫

Br

∣∣V l(x+ y, t)− V l(x, t)
∣∣ dx ≤ C exp(ct)

∫
Br

∣∣V l(x+ y, 0)− V l(x, 0)
∣∣ dx, (3.50)∣∣∣∣ ∫Br

(
V l(x, t)− V l(x, s)

)
φ(x) dx

∣∣∣∣ ≤ Constr,T max
Br

( ∑
|α|≤2

|Dαφ|
)
|t− s| , (3.51)

for s and t ∈ [0, T ], φ ∈ C∞
0 (Br;RK), and constants c and C that are independent

of Δt. Then the function UΔt(t) defined by (3.39), (3.40), and (3.41) satisfies
the estimates (3.45)–(3.47), assuming that the initial approximation has a spatial
modulus of continuity.

Proof. By induction we see that

‖UΔt(t)‖L∞(Rd) ≤ exp(c \tn) ‖UΔt(0)‖L∞(Rd) ≤ exp(c \T ) ‖UΔt(0)‖L∞(Rd) ,

for t ∈ [tn−1, tn), which proves uniform boundedness, that is, inequality (3.45). To
establish a spatial modulus of continuity, let t ∈ [tn,l−1, tn,l). Then∫

Br

|UΔt(x+ z, t)− UΔt(x, t)| dx

≤ exp(c\(t− tn,l−1))

∫
Br

∣∣Un,l−1(x+ z, t)− Un,l−1(x, t)
∣∣ dx

≤ exp(cΔt) exp(c(l − 1)Δt)

∫
Br

∣∣Un−1(x+ z, t)− Un−1(x, t)
∣∣ dx

≤ exp(c \(n+ 1)Δt)

∫
Br

∣∣U0(x+ z, t)− U0(x, t)
∣∣ dx

≤ exp(c \(n+ 1)Δt) νr,T (ρ;U
0), |z| ≤ ρ,
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which proves (3.46). To prove (3.47) it suffices to consider s = 0 and t ∈
[tn,l−1, tn,l). Thus∣∣∣ ∫

Br

(
UΔt(x, t)− UΔt(x, 0)

)
φ(x) dx

∣∣∣
≤

∣∣∣ ∫
Br

(
UΔt(x, t)− Un,l−1(x)

)
φ(x) dx

∣∣∣
+

l−1∑
m=1

∣∣∣ ∫
Br

(
Un,m(x)− Un,m−1(x)

)
φ(x) dx

∣∣∣
+

n−1∑
p=0

Z∑
m=1

∣∣∣ ∫
Br

(
Up,m(x)− Up,m−1(x)

)
φ(x) dx

∣∣∣
≤ Constr,T max

Br

(
|φ|+

∑
i

|φxi
|+

∑
i,j

|φxixj
|
)(
lΔt+ \nΔt

)
.

✷

Theorem 3.13 (Convergence). Suppose that the approximate solutions {UΔt} sat-
isfy the three estimates (3.45), (3.46), and (3.47). Then there exists a subsequence
of {UΔt} which converges in L1

loc

(
ΠT ;RK

)
to a limit function U ∈ L∞ (

ΠT ;RK
)
.

Proof. Fix r > 0. In view of (3.45), there exists a constant Constr,T > 0 such that∫
Br

∫ T

0

|UΔt(x, t)| dt dx ≤ Constr,T .

Furthermore, according to (3.46), there exists a spatial modulus of continuity
νr,T : [0,∞) → [0,∞), such that

sup
|z|≤ρ

∫
Br

∫ T

0

|UΔt(x+ z, t)− UΔt(x, t)| dt dx ≤ νr,T (ρ;UΔT ). (3.52)

For each t ∈ [0, T ] we can apply Lemma 3.1 to find a subsequence Δt → 0 such
that uκΔt( · , t) converges in L1

loc to a function uκ( · , t). Let now {tn} ⊂ [0, T ] be a
dense, countable set. By a standard diagonal argument we can find one common
subsequence Δtk → 0 such that uκΔt( · , tn) → uκ( · , tn) for all n.

To prove time continuity of the splitting approximation UΔt( · , t) we will use
a different technique than in, e.g., [71, 125]. That is, we will rely on a weak
Lipschitz continuity in time of uΔt( · , t), cf. (3.47), and the Kružkov interpolation
Lemma 3.4. In view of (3.47) and (3.52), Remark 3.5 then implies that we can
find a temporal modulus of continuity ωκr,T : [0,∞) → [0,∞) such that∫

Br

|uκΔt(x, t+ τ)− uκΔt(x, t)| dx ≤ ωr,T (|τ | ;uκΔt).
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To prove that {uκΔtk( · , t)} is a Cauchy sequence we let t ∈ [0, T ] and write∫
Br

∣∣∣uκΔtk(x, t)− uκΔtk̃(x, t)
∣∣∣ dx ≤

∫
Br

∣∣uκΔtk(x, t) dx− uκΔtk(x, tn)
∣∣ dx

+

∫
Br

∣∣∣uκΔtk(x, tn)− uκΔtk̃(x, tn)
∣∣∣ dx+

∫
Br

∣∣∣uκΔtk̃(x, tn)− uκΔtk̃(x, t)
∣∣∣ dx. (3.53)

The middle term can be made small by assumption, while the first and the last
terms are small using the temporal modulus. Hence we have established that
there exists a subsequence Δtk such that uκΔtk( · , t) converges in L1

loc to a func-
tion uκ( · , t) for all t ∈ [0, T ]. Lebesgue’s dominated convergence theorem shows
convergence in L1

loc(ΠT ;RK). ✷

Remark 3.14. The technique used to establish time continuity was first used in
[145] for a nonlinear, scalar convection-diffusion equation. Subsequent applications
of this technique can be found in [97, 119, 141, 146].

Having established necessary conditions on the suboperators to ensure conver-
gence of {UΔt}, we next look into conditions necessary to guarantee that the limit
function U is an entropy weak solution. To this end, we consider an approximate
solution V l : Π0

T → RK of (3.38). Thus V l will not satisfy (3.30) (with qκi replaced
by qlκi , etc.) exactly, but rather (3.30) modified with additional error terms. In-
spired by [33], we assume that V l satisfies the entropy inequalities (3.30) with error
terms that are bounded linear functionals on C0 (in the distributional sense); that
is, for l = 1, . . . , \, κ = 1, . . . ,K and all 0 ≤ t1 < t2 ≤ T ,

η
(
vlκ

)
t
+
∑
i

qlκi
(
vlκ

)
xi

−Δrlκ
(
vlκ

) ≤ η′
(
vlκ

)
glκ

(
V l

)
+
(
EI
lκ
)
t
+
∑
i

(
EII

lκ
i

)
xi

+
∑
i,j

(
EIII

lκ
ij

)
xixj

+
(
EIV

lκ
i

) (3.54)

in D′([t1, t2]×Rd). Recall that this notation means that for a test function φ(x, t),
the linear functional (EI

lκ)t takes as argument φt, the term (EII
lκ)xi

acts on φxi
,

and so on. If these linear functionals are bounded, by the Riesz–Markov theorem
(see, e.g., [185, Thm. 6.22])∣∣∣EI

lκ
∣∣∣ ≤ dµI

lκ,
∣∣∣EII

lκ
i

∣∣∣ ≤ dµII
lκ
i ,

∣∣∣EIII
lκ
ij

∣∣∣ ≤ dµIII
lκ
ij ,

∣∣∣EIV
lκ
∣∣∣ ≤ dµIV

lκ,

for some nonnegative Radon measures dµI
lκ, dµII

lκ
i , dµIII

lκ
ij , dµIV

lκ. Furthermore,

for almost every t ∈ [0, T ], these measures should be Radon measures on Rd. In
practice, when deciding whether (3.54) holds, we check if∫ t2

t1

∫
Rd

(
η
(
vlκ

)
φt +

∑
i

qlκi
(
vlκ

)
φxi − rlκ

(
vlκ

)
Δφ− glκ

(
V l

)
φ
)
dx dt
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−
∫
Rd

η
(
vlκ(x, s)

)
φ(x, s)

∣∣∣s=t2
s=t1

dx

≥
∫ t2

t1

∫
Rd

(
φt dµI

lκ +
∑
i

φxi
dµII

lκ
i +

∑
i,j

φxixj
dµIII

lκ
ij + φ dµIV

lκ
)

for all nonnegative test functions φ. Furthermore, we must check if these measures
are finite, i.e., that for (almost) all t ∈ [t1, t2],∫

Rd

dµI
lκ(x, t) ≤ EI

lκ,

∫
Rd

dµII
lκ
i (x, t) ≤ EII

lκ
i ,∫

Rd

dµIII
lκ
i,j(x, t) ≤ EIII

lκ
i,j ,

∫
Rd

dµIV
lκ
i (x, t) ≤ EIV

lκ
i .

(3.55)

Let the approximation be described by a parameter Δt that typically tends
to zero (and which we have suppressed in the notation). We assume that the
Radon measures tend to zero (in a suitable manner) as Δt → 0. In practice we
observe that Elκ vanish as Δt → 0, see Chapters 4 and 5 for details. Of course,
when S1

t , . . . ,SZt are exact solution operators, these error terms are absent and we
obtain so-called semi-discrete splitting methods. For each concrete application of
these methods we will have to show the existence of error terms with the properties
described above.

For any fixed test function φ ∈ C∞
0 (ΠT ), n ∈ N0 = N ∪ {0}, l = 1, . . . , \, and

κ = 1, . . . ,K, let us define the local error function Δt ;→ Enlκ(Δt;φ) by

Enlκ(Δt;φ) =
∫∫
Πn,l

(1
\
|φt| dµI

lκ+
∑
i

|φxi | dµII
lκ
i +

∑
i,j

∣∣φxixj

∣∣ dµIII
lκ
ij + |φ| dµIV

lκ
)

+
1

\

∫
Rd

|φ( · , tn,l)| dµI
lκ( · , tn,l) (3.56)

where Πn,l = Rd × (tn,l−1, tn,l) and

tn = nΔt, tn,l =

(
n+

l

\

)
Δt, l = 0, . . . , \.

Clearly tn = tn,0 = tn−1,Z. Let χn,l be the characteristic function of the set Πn,l,
thus χn,l = χΠn,l

, and set

χZl = χΠl
=

∑
n

χn,l, Πl = Rd × ∪n(tn,l−1, tn,l). (3.57)

For later use we set
Πn = Rd × (nΔt, (n+ 1)Δt).

Furthermore, let us define the global error function Δt ;→ Eκ(Δt;φ) by

Eκ(Δt;φ) = \

N−1∑
n=0

Z∑
l=1

Enlκ(Δt;φ) (3.58)
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=

Z∑
l=1

[ ∫∫
ΠT

χZl

(
|φt| dµI

lκ

+ \
(∑

i

|φxi
| dµII

lκ
i +

∑
i,j

∣∣φxixj

∣∣ dµIII
lκ
ij + |φ| dµIV

lκ
))

+

N−1∑
n=0

∫
Rd

|φ( · , tn,l)| dµI
lκ( · , tn,l)

]
,

and denote by E the vector (E1, . . . , EK). Our next result provides us with the
following important approximate entropy inequality:

Lemma 3.15. Let UΔt be defined by (3.40) and (3.41). For κ = 1, . . . ,K and
any nonnegative test function φ ∈ C∞

0 (Π0
T ), we have∫∫

ΠT

(
η
(
uκΔt

)
φt +

∑
i

qκi
(
uκΔt

)
φxi

+ rκ
(
uκΔt

)
Δφ

)
dt dx

≥ −
∫∫
ΠT

η′
(
uκΔt

)
gκ

(
UΔt

)
φ dt dx−

∫
Rd

η
(
uκΔt(x, 0)

)
φ(x, 0) dx

− Eκ(Δt;φ)− Iκ1 − Iκ2 − Iκ3 ,

(3.59)

where

Iκ1 = \

Z∑
l=1

∑
i

∫∫
ΠT

(
χZl − 1

Z

)
qlκi

(
uκΔt

)
φxi

dt dx,

Iκ2 = \

Z∑
l=1

∫∫
ΠT

(
χZl − 1

Z

)
rlκ

(
uκΔt

)
Δφ dt dx,

Iκ3 = \

Z∑
l=1

∫∫
ΠT

(
χZl − 1

Z

)
η′
(
uκΔt

)
glκ

(
UΔt

)
φ dt dx,

where χZl is the characteristic function of Πl =
⋃
nΠn,l = Rd ×⋃

n (tn,l−1, tn,l).

Proof. Fix κ = 1, . . . ,K, let φ ∈ C∞
0 (ΠT ) be a nonnegative test function, and

define a new test function ϕ on each strip Πn,l by

ϕ(x, t) = φ

(
x,
t

\
+ tn,l−1

)
.

For n ∈ N0 and l = 1, . . . , \, let us also introduce

V n,l(t) = SltUn,l−1 = (vnl1, . . . , vnlK), t ≥ 0.
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Using (3.54) we find that∫∫
Πn,l

(1
\
η
(
uκΔt

)
φt +

∑
i

qlκi
(
uκΔt

)
φxi

+ rlκ
(
uκΔt

)
Δφ

)
dt dx

=
1

\

∫
Rd

∫ Δt

0

(
η
(
vnlκ(τ)

)
ϕτ +

∑
i

qlκi
(
vnlκ(τ)

)
ϕxi

+ rlκ
(
vnlκ(τ)

)
Δϕ

)
dτ dx

≥ −
∫∫
Πn,l

η′
(
uκΔt

)
glκ

(
UΔt

)
φ dt dx

+
1

\

∫
Rd

(
η
(
uκΔt(x, tn,l)

)
φ (x, tn,l)− η

(
uκΔt(x, tn,l−1)

)
φ (x, tn,l−1)

)
dx

+

∫∫
Πn,l

(1
\
EI
lκφt +

∑
i

φxi
EII

lκ
i −

∑
i,j

φxixj
EIII

lκ
ij − φEIV

lκ
)
dt dx

− 1

\

∫
Rd

EI
lκ (x, tn,l)φ (x, tn,l) dx

≥ −
∫∫
Πn,l

η′
(
uκΔt

)
glκ

(
UΔt

)
φ dt dx

+
1

\

∫
Rd

(
η
(
uκΔt(x, tn,l)

)
φ (x, tn,l)− η

(
uκΔt(x, tn,l−1)

)
φ (x, tn,l−1)

)
dx

−
∫∫
Πn,l

(1
\
|φt| dµI

lκ +
∑
i

|φxi
| dµII

lκ
i +

∑
i,j

∣∣φxixj

∣∣ dµIII
lκ
ij + |φ| dµIV

lκ
)

− 1

\

∫
Rd

|φ(x, tn,l)| dµI
lκ(x, tn,l).

The first equality follows using the change of variables

τ = \ (t− tn,l−1) .

Furthermore, to deduce the first inequality, we have used that V nl(t) satisfies
(3.54) in the sense of distributions on Rd × (0,Δt), with initial data

UΔt

∣∣
τ=0

= Un,l−1

taken in the strong L1
loc sense. Furthermore, the error EI

lκ vanishes at τ = 0. If we
first sum the above inequality over l = 1, . . . , \ and then sum over n = 0, . . . , N−1,
the resulting inequality takes the form (recall (3.56) and (3.58))∫∫

ΠT

(1
\
η (uκΔt)φt +

Z∑
l=1

∑
i

χZl q
lκ
i (uκΔt)φxi

+

Z∑
l=1

∑
i

χZl r
lκ
i (uκΔt)φxixi

)
dt dx
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≥ −
∫∫
ΠT

Z∑
l=1

χZl η
′ (uκΔt) g

lκ (UΔt)φ dt dx−
N−1∑
n=0

Z∑
l=1

Enlκ(Δt;φ).

Using that Eκ = \
∑
n,l Enlκ, and rewriting the left-hand side we obtain (3.59). ✷

Remark 3.16. Suppose UΔt → U in L2
loc(ΠT ;RK) and E(Δt;φ) → 0 as Δt→ 0.

Now since2 χZl (x, t)⇀ 1/\ in L2 (ΠT ), we get∫∫
ΠT

χZlq
lκ
i (uκΔt)φxi

dt dx→ 1

\

∫∫
ΠT

qlκi (uκ)φxi
dt dx,

∫∫
ΠT

χZlr
lκ
i (uκΔt)φxixi

dt dx→ 1

\

∫∫
ΠT

rκi (u
κ)φxixi

dt dx.

Furthermore, we easily get∫∫
ΠT

χZlη
′ (uκΔt) g

lκ(UΔt)φ dt dx→ 1

\

∫∫
ΠT

η′ (uκ) glκ(U)φ dt dx.

Passing to the limit in (3.59), with (3.37) in mind and recalling that uκΔt(·, 0) → uκ0
strongly in L1

loc(R), we obtain (3.30) and thus that U satisfies the entropy condition
(see also Corollary 3.19 below).

Our next result yields a more precise estimate of the entropy discrepancy as-
sociated with UΔt:

Theorem 3.17 (Entropy Estimate). Fix κ = 1, . . . ,K. Suppose t ;→ uκΔt(t)
is locally uniformly L1-continuous, i.e., it has a uniform temporal modulus of
continuity ωκr,T so that∫

Br

|uκΔt(x, t+ τ)− uκΔt(x, t)| dx ≤ ωκr,T (|τ | ;uκΔt),

where ωκr,T does not depend on Δt or t ∈ [0, T ]. Furthermore, suppose uκΔt is
locally integrable, ∫

Br

|uκΔt(x, t)| dx ≤ Constr,T ,

for some constant not depending on Δt or t ∈ [0, T ]. Then the entropy discrepancy
associated with uκΔt is bounded as follows:∫∫

ΠT

(
η (uκΔt)φt +

∑
i

qκi (u
κ
Δt)φxi

+ rκ (uκΔt)Δφ
)
dt dx (3.60)

2We say that φn ⇀ φ in L2 if
∫
φnψ dx→ ∫

φψ dx for all ψ ∈ L2.



48 3 General Convergence Theory

≥ −
∫∫
ΠT

η′ (uκΔt) g
κ(UΔt) dt dx−

∫
Rd

η (uκΔt(x, 0))φ(x, 0) dx

− Eκ(Δt;φ)− C T ωκR,T (Δt;u
κ
Δt), κ = 1, . . . ,K,

for some R > 0 depending on suppx(φ) and some constant C depending in partic-
ular on η′′ and the derivatives of φ up to third order, but not on Δt.

Remark 3.18. If UΔt = (u1Δt, . . . , u
K
Δt) satisfies (3.45)–(3.47), then by the Kružkov

interpolation lemma, Lemma 3.4, UΔt satisfies the assumptions of the theorem.

Proof. We are going to use the inequality (3.59) to estimate the entropy discrep-
ancy in (3.30). We start by estimating the term Iκ1 in (3.59) for fixed κ = 1, . . . ,K.
Writing

(qlκi (uκΔt)φxi
)(t) =

(
qlκi (uκΔt)φxi

)
(tn)

+
[(
qlκi (uκΔt)φxi

)
(t)− (

qlκi (uκΔt)φxi

)
(tn)

]
,

we can write Iκ1 as sum of two terms. The first term integrates to zero since

Z∑
l=1

∫ T

0

(
χZl −

1

\

)
dt = 0,

and thus

Iκ1 =
∑
n,i,l

(
\

∫∫
Πn,l

qlκi (uκΔt)φxi
dt dx−

∫∫
Πn

qlκi (uκΔt)φxi
dt dx

)

=
∑
n,i,l

(
\

∫∫
Πn,l

[(
qlκi (uκΔt)φxi

)
(t)− (

qlκi (uκΔt)φxi

)
(tn)

]
dt dx

−
∫∫
Πn

[(
qlκi (uκΔt)φxi

)
(t)− (

qlκi (uκΔt)φxi

)
(tn)

]
dt dx

)
=: Iκ11 − Iκ12.

Let R > 0 be the smallest integer such that supp(φ( · , t)) ⊂ BR for all t ∈ [0, T ].
We then proceed as follows:

|Iκ11| ≤
∣∣∣∣∣∑
n,i,l

\

∫∫
Πn,l

[
qlκi (uκΔt(t))− qlκi (uκΔt (tn))

]
φxi

(t) dt dx

∣∣∣∣∣
+

∣∣∣∣∣∑
n,i,l

\

∫∫
Πn,l

[φxi
(t)− φxi

(tn)] q
lκ
i (uκΔt (tn)) dt dx

∣∣∣∣∣
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≤
∑
n,i,l

\
Δt

\
‖qκ‖Lip ωκR,T (Δt;uκΔt) ‖φxi

‖∞

+
∑
n,i,l

\
Δt

\
‖φxit‖∞ Δt

∫
BR

∣∣qlκi (uκΔt (x, tn))
∣∣ dx

≤ C1

(
φx, ‖qκ‖Lip

)
ωκR,T (Δt;u

κ
Δt)T + C2

(
φxt, R, T, ‖qκ‖Lip

)
Δt T,

where we have taken into account that Qli(0) = 0 so that∫
BR

∣∣qlκi (uκΔt (x, tn))
∣∣ dx ≤ ‖qκ‖Lip

∫
BR

|uκΔt(x, tn)| dx ≤ ‖qκ‖Lip ConstR,T .

Summing up, we have proved that

|Iκ11| ≤ C̃
(
φx, φxt, R, T, ‖qκ‖Lip

) (
ωκR,T (Δt;u

κ
Δt) + Δt

)
T.

Estimating Iκ12 similarly, we get the desired estimate on Iκ1 :

|Iκ1 | ≤ C
(
φx, φxt, R, T, ‖qκ‖Lip

)
ωκR,T (Δt;u

κ
Δt)T,

for some constant C > 0 not depending on Δt. Similar estimates for I2 and I3
yield

|Iκ2 | ≤ C
(
φxx, φxxt, R, T, ‖rκ‖Lip

)
ωκR,T (Δt;u

κ
Δt)T,

|Iκ3 | ≤ C
(
φ, φt, R, T, ‖η′‖Lip , ‖gκ‖Lip

)
ωκR,T (Δt;u

κ
Δt)T,

for constants C > 0 not depending on Δt. ✷

The next corollary follows immediately from the above theorem:

Corollary 3.19. Suppose that UΔt → U ∈ L∞ (
Rd;RK

)
in L1

loc (ΠT ) as Δt → 0
and that Eκ(Δt;φ) → 0, κ = 1, . . . ,K, as Δt→ 0 for all nonnegative test functions
φ ∈ C∞

0 (ΠT ). Assume that ∇xA
κ(uκ) ∈ L2(ΠT ), for κ = 1, . . . ,K. Then the limit

U is an entropy weak solution of the Cauchy problem (3.26)–(3.27).

Remark 3.20. If we use exact solution operators, the error E is identically zero
and hence the semi-discrete product of the solution operators converges to the
unique entropy solution.

Remark 3.21. Corollary 3.19 also holds for systems of equations that possess
smooth entropies and entropy-fluxes. Furthermore, independently of existence of
entropies and entropy-fluxes, the proof can easily be modified to show that the
limit is at least a weak solution. In other words, the above reasoning can be used
to prove Lax–Wendroff type theorems. See, e.g., [121] for an example of this. For
hyperbolic problems, the entropy consistency of operator-splitting methods has
also been a topic of study in [52].
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Remark 3.22. Precise entropy estimates for specific operator-splitting methods
applied to specific convection-diffusion equations have been obtained earlier in
[97, 119, 146]. As we will see later, the generality of Theorem 3.17 allows us to
derive the entropy estimates obtained in these works, as well as new ones relevant
to this book.



4

Convergence Results for Convection-Diffusion
Problems

In this chapter we demonstrate how the theory developed in Chapter 3 works in
practice by applying it to the one-dimensional convection-diffusion problem

ut + f(u)x = A(u)xx, u|t=0 = u0, (4.1)

where A′ ≥ 0, A(0) = 0. This is a very general equation that may have nonlinear-
ities in both the convective and the diffusive terms. Moreover, since A′(u) is not
bounded away from zero, the parabolic equation may contain hyperbolic regions;
the conservation law ut + f(u)x = 0, for instance, is a special case of (4.1). The
interplay between the nonlinearities gives rise to a rich set of intricate phenom-
ena, to which we will return later when we discuss the mathematical theory. For
simplicity, we will in all the following examples assume simple outflow boundary
conditions, unless stated otherwise.

It is difficult to design a single robust scheme that can handle all possible
balances of the convective and diffusive effects in (4.1). For instance, if the equation
is dominated by convection, nonlinearities in the flux function may lead to solutions
with very steep gradients or even discontinuous solutions if the equation contains
hyperbolic regions. As a result, it is natural to try to utilize efficient methods
developed for hyperbolic conservation laws. A straightforward way to do this is
through operator splitting.

To prove that approximate solutions generated by a certain operator splitting
converge to the correct solution of (4.1), we must go through the following steps:
First, the three basic estimates (3.45), (3.46), and (3.47) are established, which
imply convergence to a limit function by the use of Theorem 3.13. Then we demon-
strate that the entropy condition (3.30) holds in the limit by proving that the term
−E(Δt;φ) in the entropy discrepancy (3.60) tends to zero with the discretization
parameters. Finally, we verify that the L2 estimate (3.31) is satisfied in the limit.

In the last section of the chapter we discuss the practical applicability of such
a splitting in terms of several examples. Apart from backing up the theoretical
analysis by two examples, we will elaborate on the error mechanisms associated
with viscous splitting. In particular we show certain deficiencies arising due to
local entropy loss introduced in the hyperbolic steps and demonstrate how these
shortcomings can be amended to give highly efficient numerical schemes capable
of handling different balances of nonlinear convective and diffusive terms.
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4.1 A semi-discrete splitting method

In Examples 2.4 and 2.5 in Chapter 2 we computed approximate solutions to two
convection-diffusion equations of the form (4.1) by splitting them into a convective
and a diffusive part. That is, let Stv0 denote the solution operator associated with
the conservation law vt + f(v)x = 0 with initial data v|t=0 = v0. Similarly,
we denote by w = Htw0 the weak solution of the nonlinear heat equation wt =
A(w)xx, assuming that A satisfies (3.12). Then the simplest viscous splitting reads

u(x, t) ≈ [HΔt SΔt

]n
u0, t = nΔt. (4.2)

This splitting is often referred to as the Godunov splitting and is formally only first
order. As an alternative to (4.2), we showed that we can use a Strang splitting,

u(x, t) ≈ [HΔt/2 SΔtHΔt/2

]n
u0, t = nΔt, (4.3)

which has formal order 2. Conceptually, it does not matter in which order the
two operators are applied in the two splittings — in actual computations it does.
The hyperbolic operator St tends to create discontinuities and should therefore be
applied before the parabolic operator Ht.

To prove convergence of the semi-discrete splittings by the use of Theorem 3.13,
we start by observing that the two suboperators St and Ht satisfy the three as-
sumptions (3.49)–(3.51) in Lemma 3.12. Indeed, assuming v0 to be bounded,
integrable, and of finite total variation, we have that St satisfies the following four
estimates (see, e.g., [126, 201])

‖Stv0‖L∞(R) ≤ ‖v0‖L∞(R) ,

‖Stv0( · + y)− Stv0‖L1(R) ≤ |y|T.V. (v0) ,
T.V. (Stv0) ≤ T.V. (v0) ,

‖Stv0 − Ssv0‖L1(R) ≤ |t− s|T.V. (v0) ‖f‖Lip .

(4.4)

Similar estimates can be proved for Ht (see, e.g., [50, 271])

‖Htw0‖L∞(R) ≤ ‖w0‖L∞(R) ,

‖Htw0( · + y)−Htw0‖L1(R) ≤ |y|T.V. (w0) ,

T.V. (Htw0) ≤ T.V. (w0) ,

‖Htw0 −Hsw0‖L1(R) ≤ O(
√
|t− s|),

(4.5)

whenever the initial data w0 is bounded, integrable and of finite total variation.
Furthermore, we have (see, e.g., [50, 271])

−
∫ t

s

∫
R
(A(w(x, r))x)

2 dx dr =

∫
R
B(w(x, t)) dx−

∫
R
B(w(x, s)) dx (4.6)
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where we have introduced the function

B(w) =

∫ w

0

A(v) dv, (4.7)

which is nondecreasing since A′(v) is nonnegative and A(0) = 0.
We can now state the main result of this section in terms of the following

theorem:

Theorem 4.1. Suppose u0 ∈ L1(R) ∩ L∞(R) ∩ BV and f,A ∈ Liploc(R) with
A′ ≥ 0, A(0) = 0. Then the semi-discrete viscous splitting methods (4.2) and
(4.3) converge to an entropy weak solution of (4.1).

Proof. Estimates (4.4) and (4.5) show that the operators St and Ht satisfy the
conditions of Lemma 3.12. Thus Theorem 3.13 implies that uΔt converges in
L1
loc(ΠT ) to some function u in L∞. For exact solution operators, St and Ht, the

error term E is absent. If we now can prove that A(u)x ∈ L2(ΠT ) (i.e., (3.31)), it
will follow from Corollary 3.19 that u is the entropy solution. To verify that (3.31)
is satisfied, we define a new time interpolant ũΔt by

ũΔt(x, t) = [Ht−tn ◦ SΔt]u
n, t ∈ [tn, tn+1).

This function is close to uΔt in the sense that for t ∈ [tn, tn,1) (recall that tn,1 =
(n+ 1

Z )Δt) we have

‖uΔt(t)− ũΔt(t)‖L1(R) =

∫ ∣∣S2(t−tn)u
n −Ht−tnSΔtu

n
∣∣ dx

≤
∫ ∣∣S2(t−tn)u

n − SΔtu
n
∣∣ dx

+

∫
|Ht−tnSΔtu

n − SΔtu
n| dx

≤ ‖f‖Lip T.V. (u)Δt+O(
√
Δt).

Similarly, for t ∈ [tn,1, tn+1) we find

‖uΔt(t)− ũΔt(t)‖L1(R) =

∫ ∣∣H2(t−tn,1)u
n,1 −Ht−tnu

n,1
∣∣ dx ≤ O(

√
Δt),

where un,1 = SΔtu
n. Thus

‖uΔt(t)− ũΔt(t)‖L1(R) = O(
√
Δt), ‖uΔt − ũΔt‖L1(ΠT ) = O(

√
Δt).

Furthermore, using that uΔt and ũΔt are bounded, we see that

‖uΔt − ũΔt‖L2(ΠT ) = O(
√
Δt).
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Next we want to prove that A(ũΔt)x ∈ L2(ΠT ). From (4.6) we find

−
∫∫

ΠT

(
A(ũΔt)x

)2
dt dx =

∑
n

∫
R

∫ tn+1

tn

(
A(ũΔt)x

)2
dt dx

=
∑
n

∫
R

(
B(un+1)−B(un,1)

)
dx

=
∑
n

∫
R

[(
B(un+1)−B(un)

)
+
(
B(un)−B(un,1)

)]
dx

=

∫
R

(
B(uN )−B(u0)

)
dx−

∑
n

∫
R

(
B(un,1)−B(un)

)
dx

=: I1 + I2.

Since ũΔt satisfies (3.45), we have that

|I1| ≤
(

sup
|u|≤M

A(u)
)∫

R

(|u(x, T )|+ |u(x, 0)|) dx ≤ C <∞,

|I2| ≤
(

sup
|u|≤M

A(u)
)∑

n

∫
R
|SΔtu

n − un| dx ≤ C
∑
n

Δt ≤ C · T <∞,

(4.8)

where we for the moment have set M = ‖ũΔt‖∞. Thus A(ũΔt)x ∈ L2(ΠT ) uni-
formly in the discretization parameter Δt. From this, together with the already
known fact that ũΔt → u a.e. in ΠT , we conclude that

A(ũΔt)x ⇀ A(u)x in L2(ΠT ) as Δt→ 0.

Hence the limit function u satisfies A(u)x ∈ L2(ΠT ), which proves that u is an
entropy weak solution. ✷

Convergence of the semi-discrete viscous splitting method was established in
[145, 146] for the non-degenerate case where A′(u) > 0 and in [97] for the strongly
degenerate case where A′(u) may be zero on intervals in solution space.

Although not necessary for proving that u is an entropy weak solution, it is
possible to obtain refined estimates and compactness properties of A(ũΔt), which
will be the topic of the remaining part of this subsection. We start by investigating
the spatial modulus of continuity in L2 of A(ũΔt). To this end, we calculate that∫∫

ΠT

(
A
(
ũΔt(x+ y, t)

)−A
(
ũΔt(x, t)

))2

dx dt

=

∫∫
ΠT

(∫ x+y

x

A
(
ũΔt(z, t)

)
z
dz

)2

dx dt

≤ |y|
∫∫

ΠT

∫ x+y

x

(
A
(
ũΔt(z, t)

)
z

)2
dz dx dt
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= |y|
∫∫

ΠT

∫ z−y

z

(
A
(
ũΔt(z, t)

)
z

)2
dx dt dz

= |y|2
∫∫

ΠT

(
A
(
ũΔt(x, t)

)
x

)2
dx dt,

which implies the spatial modulus

‖A(ũΔt( · + y))−A(ũΔt)‖L2(ΠT ) ≤ |y| ‖A(ũΔt)x‖L2(ΠT ) . (4.9)

To determine the temporal modulus of continuity we recall that A is nondecreasing,
so that (A(u)−A(v))(u− v) ≥ 0. Thus∫∫

ΠT

(
A
(
ũΔt(x, t+ τ)

)−A
(
ũΔt(x, t)

))2

dx dt

≤ ‖A‖Lip
∫∫

ΠT

[
A
(
ũΔt(x, t+ τ)

)−A
(
ũΔt(x, t)

)][
ũΔt(x, t+ τ)− ũΔt(x, t)

]
dx dt

≤ ‖A‖Lip
∫∫

ΠT

[
A
(
ũΔt(x, t+ τ)

)−A
(
ũΔt(x, t)

)] ∫ t+τ

t

∂tũΔt(x, s) ds dx dt

= ‖A‖Lip
∫∫

ΠT

[
A
(
ũΔt(x, t+ τ)

)−A
(
ũΔt(x, t)

)] ∫ t+τ

t

A
(
ũΔt(x, s)

)
xx
ds dx dt

= ‖A‖Lip
∫∫

ΠT

[
A
(
ũΔt(x, t+ τ)

)−A
(
ũΔt(x, t)

)] ∫ τ

0

A
(
ũΔt(x, s+ t)

)
xx
ds dx dt

= −‖A‖Lip
∫∫

ΠT

∫ τ

0

(
A
(
ũΔt(x, t+ τ)

)
x
A
(
ũΔt(x, s+ t)

)
x

−A
(
ũΔt(x, t)

)
x
A
(
ũΔt(x, s+ t)

)
x

)
ds dx dt

≤ ‖A‖Lip
∫ τ

0

(∥∥A(ũΔt( · + τ)
)
x

∥∥
L2(ΠT )

∥∥A(ũΔt( · + s)
)
x

∥∥
L2(ΠT )

+
∥∥A(ũΔt)x∥∥L2(ΠT )

∥∥A(ũΔt( · + s)
)
x

∥∥
L2(ΠT )

)
ds

≤ 2 |τ | ‖A‖Lip ‖A(ũΔt)x‖2L2(ΠT ) .

Thus
‖A(ũΔt( · + τ))−A(ũΔt)‖L2(ΠT ) ≤ 2

√
|τ | ‖A(ũΔt)x‖L2(ΠT ) .

Applying the Kolmogorov compactness criterion, Lemma 3.1, to the sequence
{A(ũΔt)} (indexed by the discretization parameter Δt) in L2(ΠT ) we conclude
that there exists a subsequence such that A(ũΔt) → Ā in L2(ΠT ) as Δt→ 0. The
estimate∥∥A(u)− Ā

∥∥
L2(ΠT )

≤ ‖A‖Lip ‖u− ũΔt‖L2(ΠT ) +
∥∥A(ũΔt)− Ā

∥∥
L2(ΠT )

shows that A(u) ∈ L2(ΠT ). Finally,

lim
Δt→0

∫∫
ΠT

A(ũΔt)φx dx dt =

∫∫
ΠT

A(u)φx dx dt, φ ∈ C∞
0 (R2),



56 4 Convergence Results for Convection-Diffusion Problems

shows that indeed A(u)x ∈ L2(ΠT ). Hence, (3.31) is satisfied and the approximate
solution generated by (4.2) converges to an entropy weak solution of (4.1).

This viscous splitting approach can easily be extended to multi-dimensional
equations as described in, e.g., [119, 120, 145]. Namely, consider the equation

ut +
∑
i

fi(u)xi
= ΔA(u), u|t=0 = u0. (4.10)

Let u = Dl
tu0 denote the solution of the one-dimensional problems

ut + fl(u)xl
= A(u)xlxl

, u|t=0 = u0, l = 1, . . . , d.

Then using dimensional splitting as introduced in Examples 2.2, 2.3, and 2.7, gives
rise to the splitting scheme

un+1 =
(Dd

Δt ◦ · · · ◦ D1
Δt

)
un, u0 = u0,

where each one-dimensional operator Dl
t can be approximated using the viscous

splitting (4.2). Alternatively, let u = Sltu0 denote the solution of

ut + fl(u)xl
= 0, u|t=0 = u0, l = 1, . . . , d,

and let u = Htu0 denote the solution of

ut = ΔA(u), u|t=0 = u0.

Another possible splitting method then reads

un+1 =
(HΔt ◦ SdΔt ◦ · · · ◦ S1

Δt

)
un, u0 = u0.

Here Ht can either be constructed directly or by using dimensional splitting as in
Example 2.2.

Convergence of these semi-discrete splitting methods for (4.10), can be proved
along the lines that we used for the one-dimensional algorithms. A similar analysis
can be performed for the fully discrete splittings introduced in the next section.
Dimensional splitting for hyperbolic problems is discussed and analyzed in detail
in Chapter 5.

4.2 A fully discrete splitting method

To obtain a numerical method, we must approximate each of the two suboperators
St and Ht by appropriate numerical schemes. A very efficient splitting method
is obtained by combining an unconditionally stable front-tracking method, which
will be introduced below and discussed in more detail in Appendix A.7, for the



4.2 A fully discrete splitting method 57

hyperbolic step with a standard implicit finite-difference method for the (strongly
degenerate) parabolic operator. The corresponding numerical method will be very
time efficient for all problems having an inherent dynamics that allows the use
of large time-steps. The front-tracking method gives accurate representation and
sharp resolution of possible discontinuities in the hyperbolic step, and thus provides
a good initial guess for the implicit method, which will therefore converge much
faster in case of nonlinear diffusion. Fully discrete viscous splitting methods based
on front tracking have been successfully used in a number of works, see [43, 93,
97, 100, 119, 120, 140–143, 145, 146].

Operator splitting for convection-diffusion equations involves parabolic equa-
tions, which often are (strongly) degenerate. In this book we will rely only on very
simple finite-difference schemes to approximate degenerate parabolic equations
[96, 98, 99, 147]. Numerical methods for uniformly elliptic/parabolic equations is
a traditional field and numerous textbooks exist [40, 101, 104, 112, 129, 136, 154,
209, 230, 241, 247, 259–261, 269]. Besides finite-difference schemes, other classes of
numerical methods have been developed recently for strongly degenerate parabolic
equations, cf. for example [6, 32, 51, 60, 102, 111, 164, 207, 216, 217].

When considering fully discrete methods, we shall view the approximations
either as piecewise constant functions, or as members of \p spaces. By a grid
{iΔx}, i ∈ Z, we mean grid cells that are intervals Ii = ((i−1/2)Δx, (i+1/2)Δx].
We also have the time intervals, In = [tn, tn+1) with tn = nΔt for n = 0, 1, 2, . . ..
A sequence {Ui}i∈Z ∈ \p can be identified with the piecewise constant function

U(x) =
∑
i

UiχIi(x).

We use a uniform grid defined by the grid size Δx > 0, and let π be the usual
first-order projection (grid block averaging) operator defined on this grid, i.e.,
π : L1(R) → \∞, given by

(πv)i =
1

Δx

∫
Ii

v(x) dx.

Let SΔx,δ
t denote the front-tracking operator S̃δt followed by a projection onto the

grid {iΔx} and Hk,Δx
t the operator associated with the finite-difference scheme

wn+1
i −µθ [A(wn+1

i−1

)− 2A
(
wn+1
i

)
+A

(
wn+1
i+1

)]
= wni + µ(1− θ)

[
A
(
wni−1

)− 2A
(
wni

)
+A

(
wni+1

)]
,

(4.11)

for n ≥ 0, and w0
i = u0i for i ∈ Z. Here, θ ∈ [0, 1] and µ = τ/Δx2, for τ > 0.

Then the fully discrete splitting reads

un+1 =
[HΔx

Δt ◦ SΔx,δ
Δt

]
un, u0 = πu0. (4.12)

In a splitting like this, the two substeps will typically have different restrictions
on the time-step due to requirements of stability and accuracy. From a numerical
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point of view it is therefore feasible to use a variable splitting step, i.e., one could
replace Δt by Δtn. For the numerical examples presented later in this book, we
adopt the convention that the splitting step is determined in terms of the CFL
number for a convective suboperator. This means that the parabolic substep may
consist of several steps of the finite-difference scheme, i.e., Δt =Mτ for a certain
integer M ≥ 1, in order to satisfy stability restrictions. In the analysis, however,
we only consider fixed splitting steps to simplify the notation.

The front-tracking method for scalar conservation laws is based on first replac-
ing the flux function by a continuous and piecewise linear approximation and the
initial data by a step function, i.e., a piecewise constant function. Subsequently,
one solves the resulting perturbed problem exactly, see [117, 118, 126] for details.
In this way rarefaction waves are replaced by jump discontinuities. A key prop-
erty of this method is that there will only be finitely many interactions between
all discontinuities globally in time.

Furthermore, let fδ be the piecewise linear approximations to f , and S̃δt the
solution operator associated with the corresponding one-dimensional equation

ut + fδ(u)x = 0.

We shall assume that δ and Δx are related to Δt so that all three tend to zero
together.

For the numerical examples presented in the rest of this chapter, we use the
fully explicit scheme corresponding to θ = 0 as HΔx

Δt , unless stated otherwise.
This is to emphasize simplicity and accuracy at the cost of a somewhat reduced
efficiency. In the analysis in Section 4.2.2, however, we use the general scheme
given in (4.11).

4.2.1 Convergence in the discrete L1 norm. In Section 4.1 (and Exam-
ple 2.5) we established convergence for the semi-discrete splitting. Before going
into a rigorous analysis for the fully discrete splitting (4.12), we will provide nu-
merical data to support the claim that this splitting converges. To this end we
apply the splitting in two cases and study the convergence in the discrete L1 norm.

Example 4.2. Consider Burgers’ equation with viscosity

ut +
(
1
2u

2
)
x
= εuxx, u(x, 0) = u0(x). (4.13)

Here ε is a scaling parameter that gives the relative balance between advective
and viscous forces. We consider the smooth initial data

u0(x) = − sin(πx)χ[−1,1](x).

To maximize computational efficiency it is desirable to use as large splitting steps
as possible due to the unconditionally stable nature of the front-tracking method.

Table 4.1 shows estimated L1-errors and convergence rates obtained through
a grid-refinement study of the operator-splitting scheme. The error is computed
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Figure 4.1. Viscous splitting solutions computed on a grid with 75 grid cells with ε = 0.01.

Table 4.1. Estimated L1-errors and convergence rates at time t = 1.0 for Burgers’
equation with scaling parameter ε = 0.01 and spatial domain [−1.5, 1.5].

Nx ν = 0.25 ν = 1 ν = 4 ν = 16

75 4.86e-02 — 4.29e-02 — 5.85e-02 — — —
150 2.38e-02 1.03 2.08e-02 1.04 2.90e-02 1.01 7.50e-02 —
300 1.21e-02 0.98 1.05e-02 0.98 1.46e-02 0.99 4.41e-02 0.77
600 5.93e-03 1.02 5.19e-03 1.02 7.28e-03 1.00 2.37e-02 0.90

1200 2.91e-03 1.03 2.51e-03 1.05 3.59e-03 1.02 1.15e-02 1.04
2400 1.50e-03 0.96 1.19e-03 1.07 1.76e-03 1.03 5.80e-03 0.99

relative to a fine grid solution at time t = 1.0 calculated with a scheme using
the Engquist–Osher flux function (see (A.31) in Appendix A.6.2) in combination
with a standard central-difference approximation of the second-order term. In the
experiments, the size of the splitting step Δt has been related to the spatial dis-
cretization parameter Δx through the CFL number ν = (Δt/Δx)maxu |u|. The
experiments indicate convergence over a broad range of CFL numbers. Conver-
gence can of course also be observed for CFL numbers larger than 16 on the finer
grids. However, as can be read off from the actual errors, the quality of the split-
ting solution deteriorates as the relative size of the splitting step increases. This
is also illustrated in Figure 4.1.

Proving that our sequence of approximations converges to the true classical
solution u(x, t = 1) is not too difficult since this solution is smooth. Neglecting
a few technicalities, all we need to do is to establish that our approximations are
bounded and have bounded variation. From (4.4) we have that this is true for the
front-tracking subsolution, which is an exact solution of a perturbed hyperbolic
problem, and projecting this onto a regular grid does not alter the fact that the
solution is bounded and has bounded variation. Establishing the same bounds on
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Figure 4.2. Reference solutions at time t = 1.0 for Burgers’ equation (4.14) for diffusion
functions u (left) and A(u) (right).

the finite-difference scheme is a straightforward exercise. Combining the results for
the two subsolutions we obtain boundedness for the sequence of approximations
as in Section 4.1 and hence convergence to the smooth classical solution; see [145]
for a detailed account.

Let us now consider a more difficult example, in which we also allow the diffu-
sion function to be nonlinear.

Example 4.3. Consider the Burgers’ type equation

ut +
(
1
2u

2
)
x
= εA(u)xx, u(x, 0) = − sin(πx)χ[−1,1](x), (4.14)

with diffusion function A(u) given by

A′(u) =

{
0, |u| ≤ 1/4,

1, otherwise.

Figure 4.2 shows solutions of (4.14) at time t = 1.0 compared with solutions
of the classical Burgers’ equation (4.13) for two different values of ε. Burgers’
equation (4.13) is non-degenerate parabolic, and although the solution develops a
sharp gradient in the vicinity of the origin, it remains smooth. Equation (4.14),
on the other hand, degenerates with a hyperbolic region for u ∈ [−1/4, 1/4]. In
the hyperbolic region there are no viscous forces and the solution has developed
a stationary shock at the origin. Notice also the nonsmooth transitions between
the hyperbolic and the parabolic regions at x ≈ ±0.92 for ε = 0.05.

Table 4.2 shows estimated L1-errors and convergence rates obtained through
a grid-refinement study of the operator-splitting scheme for (4.14). As in Ex-
ample 4.2, the operator splitting method converges over a broad range of CFL
numbers, although the quality of the solution decays as ν increases.
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Table 4.2. Estimated L1-errors and convergence rates at time t = 1.0 for (4.14) with
scaling parameter ε = 0.05 and spatial domain [−1.5, 1.5].

Nx ν = 0.25 ν = 1 ν = 4 ν = 16

75 4.42e-02 — 4.36e-02 — 5.78e-02 — — —
150 1.85e-02 1.26 1.80e-02 1.28 2.46e-02 1.23 7.30e-02 —
300 9.59e-03 0.95 9.41e-03 0.93 1.24e-02 0.98 3.73e-02 0.97
600 4.83e-03 0.99 4.80e-03 0.97 6.30e-03 0.98 1.88e-02 0.99

1200 2.30e-03 1.07 2.29e-03 1.07 3.01e-03 1.07 9.07e-03 1.05
2400 8.90e-04 1.37 8.48e-04 1.43 1.27e-03 1.24 4.54e-03 1.00

Once again we have numerical evidence that the operator splitting seems to
converge to some function, which can be verified mathematically through a com-
pactness argument. However, whereas (4.13) has classical smooth solutions, (4.14)
has discontinuous solutions and hence must take solutions in some weak sense. A
weak solution is not necessarily unique and we will therefore need extra conditions
to single out the unique physical solution. In the next section we will continue to
give a rigorous convergence analysis for the general equation (4.1), which includes
both non-degenerate equations like (4.13) and strongly degenerate equations like
(4.14).

4.2.2 Convergence analysis. Having shown examples that demonstrate that
the fully discrete scheme converges numerically for both smooth and nonsmooth
problems, it is now time to go back to the rigorous mathematical analysis. In the
notation of Chapter 3 we have two solution operators: S1 denotes the approximate
solution operator for the hyperbolic part and S2 denotes the approximate solution
operator for the (degenerate) parabolic part, which we will also refer to as H. The
first operator is defined by letting

S1
t ≡ SΔx,δ

t = π ◦ S̃δt . (4.15)

To define the second operator S2 we view u0 as a point in \1. First we define
Wτ : \1 → \1 by

Wτ (z) = z + µ(1− θ)R(z),

where

(R(z))i = A
(
zi−1

)− 2A
(
zi
)
+A

(
zi+1

)
.

Note that R and Wτ are (Lipschitz) continuous operators since

‖R(z)−R(y)‖ ≤ 4 ‖A‖Lip ‖z − y‖1 ,
‖Wτ (z)−Wτ (y)‖1 ≤

(
1 + 4µ(1− θ) ‖A‖Lip

)
‖z − y‖1 .



62 4 Convergence Results for Convection-Diffusion Problems

For w ∈ \1 we define Tτ (w) to be the solution of

Tτ (w)− µθR (Tτ (w)) = w. (4.16)

Since this is a nonlinear equation in \1 we must show that Tτ is well defined, and
to this end we use Theorem 3.6. First, observe that∑

i

(R(z))i = 0,

and we have already seen that R is Lipschitz continuous. Therefore, in order to
apply Theorem 3.6 it remains to show that −R is accretive. This means showing
that

〈J(z − y),R(z)−R(y)〉 ≤ 0,

for any duality mapping J and all z and y in \1. By (3.8), we have that

〈J(z − y),R(z)−R(y)〉
=

∑
i

sign (zi − yi)

×
(
A(zi−1)−A(yi−1)− 2

(
A(zi)−A(yi)

)
+A(zi+1)−A(yi+1)

)
=

∑
i

sign (zi − yi)
(
A(zi−1)−A(yi−1) +A(zi+1)−A(yi+1)

)
− 2

∑
i

|A(zi)−A(yi)|

≤ 0,

and thus −R is accretive. Hence there exists a unique solution to (4.16). Now we
define HΔx

t (S2 in the notation of Chapter 3) by

HΔx
t u0 = Tt ◦Wtu

0. (4.17)

If we set vn+1 = HΔx
Δt v

n, the componentwise equation for vn is given by (4.11).

A priori estimates. Next, we show that the a priori estimates (3.45)–(3.47) are
satisfied for the approximation defined by

uΔt( · , t) = HΔx
2(t−min{tn,1,t}) ◦ Sδ2(min{t,tn,1}−tn) ◦ (HΔx

Δt ◦ SδΔt
)n
u0 (4.18)

for t ∈ [tn, tn+1). Since S̃δt is an exact solution operator for a perturbed problem
within the same class of first-order conservation laws but with f replaced by fδ,
the solution operator S̃δt satisfies all the a priori estimates (3.45)–(3.47), and even
(4.4) for initial data of finite total variation. This follows from the arguments in
Section 4.1. For the projection operator, it is straightforward to show that

‖πv‖L∞(R) ≤ ‖v‖L∞(R) ,
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‖πv − v‖L1(R) ≤ sup
|ρ|≤Δx

‖v( · + ρ)− v‖L1(R) ≤ ΔxT.V. (v) .

In particular, this means that

Δx
∑
i

∣∣∣(SδΔt (πv))i+1
− (SδΔt (πv))i∣∣∣ ≤ ΔxT.V. (v) . (4.19)

From this and from (4.12) it follows that Sδt satisfies the conditions of Lemma 3.12
if
∥∥fδ∥∥

Lip
is bounded.

To show the estimates for HΔx
Δt , we first note that∑
i

(W(z))i =
∑
i

zi

for z ∈ \1. Furthermore, if the CFL-condition

(1− θ)µ ‖A‖Lip ≤ 1

2
, µ = τ/Δx2 (4.20)

holds, then
∂ (Wτ (z))i

∂zi
≥ 0, and

∂ (Wτ (z))i
∂zi±1

≥ 0.

This implies that Wτ is monotone, i.e.,

‖Wτ (z)‖∞ ≤ ‖z‖∞ , ‖Wτ (z)‖1 ≤ ‖z‖1 , T.V. (Wτ (z)) ≤ T.V. (z) .

Now by Theorem 3.6 we have that

‖Tτ (Wτ (z))‖∞ ≤ ‖Wτ (z)‖∞ ≤ ‖z‖∞ ,

‖Tτ (Wτ (z))‖1 ≤ ‖Wτ (z)‖1 ≤ ‖z‖1 ,
T.V. (Tτ (Wτ (z))) ≤ T.V. (Wτ (z)) ≤ T.V. (z) .

Thus, if τ and θ are such that the CFL-condition (4.20) holds and the initial data
u0 is of bounded variation, then the approximation HΔx

τ u0 is of bounded variation.
Next we show the weak time estimate (3.47). Let 0 ≤ s ≤ t ≤ τ be such that the
CFL-condition (4.20) is satisfied. Then set

u( · , t) = HΔx
t−su( · , s) = HΔx

t−sHΔx
s u0.

Set Ai(t) = A(ui(t)), and for φ ∈ C∞
0 ((−r, r)) define φi = 1

Δx

∫
Ii
φ(x) dx. Then∣∣∣∫ r

−r

(
u(x, t)− u(x, s)

)
φ(x) dx

∣∣∣ = ∣∣∣∑
i

∫
Ii

(
ui(t)− ui(s)

)
φ(x) dx

∣∣∣
=

∣∣∣Δx∑
i

φi
(
ui(t)− ui(s)

)∣∣∣
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=
t− s

Δx2

∣∣∣∣Δx∑
i

φi

[
(1− θ)R(

ui(s)
)
+ θR(

ui(t)
)]∣∣∣∣

=
t− s

Δx2

∣∣∣Δx∑
i

(
φi+1 − φi

)
× [

(1− θ)
(
Ai(s)−Ai−1(s)

)
+ θ

(
Ai(t)−Ai−1(t)

)]∣∣∣
≤ t− s

Δx2
‖A‖Lip

∑
i

∣∣∣∫
Ii

φ(x+Δx)− φ(x) dx
∣∣∣

×
[
(1− θ) |vi(t)− vi−1(t)|+ θ |vi(s)− vi−1(s)|

]
≤ t− s

Δx2
‖A‖Lip

∑
i

(∫
Ii

∫ x+Δx

x

|φ′(y)| dydx
)

×
[
(1− θ) |vi(t)− vi−1(t)|+ θ |vi(s)− vi−1(s)|

]
≤ (t− s) ‖A‖Lip ‖φ′‖L∞((−r,r)) T.V.

(
u0

)
. (4.21)

Hence both operators Sδt and HΔx
t satisfy the conditions of Theorem 3.13, and

therefore we can conclude that there exists a function u ∈ L∞(ΠT ;R) such that
uΔt → u in L1

loc(ΠT ;R) for a subsequence {Δt} (which we do not relabel).
To conclude that the limit u is an entropy solution, it remains to show that

the global error term E , defined by (3.58) and (3.54), converges to zero as Δt→ 0,
and to establish that A(u)x ∈ L2(ΠT ).

Entropy error. We start by estimating the error terms. In the notation of
Chapter 3, v1( · , t) = Sδt u0, and we define w( · , t) to be the entropy solution of the
Cauchy problem

wt + fδ(w)x = 0, w(x, 0) = u0.

That is, v1( · , t) = πw( · , t).
With the notations η(v) = sign(v − k), q(v) = sign(v − k)[f(v) − f(k)], and

qδ(v) = sign(v−k)[fδ(v)−fδ(k)], we have that for a test function φ and for s > 0,∫
R

∫ s

0

(
η(v1)φt + q(v1)φx

)
dt dx+

∫
R
η(u0)φ(x, 0) dx−

∫
R
η
(
v1(x, s)

)
φ(x, s) dx

=

∫
R

∫ s

0

(
η(w)φt + qδ(w)φx

)
dt dx

+

∫
R
η(u0)φ(x, 0)−

∫
R
η
(
w(x, s)

)
φ(x, s) dx

−
∫
R

∫ s

0

(
η(w)− η(v1)

)
φt +

(
qδ(w)− q(v1)

)
φx dt dx

+

∫
R

[
η
(
v1(x, s)

)− η
(
w(x, s)

)]
φ(x, s) dx
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≥ −
∫
R

∫ s

0

(
η(w)− η(πw)

)
φt +

(
qδ(w)− q(πw)

)
φx dt dx

+

∫
R

[
η
(
πw(x, s)

)− η
(
w(x, s)

)]
φ(x, s) dx. (4.22)

Using the notation of (3.54) in Chapter 3, we see that

EI
1 = η(πw)− η(w),

EII
1 =

(
qδ(w)− qδ(πw)

)︸ ︷︷ ︸
EII

1
a

+
(
qδ(v1)− q(v1)

)︸ ︷︷ ︸
EII

1
b

,

EIV
1 = [η (πw)− η(w)] δs(t),

with (possible notational overload) δs(t) denoting the Dirac mass located at t = s.
All the remaining error terms are zero. The error terms EI

1, EII
1
a, and EIV

1 are
similar, and to estimate them we observe that for a Lipschitz continuous function
h we have∫

R

∣∣h((πw)(x, t))− h
(
w(x, t)

)∣∣ dx =
∑
i

∫
Ii

∣∣h(v1i (t))− h
(
w(x, t)

)∣∣ dx
≤ ‖h‖Lip

∑
i

∫
Ii

∣∣∣ 1

Δx

∫
Ii

w(y, t) dy − w(x, t)
∣∣∣ dx

≤ ‖h‖Lip
Δx

∑
i

∫
Ii

∫
Ii

|w(y, t)− w(x, t)| dydx

≤ ‖h‖Lip
Δx

∫
Ii

(
sup

|x−z|≤Δx

∫
R
|w(x, t)− w(z, t)| dx

)
dy

≤ Δx ‖h‖Lip T.V. (w( · , t)) ≤ Δx ‖h‖Lip T.V.
(
u0

)
.

This means that we can define measures bounding EI
1, EII

1
a and EIV

1 by∫
R
dµI

1 =

∫
R
|η(πw)− η(w)| dx ≤ ΔxT.V. (u0) , (4.23)∫

R
dµII

1
a =

∫
R

∣∣qδ(πw)− qδ(w)
∣∣ dx ≤ Δx

∥∥fδ∥∥
Lip

T.V. (u0) , (4.24)∫
R
dµIV

1 =

∫
R

∣∣η((πw)(x, s))− η
(
w(x, s)

)∣∣ dx ≤ ΔxT.V. (u0) . (4.25)

Since EII
1 is applied to φx, we can add an arbitrary constant without changing

EII
1, and therefore we can redefine EII

1
b as

EII
1
b = sign

(
v1 − k

) ((
fδ − f

)
(v1)− (

fδ − f
)
(k)

)
− sign(−k) ((fδ − f

)
(0)− (

fδ − f
)
(k)

)︸ ︷︷ ︸
a constant
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= sign
(
v1 − k

) ((
fδ − f

)
(v1)− (

fδ − f
)
(0)

)
+
[
sign(v1 − k)− sign(−k)] ((fδ − f

)
(v1)− (

fδ − f
)
(0)

)
.

With this definition we can choose the measure dµII
1
b by setting∫

R
dµII

1
b( · , t) =

∫
R

∣∣sign(v1 − k)
(
(f − fδ)(v1)− (f − fδ)(0)

)∣∣ dx
+

∫
R

∣∣sign(v1 − k)− sign(−k)∣∣ ∣∣(f − fδ)(k)− (f − fδ)(0)
∣∣ dx

≤
∫
R

∣∣(f − fδ)(v1)− (f − fδ)(0)
∣∣ dx

+ 2

∫
R
χ|k|≤|v1|

∣∣(f − fδ)(0)− (f − fδ)(k)
∣∣ dx

≤ ∥∥fδ − f
∥∥
Lip

∫
R

∣∣v1(x, t)∣∣ dx
+ 2

∫
R

max
|κ|≤|v1(x,t)|

∣∣(fδ − f)(κ)− (fδ − f)(0)
∣∣ dx

≤ 3
∥∥fδ − f

∥∥
Lip

∫
R

∣∣v1(x, t)∣∣ dx.
We can choose the piecewise linear interpolant fδ such that∥∥fδ − f

∥∥
Lip

≤ Const ‖f‖Lip δ,

and with this choice ∫
R
dµII

1
b ≤ Const ‖f‖Lip δ. (4.26)

Next we must estimate the entropy discrepancy created by HΔx
t , that is, for

any constant k, s ≤ Δt and v2( · , t) = HΔx
t u0 = Tt(Wt(u

0)) we must estimate

A =

∫ s

0

∫
R

[
η(v2)φt − r

(
v2
)
φxx

]
dx dt+

∫
R

[
η
(
u0

)
φ(x, 0)− η

(
v2(x, s)

)
φ(x, s)

]
dx,

(4.27)
where η(v) = |v − k|, r(v) = |A(v)−A(k)|, and φ any nonnegative test function.
We start by utilizing the monotonicity properties of Wt and Tt. For the moment,
we use the notation z ∈ \∞ = {zi}i∈Z, and by z ≤ w we mean that zi ≤ wi for
all i. Also, let a ∨ b = max {a, b} and a ∧ b = min {a, b}, and let Q : \∞ → \∞ be
defined by

(Q(z))i = |A(zi−1)−A(k)| − 2 |A(zi)−A(k)|+ |A(zi+1)−A(k)| .
Hoping not to confuse the reader too much, we use the notation k ∈ \∞ for the
constant sequence {. . . , k, k, k, k, k, . . . }.
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Since Wt is monotone and Wt(k) = k, we have that for w ∈ \1,

Wt (w ∨ k) ≥ Wt(w) ∨ k,
Wt (w ∧ k) ≤ Wt(w) ∧ k.

Subtracting these, we get

Wt (w ∨ k)−Wt (w ∧ k) ≥ |Wt(w)− k| ,
which can be rewritten as

|Wt(w)− k| ≤ |w − k|+ µ(1− θ)Q(w). (4.28)

Also the operator Tt is monotone with Tt(k) = k, therefore for z ∈ \1,

Tt (z ∨ k)− Tt (z ∧ k) ≥ |Tt(w)− k| ,
which can be rewritten as

|z − k|+ µθQ(z) ≥ |Tt(z)− k| . (4.29)

Setting w = u0 in (4.28) and z = Wt(u
0) in (4.29), we get∣∣v2(t)− k

∣∣ ≤ ∣∣u0 − k
∣∣+ µ(1− θ)Q(u0) + µθQ (Wt

(
u0

))
. (4.30)

Using this, we rewrite A in (4.27) as

A =

∫ s

0

∫
R

(
η(v2)− η(u0)

)
φt − r

(
v2(x, t)

)
φxx

− [
η
(
v2(x, s)

)− η
(
u0(x)

)]1
s
φ(x, s) dx dt

=

∫ s

0

∫
R

(
η(v2)− η(u0)

)
φt − r

(
v2(x, t)

)
φxx

− [
η
(
v2(x, s)

)− η
(
u0(x)

)
]
1

s
φ(x, t) dx dt

+

∫ s

0

∫
R

[
η
(
v2(x, s)

)− η
(
u0(x)

)]1
s

[
φ(x, s)− φ(x, t)

]
dx dt

≥ −
∫ s

0

∫
R

∣∣v2(t)− u0
∣∣φt dx dt︸ ︷︷ ︸

B

−
∫ s

0

∫
R
r
(
v2(x, t)

)
φxx(x, t)− 1

Δx2
[
(1− θ)Q(u0) + θQ(z)

]
φ(x, t) dx dt︸ ︷︷ ︸

C

+

∫ s

0

∫
R

[
η
(
v2(x, s)

)− η
(
u0(x)

)]1
s

∫ s

t

φt(x, τ) dτ dx dt︸ ︷︷ ︸
D

,
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where we recall that z = Ws(u
0) and µ = s/Δx2, and we have set

Q(u)(x) =
∑
i

(Q(u))i χIi(x).

Now we can bound B by

B ≤
∫ s

0

∫
R

∣∣v2(x, t)− u0(x)
∣∣ |φt| dx dt ≤ sω(s; v2) ‖φt‖L∞(R×[0,s]) (4.31)

by (4.21) and Remark 3.5. We also find that

D ≤
∫ s

0

∫
R

∣∣v2(x, s)− v2(x, 0)
∣∣ 1
s

∫ s

t

|φt(x, τ)| dτ dx

≤ 1

2
s ω(s; v2) ‖φt‖L∞(R×[0,s]) .

Therefore, keeping in mind that B +D = 〈EI
2, φt〉 in the notation of Chapter 3,

we can choose the measure dµI
2 bounding EI

2 as dµI
2 =

∣∣v2( · , s)− u0
∣∣. Then∫

R
dµI

2 ≤ ω(s; v2) ≤ ConstΔt1/2. (4.32)

To estimate C, for w = z or w = u0 we calculate

I(w;φ) =

∫
R
r
(
v2(x, t)

)
φxx(x, t)− 1

Δx2
Q(w)φ(x, t) dx

=
∑
i

[
r
(
v2i (t)

) [
φx

(
xi+1/2, t

)− φx
(
xi−1/2, t

)]
− 1

Δx

[(
r (wi+1)− r (wi)

)−(
r (wi)− r (wi−1)

)]
φi(t)

]
= −

∑
i

[[
r
(
v2i+1(t)

)− r
(
v2i (t)

)]
φx

(
xi+1/2, t

)
− [

r (wi+1)− r (wi)
]φi+1(t)− φi(t)

Δx

]
= −

∑
i

[[
r
(
v2i+1(t)

)− r (wi+1)
]− [

r
(
v2i (t)

)− r (wi)
]]
φx

(
xi+1/2, t

)
−
∑
i

[
φx

(
xi+1/2, t

)− φi+1(t)− φi(t)

Δx

] [
r (wi+1)− r (wi)

]
=

∫
R

[
r
(
v2(x, t)

)− r(w(x))
]
φxx(x, t) dx

−
∑
i

(
φx

(
xi+1/2, t

)− 1

Δx2

∫
Ii

φ(y +Δx, t)− φ(y, t) dy

)
× [

r (wi+1)− r (wi)
]
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=

∫
R

[
r
(
v2(x, t)

)− r(w(x))
]
φxx(x, t) dx

− 1

Δx2

∑
i

(∫
Ii

∫ y+Δx

y

φx
(
xi+1/2, t

)− φx(α, t) dαdy

)
×[
r (wi+1)− r (wi)

]
=

∫
R

[
r
(
v2(x, t)

)− r(w(x))
]
φxx(x, t) dx

− 1

Δx2

∑
i

(∫
Ii

∫ y+Δx

y

∫ xi+1/2

α

φxx(β, t) dβdαdy

)[
r (wi+1)− r (wi)

]
.

Hence

|I(w;φ)| ≤ ‖A‖Lip
∫
R

∣∣v2(x, t)− w(x)
∣∣+ |w(x+Δx)− w(x)| dx ‖φxx‖L∞(R×[0,s]) .

Therefore, with C = 〈EIII
2, φxx〉 in the notation of Chapter 3, and in view of the

relation v2 − µθQ(v2) = z, we get

C ≤ θ |I (z;φ)|+ (1− θ)
∣∣I (u0;φ)∣∣

≤ ‖A‖Lip ‖φxx‖L∞(R×[0,s])

∫
R
θ
∣∣v2(x, t)− z(x)

∣∣+ (1− θ)
∣∣v2(x, t)− u0(x)

∣∣
+ θ |z(x+Δx)− z(x)|
+ (1− θ)

∣∣u0(x+Δx)− u0(x)
∣∣ dx

≤ ‖A‖Lip ‖φxx‖L∞(R×[0,s])

∫
R
2θ(1− θ)µ ‖A‖Lip |z(x+Δx)− z(x)|

+ (1− θ)
∣∣v2(x, t)− u0(x)

∣∣
+
∣∣u0(x+Δx)− u0(x)

∣∣ dx
≤ ‖A‖Lip ‖φxx‖L∞(R×[0,s])

∫
R

(
2θ(1− θ)µ ‖A‖Lip + 1

) ∣∣u0(x+Δx)− u0(x)
∣∣

+ (1− θ)
∣∣v2(x, t)− u0(x)

∣∣ dx
≤ ‖A‖Lip ‖φxx‖L∞(R×[0,s])

×
[(
2θ(1− θ)µ ‖A‖Lip + 1

)
ν(Δx;u0) + (1− θ)ω(v2; t)

]
.

Hence, the Radon measure bounding EIII
2 can be chosen such that∫

R
dµIII

2 ≤ Const
(
Δx+Δt1/2

)
. (4.33)

We have now shown that all the entropy discrepancies are bounded by finite Radon
measures that tend to zero with the discretization parameters δ, Δx, and Δt. To
conclude that the limit u is a weak solution we must show that ∂xA(u) ∈ L2(ΠT ).
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Verification of ∂xA(u) ∈ L2(ΠT ). We will show this by proving that∫ T

0

∫
R

(
A
(
u(x+ y, t)

)−A
(
u(x, t)

))2

dx dt ≤ Const y2.

To this end, we introduce the auxiliary function

ũΔt(x, t) = HΔx
t−tn ◦ SδΔtuΔt( · , tn) for t ∈ [tn, tn+1). (4.34)

Following the argument on page 53, we can show that this auxiliary function is
close to uΔt since if t ∈ [tn, tn+1),

‖ũΔt( · , t)− uΔt( · , t)‖L1(R) ≤ Const

{√
t− tn, if t ∈ [tn,1, tn+1),

Δt+
√
t− tn, if t ∈ [tn, tn,1).

Therefore limΔt→0 ũΔt = u.
First, we fix a real positive number y and an integer jy such that

y = jyΔx+ h, where jy ≥ 0 and 0 ≤ h < Δx.

Then {
x ∈ [

xi−1/2, xi−1/2 +Δx− h
) ⇒ x+ y ∈ Ii+jy ,

x ∈ [
xi+1/2 − h, xi+1/2

) ⇒ x+ y ∈ Ii+jy+1.

Henceforth, we will use the following shorthand notation: z = SδΔtun, w = WΔt(z),
and un+1 = v = TΔt(w). Observe now that if x ∈ Ii and y ∈ Ij then

A
(
v(x+ y)

)−A
(
v(x)

)
= A

(
vi+j

)−A
(
vi
)
=

i+j−1∑
k=i

[
A
(
vk+1

)−A
(
vk
)]
.

Squaring the above we find that

[
A
(
v(x+ y)

)−A
(
v(x)

)]2 ≤ (j − 1)

i+j−1∑
k=i

[
A
(
vk+1

)−A
(
vk
)]2

. (4.35)

Set

j(x) =

{
jy, if x ∈ [

xi−1/2, xi−1/2 +Δx− h
)
,

jy + 1, if x ∈ [
xi+1/2 − h, xi+1/2

)
.

Integrating (4.35) with respect to x gives∫
R

[
A(v

(
x+ y)

)−A
(
v(x)

)]2
dx

≤
∑
i

∫
Ii

(
j(x)− 1

)i+j(x)−1∑
k=i

[
A
(
vk+1

)−A
(
vk
)]2

dx
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=
∑
i

(∫ xi+1/2−h

xi−1/2

(jy − 1)

i+jy−1∑
k=i

[
A
(
vk+1

)−A
(
vk
)]2

dx

+

∫ xi+1/2

xi+1/2−h
jy

i+jy∑
k=i

[
A
(
vk+1

)−A
(
vk
)]2

dx

)

=
∑
i

(
(Δx− h) (jy − 1)

jy−1∑
m=0

[
A
(
vm+i+1

)−A
(
vm+i

)]2
+ hjy

jy∑
m=0

[
A
(
vm+i+1

)−A
(
vm+i

)]2)

=

J(y)︷ ︸︸ ︷
1

Δx
[(jy − 1) jy (Δx− h) + jy (jy + 1)h] Δx

∑
i

[
A
(
vi+1

)−A
(
vi
)]2

.

Next we will estimate the sum on the right-hand side. By definition v satisfies
v − µθR(v) = w, multiplying this pointwise by v and summing over i gives∑

i

vi (wi − vi) = −µθ
∑
i

[
A(vi+1)− 2A(vi) +A(vi−1)

]
vi

= µθ
∑
i

(
A(vi+1)−A(vi)

)
(vi+1 − vi) .

Moreover, we have that

vi(wi − vi) =
1
2

[
w2
i + v2i − (wi − vi)

2
]− v2i ≤ 1

2

(
w2
i − v2i

)
.

Now since A′ ≥ 0,[
A(vi+1)−A(vi)

]2 ≤ ‖A‖Lip (vi+1 − vi)
(
A(vi+1)−A(vi)

)
,

and therefore

Δx
∑
i

[
A (vi+1)−A

(
vi
)]2 ≤ ‖A‖Lip Δx

∑
i

(vi+1 − vi)
[
A(vi+1)−A(vi)

]
≤ ‖A‖Lip

µθ
Δx

∑
i

vi (wi − vi) ≤
‖A‖Lip
µθ

Δx

2

∑
i

(
w2
i − v2i

)
=

‖A‖Lip
µθ

Δx

2

∑
i

((
zi + µ(1− θ) (R(z))i

)2−v2i )
=

‖A‖Lip
µθ

Δx

2

∑
i

(
z2i − v2i︸ ︷︷ ︸

ai

+2µ(1− θ)zi (R(z))i︸ ︷︷ ︸
bi

+µ2(1− θ)2 (R(z))
2
i︸ ︷︷ ︸

ci

)
.

(4.36)
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Then

Δx
∑
i

ai = Δx
∑
i

(
z2i − (uni )

2 − (
(un+1
i )2 − (uni )

2
))

≤ ‖ũΔt‖L∞(ΠT ) Δx
∑
i

∣∣(SδΔtun)i − uni
∣∣+Δx

∑
i

(
(uni )

2 − (
un+1
i

)2)
≤ ‖ũΔt‖L∞(ΠT )

∥∥fδ∥∥
Lip

T.V. (u0)Δt+Δx
∑
i

(
(uni )

2 − (
un+1
i

)2)
,

and

‖A‖Lip
µθ

Δx

2

∑
i

bi =
(1− θ)

θ
‖A‖Lip Δx

∑
i

zi (R(z))i

= − (1− θ)

θ
‖A‖Lip Δx

∑
i

(zi+1 − zi)
[
A
(
zi+1

)−A
(
zi
)]

≤ − (1− θ)

θ
Δx

∑
i

[
A
(
zi+1

)−A(zi)
]2
.

Regarding the last term in (4.36), we estimate this by

‖A‖Lip
µθ

Δx

2

∑
i

ci ≤ 2
(1− θ)2µ

θ
‖A‖Lip Δx

∑
i

(A(zi+1)−A(zi))
2
,

since (R(z))2i ≤ 2[A(zi+1)−A(zi)]
2 + 2[A(zi)−A(zi−1)]

2.
Combining the above estimates gives

Δx
∑
i

[
(A

(
vi+1

)−A
(
vi
)]2

(4.37)

≤ ‖A‖Lip
µθ

Δx

2

∑
i

(
(uni )

2 − (un+1
i )2

)
+

‖A‖Lip
2µθ

‖ũΔt‖L∞(ΠT )

∥∥fδ∥∥
Lip

T.V. (u0)Δt

+
1− θ

θ

(
2 ‖A‖Lip µ(1− θ)− 1

)
Δx

∑
i

[
A(zi+1)−A(zi)

]2
.

Note that by the CFL-condition (4.20) the last term is nonpositive. Then, recalling
that µ = Δt/Δx2, we see that∫

R

(
A
(
un+1(x+ y)

)−A
(
un+1(x)

))2

dx ≤ J(y)Δx2
‖A‖Lip

2

×
[ 1

Δt

∫
R

(
un(x)

)2−(
un+1(x)

)2
dx+ ‖ũΔt‖L∞(ΠT )

∥∥fδ∥∥
Lip

T.V. (u0)
]
. (4.38)
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If we let ûΔt denote the piecewise constant function

ûΔt( · , t) =
∑
n

un+1( · )χIn(t),

then (for T = NΔt)

‖ûΔt − ũΔt‖L1(ΠT ) =

N−1∑
n=0

∫ tn+1

tn

∫
R
|ũΔt(x, t)− ũΔt(x, tn+1)| dx

=

N−1∑
n=0

∫ tn+1

tn
Const

√
tn+1 − t dt

≤ Const

N−1∑
n=0

(Δt)3/2 ≤ ConstT
√
Δt.

Therefore A(ûΔt) → A(u) in Lp(ΠT ), 1 ≤ p <∞, as Δt→ 0. Furthermore,

J(y)Δx2 = jyΔx
(
(Δx− h)(jy − 1) + h (jy + 1)

)
= j2yΔx

2 + 2jyhΔx

≤ j2yΔx
2 + 2jyhΔx+ h2

= (jyΔx+ h)
2
= y2.

Multiplying (4.38) with Δt and summing over n, we get∫ T

0

∫
R

(
A
(
ûΔt(x+ y, t)

)−A
(
ûΔt(x, t)

))2
dx dt

≤ y2 ‖A‖Lip
[∫

R
u20(x) dx+ ‖ũΔt‖L∞(ΠT )

∥∥fδ∥∥
Lip

T.V. (u0)T

]
,

assuming that (we have set things up so that)
∥∥fδ∥∥

Lip
≤ 2 ‖f‖Lip and the initial

data
∥∥u0∥∥

L2(R) ≤ 2 ‖u0‖L2(R). Thus, letting Δt→ 0 above, we get∫ T

0

∫
R

(
A
(
u(x+ y, t)

)−A
(
u(x, t)

))2

dx dt ≤ ConstA,f,u0,T y
2. (4.39)

Finally, we can let y → 0 to conclude that ∂xA(u) ∈ L2(ΠT ).
Summing up, we have derived the following result:

Theorem 4.4. Assume that u0 ∈ L1(R) ∩ BV(R), and that f and A are locally
Lipschitz continuous with A′ ≥ 0 and A(0) = 0. Define a sequence of functions
{uΔt}Δt≥0 by (4.18). There exists a subsequence of {Δtj}j∈Z ⊂ {Δt} such that

uΔtj → u in L1
loc(ΠT ) as Δtj → 0,
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where u is an entropy weak solution of

ut + f(u)x = A(u)xx, u(x, 0) = u0(x).

Remark 4.5. The above analysis can also be carried out if HΔxΔt is replaced by
several smaller steps, i.e., instead of HΔx

Δt we use(
HΔx

Δt/m

)m
,

for some integer m ≥ 2. This would relax the CFL-condition (4.20) to

(1− θ)µ ‖A‖Lip ≤ m

2
.

One can also replace the front-tracking method for the hyperbolic conservation
law by other numerical methods and still be able to prove essentially the same
results. Let us here mention only two alternatives. One alternative is to approx-
imate the hyperbolic solution operator St by the Euler characteristic Galerkin
splitting method [186]. For the parabolic operator, we can still use the implicit-
explicit scheme (4.11) (the θ-scheme). Alternatively, one can employ a second-
order MUSCL method, introduced by Bouchut, Bourdarias, and Perthame [31] for
which the necessary entropy estimates have been proved, while using the θ-scheme
analyzed in the previous section for the parabolic part.

4.3 Nonlinear error mechanisms

In the two examples in Section 4.2.1 and the rigorous mathematical analysis in the
previous section we studied convergence in a global sense through the use of the
L1 norm. For many applications, convergence in the L1 norm is not sufficient, and
one is interested in both the qualitative behavior of the approximate solutions and
the pointwise accuracy. This is dictated by the interaction of two types of errors:
the discretization errors in each substep and the error resulting from the operator
splitting. Here we will focus on errors caused by operator splitting, and start by
an example which illustrates the major error mechanisms in the viscous splitting.

Example 4.6. Let us simplify Example 4.2 and use Riemann initial data

u0(x) =

{
1, x < 0,

−1, x > 0.

This corresponds to a single, stationary, viscous shock, where the width of the
viscous shock is proportional to the scaling parameter ε. In the semi-discrete
splitting the diffusive step amounts to solving the heat equation, or in other words,
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Figure 4.3. Convexification and residual flux for Burgers’ equation for a shock between
uL = 1 and uR = 0.

convolution with the heat kernel. It is easy to see from the form of the heat kernel
that the viscous splitting will lead to a numerical front of width O(

√
εΔt). To

properly resolve the viscous front, the size of the splitting step should therefore be
proportional to ε.

To investigate the error mechanisms of the viscous splitting, let us examine
the first step of the algorithm. In the hyperbolic step we solve the equation
ut + f(u)x = 0 for f(u) = u2/2. The characteristics are negative for x > 0 and
positive for x < 0 (satisfying x′(t) = −1 and x′(t) = 1, respectively). Hence, the
solution consists of a stationary shock, as in the initial data; that is u(x, t) = u0(x).
In other words, the effective hyperbolic step reads ut = 0. Therefore, the viscous
splitting means that we disregard the advective flux and solve only the diffusive
part of the equation!

Let us now consider a computation with multiple steps. In the first step, the
heat operator (or its discretization) will give a smooth profile with u > 0 for x < 0
and u < 0 for x > 0. The second hyperbolic step will have a sharpening effect on
the smooth profile since f ′(u) > 0 for x < 0 and f ′(u) < 0 for x > 0. Thus, a new
shock will form if the time-step is sufficiently large. The second diffusive step will
smooth the approximate solution, and so on.

Consider now instead the initial data

u0(x) =

{
1, x < 0,

0, x > 0.

In the first hyperbolic step, the initial discontinuity will be translated as a shock
with speed 0.5. Thus the effective hyperbolic step amounts to solving the linear
equation ut+0.5ux = 0. In other words, the viscous splitting introduces a splitting
of the flux into a linear advective flux and a nonlinear flux residual (see Figure 4.3)

f(u) = 1
2u

2 = 1
2u+ 1

2u(u− 1) := fa(u) + fr(u). (4.40)
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Figure 4.4. Two steps in the viscous operator-splitting method.

The residual flux fr(u) is a manifestation of the entropy condition imposed upon
the hyperbolic equation through the local linearization of the flux (which is often
referred to as Olĕınik’s convexification). Let us look more closely at the effect the
residual flux has on the moving front for the hyperbolic subequation ut+f(u)x = 0.
Since f ′r(u) is positive for u > 0.5 and negative for u < 0.5, the residual flux will
try to make u-values in the interval [0.5, 1] move faster than the front velocity and
values in the interval [0, 0.5] move slower. In other words, the discontinuous front
will overturn and become triple-valued. Therefore the effects of the residual flux
cannot be included if the solution is to be single-valued.

If viscosity is added to the hyperbolic equation in the form of a second-
order spatial derivative, the viscous forces will counteract and balance the self-
sharpening effect in the nonlinear residual flux and ensure that the solution is
single-valued. If the residual flux is disregarded in the operator splitting, the
splitting scheme will therefore move the viscous front correctly, but overestimate
its spatial width since the nonlinear self-sharpening mechanisms in the flux are
neglected, see Figure 4.4.

The lesson learnt from the above example is the following one: once a discon-
tinuity is formed in the hyperbolic step, the entropy condition will enforce a local
linearization of the flux function in the form of a convexification. This linearization
will keep the linear part of the flux that accounts for the transport and disregard
the nonlinear part affecting the local shape of viscous fronts. Moreover, imposing
the local convexification will generally lead to a loss of entropy, as we will see later
when we give a rigorous mathematical analysis of the viscous operator splitting.

Motivated by similar observations as in Example 4.6, it is tempting to perform
an a priori splitting of the flux function into an advective part and a nonlinear
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part, f(u) = fa(u) + fr(u). Then, unsteady convection-diffusion equations of the
form

ut + f(u)x = εA(u)xx

can be solved by a sequential splitting involving a hyperbolic transport step

ut + fa(u)x = 0

and the parabolic, diffusive step

ut + fr(u)x = εA(u)xx.

This suggestion may at a first glance seem pretty strange. However, by splitting
off the transport effects in a separate step, the nonlinearity in the second-order
equation can be reduced and this will speed up the convergence of the nonlinear
solver used in any implicit formulation.

The idea of using in the diffusion step a “residual flux term” coming from a
flux splitting was introduced in [92], and further developed in a series of papers
[74–78] for the simulation of two-phase flow in porous media, where very efficient
numerical schemes have been developed to resolve the varying balances of advective
and diffusive forces. Some parts of this activity are summarized in [93].

Example 4.7. Above we argued that the hyperbolic step of the operator-splitting
method could be viewed as a splitting of the flux function; see (4.40). Let us
therefore apply this flux splitting a priori to improve the viscous operator-splitting
methods; that is, alternatively solve the two equations

ut +
1
2ux = 0, and ut +

1
2

(
u(u− 1)

)
x
= εuxx.

In Figure 4.5 we have recomputed the case in Figure 4.4 using the improved split-
ting algorithm. We see that the a priori flux splitting amends the previous defi-
ciency in the viscous splitting and now produces correct solutions.

A major restriction with the a priori splitting method is that it assumes that
the solution has a certain structure. If, for instance, the constants 1 and 0 in
the initial data of Example 4.7 were replaced by 1 and 1/2, the local speed of
propagation would be 3/4 and correct splitting of the flux would change to

ut +
3
4ux = 0, and ut +

1
2

(
u(u− 3

2 )
)
x
= εuxx.

In the next section we will discuss how this potential problem can be circumvented
by introducing an a posteriori flux splitting given by the local structure of the data
after the hyperbolic substep.



78 4 Convergence Results for Convection-Diffusion Problems

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

Step 1

ref
hyp.step
diff.step

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

Step 2

ref
hyp.step
diff.step

Figure 4.5. Two steps in the viscous operator-splitting method with a priori splitting of
the flux.

4.4 Viscous splitting with a posteriori flux splitting

The idea behind a priori splitting of flux functions was taken one step further in
[146]. The ideas introduced in [146] were developed further and applied in a series
of papers [100, 140, 140–143].

In [146] the authors showed how to locally define a posteriori flux residuals
to account for the entropy loss introduced in the hyperbolic steps. As above,
the idea is that once a shock is formed, the evolution of the hyperbolic solution is
governed locally by a linear transport equation. Let u− and u+ denote the constant
states adjacent to the shock and σ be the local Rankine–Hugoniot shock speed
σ = [f(u+)− f(u−)]/[u+ − u−]. Then, locally the solution is evolved according to
(for simplicity we have translated discontinuity to x = 0)

vt + σvx = 0, v(x, 0) =

{
u−, x < 0,

u+, x > 0.

The local flux residual is defined as

fr(u) =

{
f(u)− f(u−)− σ(u− u−), u ∈ (u−, u+),
0, otherwise.

(4.41)

Since the discontinuity (u−, u+) satisfies the conservation law ut + f(u)x = 0
locally, it follows from standard theory that the function f(u) must either lie
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u− u+
u−u+

Figure 4.6. Flux residuals defined implicitly by the Olĕınik convexification

entirely above or below the straight line connecting f(u−) and f(u+) for all values
u between u− and u+. Moreover, it follows from Olĕınik’s convexification that if
u− < u+ then f ′r(u

−) > 0 > f ′r(u
+) and if u− > u+ then f ′r(u

−) < 0 < f ′r(u
+); see

Figure 4.6. This implies that fr(u) will have an overall self-sharpening effect on
the monotone shock profile that counteracts smearing effects introduced by A(u).
Note, however, that fr(u) is not necessarily a strictly convex or concave function
as seen in Figure 4.6.

In the particular case of front-tracking, identifying such flux residuals is straight-
forward, since the gist of the algorithm is to update a piecewise constant solution
by solving local transport equations (tracking discontinuities). The flux residuals
can therefore be obtained as a by-product of the solution algorithm in a straight-
forward manner. Although the flux residuals are defined for every discontinuity,
they will only have a significant effect at “large” discontinuities. In a practical im-
plementation one typically neglects flux residuals corresponding to discontinuities
with strength below a certain user-defined threshold δu.

If we want to use the flux residuals in a local a posteriori splitting of the flux
function, we must determine where the residuals should be introduced in physical
space. This is typically achieved by using monotonicity intervals in the solution
or a prescribed interval length. A detailed discussion of the construction of local
flux residuals is given in [141, 142]. In this book we have chosen to use prescribed
interval lengths given by a user-specified parameter δx that determines the width
of the spatial interval in which each correction is applied.

Having defined the local residuals in the (x, u) space, they can be included in
the diffusive step as outlined for the a priori splitting above; that is, we introduce
a new parabolic substep given by

wt + fr(w, x)x = εA(w)xx, w(x, 0) = w0(x). (4.42)

At first glance, this equation looks more complex than the equation we set out
to solve since now the flux function also depends explicitly on spatial position.
However, this spatial dependence is quite simple: x ;→ fr(x,w) is a piecewise
constant function for each fixed w and w ;→ fr(x,w) is continuous for each fixed x.
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Algorithm 4.4.1 The COS algorithm

Construct a piecewise constant initial function u0(x)
Set t = 0 and Δt = T/N
For n = 0 : N − 1

Use front tracking to compute solution v(x,Δt) of
vt + f(v)x = 0, v(x, 0) = un(x)

Extract from v(x,Δt) all discontinuities {(v−i , v+i , xi)} that satisfy
|v−i − v+i | > δu

Define nonoverlapping intervals {Ii} such that Ii ≈ [xi − δx, xi + δx]
Let un+1/2(x) be the projection of v(x,Δt) onto a regular grid
Use scheme (4.43) to compute solution w(x,Δt) of

wt + fr(w, x)x = εA(w)xx, w(x, 0) = un+1/2(x)
with fr(w, x) given by (4.41) for x ∈ Ii and zero otherwise
Set un+1(x) equal w(x,Δt)

end
Set u(x, T ) = uN (x).

There are several ways to discretize this equation. For instance, one can use a
standard central-difference approximation:

Wn+1
i =Wn

i − 1
2λ

[
fr(W

n
i+1)− fr(W

n
i−1)

]
+ µ

[
A(Wn

i+1)− 2A(Wn
i ) +A(Wn

i−1)
]
.

This scheme is stable provided the local time-step k and the spatial discretization
parameter Δx satisfy the conditions

k ≤ 0.5Δx2/ε, Δxmax
w

|f ′r(w)| ≤ 2ε.

The stability conditions may put severe restrictions on the discretization parame-
ters, especially on Δx for small values of ε. The stability condition on Δx disap-
pears if we use an upwind discretization of the flux. In the examples in this book
we therefore use a Godunov upwind method

Wn+1
i =Wn

i − λ
[
Fni+1/2 − Fni−1/2

]
+ µ

[
A(Wn

i+1)− 2A(Wn
i ) +A(Wn

i−1)
]
. (4.43)

To evaluate the Godunov flux, we approximate the Riemann problem at the cell
interface by a single shock (and disregard the entropy fix, see Appendix A.6.2)

F ri+1/2 =

{
fr(W

n
i , xi), if

[
fr(W

n
i+1, xi+1)− fr(W

n
i , xi)

]
/(Wn

i+1 −Wn
i ) > 0,

fr(W
n
i+1, xi+1), otherwise.

We have thus specified a new fully-discrete splitting method, which we will call
corrected operator splitting (COS). The COS splitting method is summarized in
Algorithm 4.4.1. Let us now revisit Examples 4.2 and 4.3 and apply the new
corrected splitting approach.
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Table 4.3. Estimated L1-errors at time t = 1.0 computed by the original (OS) with ν = 1
and ν = 16 and the improved splitting method (COS) for ν = 16.

Example 4.2 Example 4.3
Nx OS(1) OS(16) COS OS(1) OS(16) COS

75 4.29e-02 1.05e-01 4.59e-02 4.36e-02 1.18e-01 5.79e-02
150 2.08e-02 7.50e-02 2.07e-02 1.80e-02 7.30e-02 2.56e-02
300 1.05e-02 4.41e-02 1.03e-02 9.41e-03 3.73e-02 3.35e-02
600 5.19e-03 2.37e-02 7.55e-03 4.80e-03 1.88e-02 1.88e-02

1200 2.51e-03 1.15e-02 1.15e-02 2.29e-03 9.07e-03 9.07e-03
2400 1.19e-03 5.80e-03 5.80e-03 8.48e-04 4.54e-03 4.54e-03

Example 4.8. In Table 4.3 we have recomputed parts of the grid-refinement
study from Tables 4.1 and 4.2, now using the a posteriori flux residuals to improve
the solution. To localize the corrections to only take effect at the origin, we set
δu = 1.0 and use a prescribed interval length equal

√
εΔt. The local residuals

have a pronounced effect on the coarse grids, where ν = 16 corresponds to a few
splitting steps. On the finest grids, however, the splitting steps are of the same
size as ε and the residuals have little effect or are not included. Figure 4.7 shows
plots of the OS and COS solutions for diffusion function A(u).

Correcting splitting errors in a single shock layer for a convex flux function, as in
the example above, might not be too impressive. In fact, the correction algorithm
works as a “black-box” for an (almost) arbitrary solution profile coming out from
the hyperbolic substep. To demonstrate the capabilities of the algorithm we will
now consider a more complex example, in which the flux function is nonconvex
and the initial data is nonmonotone.

Example 4.9. Consider the convection-diffusion equation

ut + f(u)x = εuxx, u(x, 0) = − sin(πx)χ[−1,2](x), (4.44)

with ε = 0.05 and flux function f(u) = u sin(2πu)+u. To emphasise the difference
in performance between the original splitting (OS) and the a posteriori splitting
(COS) we use a single splitting step Δt = 0.1. The parameters δu and δx in the
COS algorithm are both set to 0.1, quite arbitrarily.

Figure 4.8 shows solutions computed by the OS and COS algorithms on a uni-
form grid with 100 cells together with a reference solution on a fine grid. Figure 4.9
shows that the COS algorithm correctly identifies residual fluxes for all eight shock
layers. This COS algorithm gives improved resolution in all shock layers except
for the eighth and rightmost layer, where the corresponding residual flux is small
in magnitude. Moreover, when a residual flux is applied near a local critical point
where the solution changes monotonicity, the correction may have a sharpening
effect also for values outside the shock layer resulting in small “overshoots” in the
solution, as can be observed in shock layers two, four and seven.
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Figure 4.7. Viscous splitting solutions computed with two splitting steps on a grid with
75 grid cells for diffusion function A(u) using the original (OS) and the improved splitting
method (COS). The dotted line indicates the result of the last hyperbolic step in the COS
computation.
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Figure 4.9. (Top) Identification of eight residual fluxes in the (x, u) plane. (Bottom)
Plots of the eight residual fluxes (from top left to bottom right).
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Figure 4.10. Buckley–Leverett profile for the polymer system computed by the OS (left)
and COS (right) operator splittings. The plot shows s (sold line) and c (dotted line)
plotted for every second grid point.

The same techniques can also be applied to systems of viscous conservation
laws. As an example of such a system we consider the 2 × 2 polymer system
modeling the flow of water and polymer in a porous medium,

∂ts+ ∂xf(s, c) = ε∂2xs,

∂t[sc+ a(c)] + ∂x(cf(s, c)) = ε∂2x[sc+ a(c)].
(4.45)

Here, the unknowns are the water saturation s and the polymer concentration c.
The fractional flow function f and the adsorption function a are given by

f(s, c) =
s2

s2 + 0.2(1 + 2c)(1− s)2
, a(c) =

0.2c

1 + c
. (4.46)

The corresponding inviscid system is nonstrictly hyperbolic since the eigenvalues
λs = fs and λc = f/(s + ac) coincide along a curve in state space. This means
that there will be special cases where both the characteristics point into a shock.

Below we will present two examples of viscous operator splitting applied to this
system. For a more thorough discussion, we refer the reader to [142].

Example 4.10. In the first example we study the propagation of a so-called
Buckley–Leverett profile that arises from the initial data

(s0, c0)(x) =

{
(1.0, 0.5), x ≤ 0.1,

(0.1, 0.1), x > 0.1.

This corresponds to a single Riemann problem in the inviscid case, which is solved
by a fast s-shock, followed by a c-shock and a rarefaction wave in s. Figure 4.10
shows approximations to the solution at time t = 1.0 for ε = 0.005 computed by
a single step of the OS and COS algorithms on a uniform grid with 256 cells. The
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Table 4.4. Estimated error in the relative L1 norm and convergence rates at time t = 1.0
for the polymer system (4.45) with a Buckley–Leverett profile.

ε = 0.01 ε = 0.001
Nt OS COS OS COS

1 4.42e-02 — 1.96e-02 — 1.88e-02 — 3.47e-03 —
2 2.90e-02 0.61 1.61e-02 0.29 1.26e-02 0.57 5.18e-03 -0.58
4 1.97e-02 0.56 1.22e-02 0.40 8.16e-03 0.63 4.30e-03 0.27
8 1.27e-02 0.63 8.53e-03 0.51 5.69e-03 0.52 3.27e-03 0.40

16 7.57e-03 0.75 5.65e-03 0.59 4.18e-03 0.44 2.52e-03 0.38
32 4.16e-03 0.86 3.58e-03 0.66 3.27e-03 0.35 2.22e-03 0.18
64 2.30e-03 0.86 2.45e-03 0.55 2.78e-03 0.23 2.17e-03 0.03

128 1.48e-03 0.63 1.53e-03 0.68 2.85e-03 -0.03 2.58e-03 -0.25
256 1.30e-03 0.19 1.31e-03 0.23 3.61e-03 -0.34 3.52e-03 -0.45

shock layer in c contains almost no self-sharpening effects and is resolved almost
perfectly by the OS algorithm. The shock layer corresponding to the s-shock,
on the other hand, contains strong self-sharpening effects and is only resolved
accurately if the residual flux is included. Let us now study the effects of the
temporal operator-splitting error. To eliminate the spatial error we fix the spatial
discretization to 210 cells and increase the number of splitting steps Nt in powers
of 2. Table 4.4 reports errors for this convergence study measured in a relative
L1 norm measuring the deviance from a fine-grid solution computed by a central-
difference scheme.

For ε = 0.01 the accuracy of both algorithms increases with increasing number
of time-steps. As expected, the effect of the flux corrections in COS decreases
as the number of time-steps increases. The case with ε = 0.001 behaves a bit
differently. First of all, we observe that the error for COS increases when going
from one to two splitting steps. This is because with two splitting steps the c-shock
is not fully formed in the second hyperbolic step and hence the correction effect
is reduced. Secondly, the errors for both algorithms increase as Nt is increased
beyond 64. This is due to the numerical diffusion introduced when projecting
the front-tracking solution onto a regular grid. This error increases with Nt and
eventually overshadows the splitting error.

Example 4.11. In the next example we consider a nonmonotone profile given by
the initial data

(s0, c0)(x) =

{
(0.45, 0.0), x ≤ 0.1,

(0.2, 1.0), x > 0.1.

The corresponding inviscid Riemann problem has a nonmonotone solution that
consists of five different constant states separated by simple waves: uL

c→ u1
s→

u2
c→ u3

s→ uR. Figure 4.11 shows the saturation profile s(x) and the solution in
phase space (s, c). Figure 4.12 shows approximate solutions computed by the two
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Figure 4.11. (Left) Solution in (s, c)-space: the solid line gives the solution for ε = 0.0025
at time t = 1.0 and the dashed line the inviscid solution. (Right) The s-component as a
function of spatial coordinate x.
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Figure 4.12. Comparison of OS (small dots) and COS (large dots) on the nonmonotone
Riemann profile.

splitting algorithms on a fine grid with 210 uniform cells. In the leading shock layer
we observe the expected behavior: whereas OS smears the front, COS computes
it accurately. In the first splitting step, the COS algorithm applies a residual
flux also to the leftmost s-shock, giving an extra peak in the solution at the local
maximum as we also observed for the nonmonotone profile in Figure 4.8. This
effect disappears if we use two splitting steps, and with four splitting steps COS
computes the whole solution with good resolution. (Notice that four splitting steps
corresponds to a CFL number of around 300 for this particular case!)

In this section we have discussed how a standard viscous operator splitting
generally will produce solutions that are much too diffusive in viscous shock layers.
This is due to a temporal error that results from enforcing a local linearization in
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the hyperbolic substeps. To compensate for this error, we introduced an improved
operator-splitting method that identifies the nonlinear parts of the flux that are
ignored in the hyperbolic substep. These residual fluxes can then be applied as part
of the parabolic substep to provide the necessary self-sharpening effects needed to
produce the correct behavior of the solution in viscous shock layers.

We end the chapter by pointing out that there are a number of numerical
approaches for degenerate convection-diffusion equations that are not based on
operator splitting, see [6, 32, 44, 46, 51, 60, 96, 98, 99, 102, 111, 147, 164, 207,
216, 217].



5

Error Estimates for Hyperbolic Problems

In this chapter we develop an abstract error estimation theory for dimensional or
source splitting methods in the context of weakly coupled systems of hyperbolic
equations. To verify convergence of a specific splitting method one only has to
check whether each split solver satisfies certain assumptions, whereupon conver-
gence follows. More precisely, we will demonstrate how the approach introduced
in Chapter 3 can be extended to yield not only convergence of splitting methods,
but also precise error estimates, for weakly coupled systems of the form

uκt +
∑
i

fκi (uκ)xi
= gκ (U) , uκ|t=0 = uκ0 , κ = 1, . . . ,K. (5.1)

Our theory of error estimates has its origin in the approximation theory of Kuznetsov
[166, 167], which is founded on the work by Kružkov [161]. The influential work
of Kuznetsov has been used and extended in a number of works, see for example
[33, 64, 65, 139, 166, 167, 170, 177, 182, 194–196, 234, 253, 254, 257]. Relevant
to the presentation that follows, in [33] the authors have formalized the method
of Kružkov and Kuznetsov, so that the celebrated doubling of variables (see, e.g.,
[126, 161]) can be avoided when checking the convergence rate of a specific numeri-
cal scheme. We will present a version of the result from [33] adapted to dimensional
splitting methods; when applied in a specific situation, this result avoids Kružkov’s
ingenious but cumbersome doubling of variables.

5.1 Multi-dimensional scalar conservation laws

We first turn our attention to error estimates for dimensional splitting methods in
the case of a scalar conservation law

ut +
∑
i

fi(u)xi
= 0, u|t=0 = u0. (5.2)

We consider initial data u0 in the class L1
(
Rd

) ∩ L∞ (
Rd

)
. We shall assume

that the exact entropy solution u(x, t) is a measurable function in the same space
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as the initial data for each t ≤ T and that it satisfies∫
BR(x0)

|u(x+ h, t)− u(x, t)| dx ≤ νR,T (|h| ;u),∫
BR(x0)

|u(x, t+ τ)− u(x, t)| dx ≤ ωR,T (|τ | ;u),
(5.3)

for some moduli of continuity νR,T ( · ;u) and ωR,T ( · ;u), and

BR(x) = {ξ ∈ Rd | |ξ − x| ≤ R}.

In this setting \ = d, K = 1, i.e., U = u, and g = 0. Let v(t) = Sitv0 be an
approximate or exact weak solution of the one-dimensional problem

vt + fi(v)xi = 0, v|t=0 = v0.

Consider the following (dimensional) splitting procedure

un =
[SdΔt ◦ · · · ◦ S1

Δt

]n
u0,

un,i =
[SiΔt ◦ · · · ◦ S1

Δt

]
un, i = 1, . . . , d, un,0 = un, (5.4)

uΔt(t) = Sid(t−tn,i−1)
un,i−1, t ∈ [tn,i−1, tn,i) ,

for n ∈ N0 and i = 1, . . . , d. Assume that our solution operator satisfies (3.54);
that is, for i = 1, . . . , d,

η
(
vi, k

)
t
+ qi

(
vi, k

)
xi

≤ (EI
i
)
t
+

(EII
i
)
xi

+
(EIII

i
)
xixi

+ EIV
i in D′(ΠT ), (5.5)

where EI
i = EI

i(x, t), EII
i = EII

i(x, t), EIII
i = EIII

i(x, t), EIV
i = EIV

i(x, t) are distri-
butions (cf. the notation of Chapter 3), and (η, qi) is the Kružkov entropy pair

η(u, k) = |u− k| , qi(u, k) = sign(u− k) (fi(u)− fi(k)) , q = (q1, . . . , qd),

where k is a constant. The distributions EIi, EIIi, EIIIi and EIVi may depend on k,
but we assume that they are dominated by nonnegative Radon measures that do
not, i.e.,∣∣EI

i
∣∣ ≤ dµI

i,
∣∣EII

i
∣∣ ≤ dµII

i,
∣∣EIII

i
∣∣ ≤ dµIII

i,
∣∣EIV

i
∣∣ ≤ dµIV

i. (5.6)

For ease of notation, we set

dµI =
∑
i

χdi dµI
i, dµII =

∑
i

χdi dµII
i,

dµIII =
∑
i

χdi dµIII
i, dµIV =

∑
i

χdi dµIV
i,
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where the characteristic functions χdi are defined in (3.57). Furthermore, we as-
sume that the approximate solution operators Sit are such that the splitting solu-
tion uΔt satisfies:

‖uΔt( · , t)‖L∞(Rd) ≤ C,∫
BR(x0)

|uΔt(x+ h, t)− uΔt(x, t)| dx ≤ νR,T (|h| ;uΔt) , (5.7)

∫
BR(x0)

|uΔt(x, t+ τ)− uΔt(x, t)| dx ≤ ωR,T (|τ | ;uΔt) ,

for some constant C not depending on Δt and for some moduli of continuity
νR,T ( · ;uΔt) and ωR,T ( · ;uΔt) not depending on Δt or t.

Theorem 5.1. Let u be an exact weak entropy solution of (5.2), and let uΔt be
the approximate solution defined by (5.4). Let M ≥ maxi ‖fi‖Lip and let R be a
positive constant, then for all sufficiently small positive constants ρ, h, and τ , we
have

‖uΔt( · , T )− u( · , T )‖L1(BR(x0))
≤ ‖uΔt( · , 0)− u( · , 0)‖L1(BR+MT (x0))

+Const
(
Esplit(ρ, h, τ) + Emethod(ρ, h, τ)

)
, (5.8)

where

Esplit(ρ, h, τ) = ωR+MT,T (τ ;u) + νR+MT,T (
√
d h;u)

+ Δt
(
ωR+MT,T (Δt+ τ ;u) + ωR+MT,T (Δt+ τ ;uΔt)

)( 1

h
+

1

ρ

)
+Δt νR+MT,T

(√
d h;uΔt

)(1
ρ
+

1

h
+

1

ρ2
+

1

ρτ
+

1

ρh
+

1

hτ

)
, (5.9)

Emethod(ρ, h, τ) =
(
1 +

MT

ρ

)
sup
t∈[0,T ]

∫
BR+MT (x0)

dµI( · , t)

+

∫∫
B̃(x,t)

(1
τ
dµI +

( 1

h
+

1

ρ

)
dµII +

( 1

h2
+

1

hρ
+

1

ρ2

)
dµIII + dµIV

)
, (5.10)

and B̃(x, t) denotes the set {(x, t) | |x− x0| ≤ R +M(T − t), 0 ≤ t ≤ T}. Fur-
thermore, we also have

‖uΔt( · , T )− u( · , T )‖L1(Rd) ≤ ‖uΔt( · , 0)− u( · , 0)‖L1(Rd)

+Const
(
Esplit

g (h, τ) + Emethod
g (h, τ)

)
, (5.11)
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where

Emethod
g (h, τ) = sup

t∈[0,T ]

∫
Rd

dµI( · , t) +
∫∫
ΠT

(1
τ
dµI +

1

h
dµII +

1

h2
dµIII + dµIV

)
,

(5.12)
and

Esplit
g (h, τ) = ωT (τ ;u) + νT (

√
d h;u) + ωT (τ ;uΔt) + νT (

√
d h;uΔt)

+ Δt [ωT (Δt+ τ ;u) + ωT (Δt+ τ ;uΔt)]
1

h

+Δt νT

(√
d h;uΔt

)( 1

h
+

1

hτ

)
. (5.13)

Proof. We prove only (5.8) here. The proof of (5.11) is easier, and follows by
choosing a simpler test function. The essential ingredients in this proof are found
in Section 5.2 where we use this type of test function to show error estimates for
balance laws. Now for the proof of (5.8), let

ΠT,ε = Rd × [−ε, T + ε]

and extend uΔt to ΠT,ε by setting it equal to uΔt( · , 0) for t < 0 and uΔt(T ) for
t > T ; and similarly for u. Lemma 3.15 says that

−
∫∫
ΠT,ε

(
η (uΔt, k)φt + q (uΔt, k) · ∇xφ

)
dt dx ≤ E (Δt;φ) + I1, (5.14)

with

E (Δt;φ) =
∑
n,i

∫
Rd

|φ ( · , tn,i)| dµIi( · , tn,i) (5.15)

+ d

∫∫
ΠT,ε

∑
i

χdi

( 1

d
|φt| dµIi + |φxi

| dµIIi + |φxixi
| dµIIIi + |φ| dµIVi

)

I1 = d
∑
i

∫∫
ΠT,ε

(
χdi −

1

d

)
qi (uΔt, k)φxi

dt dx. (5.16)

Let the nonnegative test function φ be a function of two additional variables (y, s),
that is, φ = φ(x, t, y, s) with φ ∈ C∞

0 ((Rd × [−ε,∞))2). Fixing (y, s) ∈ Rd ×
(−ε,∞), we take k = u(y, s). Integrating the entropy estimate (5.14) with respect
to y, s over ΠT,ε gives

−
∫∫∫∫

ΠT,ε×ΠT,ε

[
η
(
uΔt(x, t), u(y, s)

)
φt + q

(
uΔt(x, t), u(y, s)

) · ∇xφ
]
dt dx ds dy

≤ Rs +Rα,

(5.17)
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where the two error terms Rs and Rα are given as

Rs =

∫∫
ΠT,ε

I1 ds dy

= d
∑
i

∫∫∫∫
ΠT,ε×ΠT,ε

(
χdi (x, t)−

1

d

)
qi (uΔt(x, t), u(y, s))φxi

dt dx ds dy, (5.18)

Rα =

∫∫
ΠT,ε

E ds dy

= d
∑
n,i

∫∫∫∫
ΠT,ε×ΠT,ε

χn,i(x, t)
( 1

d
|φt| dµIi(x, t)

+ |φxi
| dµIIi(x, t) + |φxixi

| dµIIIi(x, t) + |φ| dµIVi(x, t)
)
ds dy

+
∑
n,i

∫∫∫
ΠT,ε×Rd

|φ (x, tn,i, y, s)| dµIi(x, tn,i) ds dy. (5.19)

Similarly, for each fixed (x, t) ∈ Rd×(−ε,∞), we take k = uΔt(x, y) in the entropy
inequality for u. Integrating this with respect to x, t gives the inequality:

−
∫∫∫∫

ΠT,ε×ΠT,ε

(
η (u(y, s), uΔt(x, t))φs + q (u(y, s), uΔt(x, t)) · ∇yφ

)
dt dx ds dy ≤ 0.

(5.20)
By adding (5.17) and (5.20), we get

−
∫∫∫∫

ΠT,ε×ΠT,ε

(
η (uΔt(x, t), u(y, s)) (φt + φs)

+ q (uΔt(x, t), u(y, s)) · (∇xφ+∇yφ)
)
dt dx ds dy ≤ Rs +Rα.

Next specify the test function φ. Namely, for any ε, ρ, h, τ > 0, we take φ to be of
the form

φ(x, t, y, s) = ϕε,ρ(x, t) Ωh,τ (x− y, t− s),

Ωh,τ (x− y, t− s) = δh(x− y) δ̃τ (t− s),
(5.21)

where δh and δ̃τ are regularizing sequences (also denoted mollifiers) given by
δh(x) = h−dδ(x1/h) · · · δ(xd/h) and δ̃τ (t) = τ−1δ̃(t/τ) for even and nonnegative
C∞

0 functions δ and δ̃ with support in (−1, 1) and unit integral on the real line.
Next, we choose ϕε,ρ to be a sequence of the form

ϕε,ρ(x, t) = Ψρ(x, t)ψε(t),

Ψρ(x, t) = 1− βρ (|x− x0| − (R+M(T − t))) ,

ψε(t) = βε(t)− βε(t− T ),
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where βε(λ) =
∫ λ
−∞ δε(s) ds for ε positive. Note that βε tends to the characteristic

function of [0,∞) and ψε ∈ C∞((−ε, T + ε)) with 0 ≤ ψε ≤ 1. We also have that
Ψρ is a smooth approximation to the characteristic function of the set{

(x, t) | |x− x0| ≤ R+M(T − t)
}
.

It is easy to see that ϕε,ρ ∈ C∞
0 (Rd × (−ε,∞)); 0 ≤ ϕε,ρ ≤ 1; ϕε,ρ = 1 for

|x−x0| ≤ R+M(T−t)−ρ, 0 ≤ t ≤ T ; and ϕε,ρ = 0 for |x−x0| ≥ R+M(T−t)+ρ
or t /∈ [−ε, T + ε]. In other words, ϕε,ρ is an approximation to the characteristic

function of the set B̃(x, t) in (5.10). Also

χD−(x, t) ≤ Ψρ(x, t) ≤ χD+(x, t),

where
D± = {(x, t) | |x− x0| ≤ R+M(T − t)± ρ}.

Clearly
φt + φs = (ϕε,ρ)t, ∇xφ+∇yφ = ∇xϕε,ρ.

Regarding derivatives, we have

ϕε,ρ(x, t)t = ψ′
ε(t)Ψρ(x, t)−Mψε(t)δρ

(|x− x0| −R−M(T − t)
)
,

∇xϕε,ρ(x, t) = −
(
x− x0

)
|x− x0| ψε(t)δρ

(|x− x0| −R−M(T − t)
)
.

Therefore, if M ≥ maxi ‖fi‖Lip,

η
(
uΔt(x, t), u(y, s)

)
ϕε,ρ(x, t)t + q (uΔt(x, t), u(y, s)) · ∇xϕε,ρ(x, t)

= η
(
uΔt(x, t), u(y, s)

)
ψ′
ε(t)Ψρ(x, t)− ψε(t)δρ

(|x− x0| −R−M(T − t)
)

×
(
Mη (uΔt(x, t), u(y, s)) +

1

|x− x0|q (uΔt(x, t), u(y, s)) · (x− x0)
)

≤ η
(
uΔt(x, t), u(y, s)

)
ψ′
ε(t)Ψρ(x, t).

It now follows that

−
∫∫∫∫

ΠT,ε×ΠT,ε

η (uΔt(x, t), u(y, s))ψ
′
ε(t)Ψρ(x, t)Ωh,τ (x− y, t− s) dt dx ds dy ≤ Rs +Rα.

Writing

|uΔt(x, t)− u(y, s)|ψ′
ε(t) = |uΔt(x, t)− u(x, t)|ψ′

ε(t)

+
( |uΔt(x, t)− u(y, s)| − |uΔt(x, t)− u(x, t)| )ψ′

ε(t),

and estimating the latter term using the triangle inequality, we get the key in-
equality

0 ≤ I +Rt +Rx +Rs +Rα, (5.22)
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where

I =

∫∫∫∫
ΠT,ε×ΠT,ε

η (uΔt(x, t), u(x, t))ψ
′
ε(t)Ψρ(x, t)Ωh,τ (x− y, t− s) dt dx ds dy,

Rt =

∫∫∫∫
ΠT,ε×ΠT,ε

η (u(y, t), u(y, s)) |ψ′
ε(t)|Ψρ(x, t)Ωh,τ (x− y, t− s) dt dx ds dy,

Rx =

∫∫∫∫
ΠT,ε×ΠT,ε

η (u(x, t), u(y, t)) |ψ′
ε(t)|Ψρ(x, t)Ωh,τ (x− y, t− s) dt dx ds dy.

We need to estimate each term in (5.22). Consider first |Rt|. In this case we find
that

∣∣Rt∣∣ ≤ ∫∫
ΠT,ε

T+ε∫
−ε

∫
BR+M(T−t)+ρ(x0)

|u(y, t)− u(y, s)|

× (δε(t) + δε(t− T ))δh(x− y)δ̃τ (t− s) dt dx ds dy

≤
ε∫

−ε

∫∫
ΠT,ε

∫
BR+M(T−t)+ρ(x0)

|u(y, t)− u(y, s)| δε(t)δh(x− y)δ̃τ (t− s) dx ds dy dt

+

T+ε∫
T−ε

∫∫
ΠT,ε

∫
BR+M(T−t)+ρ(x0)

|u(y, t)− u(y, s)|

× δε(t− T )δh(x− y)δ̃τ (t− s) dx ds dy dt.

The first term can be estimated by

lim sup
ε→0

∫ ε

−ε

∫ τ+ε

−τ−ε

[
δε(t)δ̃τ (t− s)

(∫
BR+M(T−t)+

√
d h+ρ(x0)

|u(y, t)− u(y, s)|
)

×
(∫

BR+M(T−t)+ρ(x0)

δh(x− y) dx
)
ds

]
dy dt

≤ ωR+MT+
√
d h+ρ,T (τ ;u).

A similar calculation for the second term yields for the sum

lim sup
ε→0

∣∣Rt∣∣ ≤ 2ωR+MT+
√
d h+ρ,T (τ ;u). (5.23)

From an analogous estimate we obtain

lim sup
ε→0

|Rx| ≤ 2 νR+MT+
√
d h+ρ,T

(√
d h;u

)
. (5.24)
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The term I does not contain the absolute value of ψ′
ε(t). Thus

I =

∫∫∫∫
ΠT,ε×ΠT,ε

η (uΔt(x, t), u(x, t)) (δε(t)− δε(t− T ))

×Ψρ(x, t)Ωh,τ (x− y, t− s) dt dx ds dy

≤
∫∫
ΠT,ε

∫ ε

−ε

∫
BR+M(T−t)+ρ(x0)

η (uΔt(x, t), u(x, t)) δε(t)δh(x− y)δ̃τ (t− s) dt dx ds dy

−
∫∫
ΠT,ε

∫ T+ε

T−ε

∫
BR+M(T−t)−ρ(x0)

η (uΔt(x, t), u(x, t))

× δε(t− T )δh(x− y)δ̃τ (t− s) dt dx ds dy

≤
∫ ε

−ε

∫
|t−s|≤τ

δε(t)δ̃τ (t− s)

∫
BR+M(T−t)+ρ(x0)

η (uΔt(x, t), u(x, t)) dx ds dt

−
∫ T+ε

T−ε

∫
|t−s|≤τ

δε(t− T )δ̃τ (t− s)

×
∫
BR+M(T−t)−ρ(x0)

η (uΔt(x, t), u(x, t)) dx ds dt.

Thus we conclude

lim sup
ε→0

I ≤
∫
BR+MT+ρ(x0)

|uΔt(x, 0)− u(x, 0)| dx

−
∫
BR−ρ(x0)

|uΔt(x, T )− u(x, T )| dx. (5.25)

We then estimate the term Rα. In this case we have that (all test functions are
nonnegative, their derivatives are not)

|Rα| ≤ d
∑
n,i

∫∫∫∫
ΠT,ε×Πn,i

[
1

d

( ∣∣(ϕε,ρ)t∣∣ Ωh,τ + ϕε,ρ |(Ωh,τ )t|
)
dµI

i(x, t)

+
( ∣∣∣(ϕε,ρ)xi

∣∣∣ Ωh,τ + ϕε,ρ |(Ωh,τ )xi
| )dµII

i(x, t)

+
(
|(ϕε,ρ)xixi

| Ωh,τ + 2 |(ϕε,ρ)xi
| |(Ωh,τ )xi

|+ ϕε,ρ |(Ωh,τ )xixi
|
)
dµIII

i(x, t)

+ ϕε,ρΩh,τdµIV
i(x, t)

]
ds dy.

Regarding the individual terms in this integral we first find that∫∫∫∫
ΠT,ε×Πn,i

ϕε,ρΩh,τdµIV
i(x, t) ds dy =

∫∫
Πn,i

ϕε,ρ(x, t)dµIV
i(x, t) ≤

∫∫
Πn,i∩D+

dµIV
i.
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Furthermore,∫∫∫∫
ΠT,ε×Πn,i

ϕε,ρ
∣∣(Ωh,τ )xi

∣∣ dµI
i(x, t) ds dy

≤ 1

h2

∫∫
Πn,i∩D+

( ∫
B√

d h(x)

dyi

)
dµI

i(x, t) ≤ Const

h

∫∫
Πn,i∩D+

dµI
i.

Considering the term∣∣(ϕε,ρ)t∣∣Ωh,τdµI
i = Ωh,τ |ψ′

ε(t)Ψρ(x, t)−Mψε(t)δρ(p(x, t))| dµI
i,

where p(x, t) = |x− x0| − (R+M(T − t)), we find∫∫∫∫
ΠT,ε×Πn,i

∣∣(ϕε,ρ)t∣∣Ωh,τdµI
i ds dy

≤
∫∫

Πn,i∩D+

(
δε(t) + δε(t− T ) +Mδρ(p(x, t))

)
dµI

i(x, t)

≤
∫ tn,i

tn,i−1

(
δε(t) + δε(t− T ) +

M

ρ

)
dt sup
t∈[tn,i−1,tn,i]

∫
BR+MT+ρ(x0)

χdi dµI
i( · , t).

Summing over n and i we find∑
n,i

∫∫∫∫
ΠT,ε×Πn,i

∣∣(ϕε,ρ)t∣∣Ωh,τdµI
i ds dy ≤

(
2 +

MT

ρ

)
sup
t∈[0,T ]

∫
BR+MT+ρ(x0)

dµI( · , t).

By similar arguments we find that∫∫∫∫
ΠT,ε×Πn,i

ϕε,ρ(x, t)
∣∣Ωh,τ (x− y, t− s)t

∣∣dµIi(x, t) ds dy ≤ Const

τ

∫∫
Πn,i∩D+

dµIi,

∫∫∫∫
ΠT,ε×Πn,i

∣∣(ϕε,ρ)xi

∣∣Ωh,τ (x− y, t− s)dµII
i(x, t) ds dy ≤ Const

ρ

∫∫
Πn,i∩D+

dµII
i,

∫∫∫∫
ΠT,ε×Πn,i

ϕε,ρ(x, t)
∣∣Ωh,τ (x− y, t− s)xixi

∣∣dµIII
i(x, t) ds dy ≤ Const

h2

∫∫
Πn,i∩D+

dµIII
i,

∫∫∫∫
ΠT,ε×Πn,i

∣∣ϕε,ρ(x, t)xi

∣∣ ∣∣Ωh,τ (x− y, t− s)xi

∣∣dµIII
i(x, t) ds dy ≤ Const

hρ

∫∫
Πn,i∩D+

dµIII
i,

∫∫∫∫
ΠT,ε×Πn,i

∣∣ϕε,ρ(x, t)xixi

∣∣Ωh,τ (x− y, t− s)dµIII
i(x, t) ds dy ≤ Const

ρ2

∫∫
Πn,i∩D+

dµIII
i.
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Hence

lim sup
ε→0

|Rα| ≤ Const

[ (
1 +

maxi ‖fi‖Lip T
ρ

)
sup
t

∫
BR+MT+ρ(x0)

dµI( · , t)

+

∫∫
D+

(1
τ
dµI +

( 1
h
+

1

ρ

)
dµII +

( 1

h2
+

1

hρ
+

1

ρ2

)
dµIII + dµIV

) ]
. (5.26)

It remains to estimate Rs. We use the same method that we used in the proof of
Theorem 3.17. Let p̂i(t) be given as

p̂i(t) = qi (uΔt(x, t), u(y, s)) φ(x, y, t, s)xi
.

Thus

Rs ≤
∫∫
ΠT,ε

∫
BR+MT+ρ(x0)

∑
n,i

(
d

∫ tn,i

tn,i−1

p̂i(t) dt−
∫ tn+1

tn

p̂i(t)dt
)
dx ds dy

=
∑
n,i

∫∫
ΠT,ε

∫
BR+MT+ρ(x0)

(
d

∫ tn,i

tn,i−1

(
p̂i(t)− p̂i (tn)

)
dt

−
∫ tn+1

tn

(
p̂i(t)− p̂i (tn)

)
dt
)
dx ds dy

=
∑
n,i

(
d In,i − In

)
,

where

In,i =

∫∫
ΠT,ε

∫
BR+MT+ρ(x0)

∫ tn,i

tn,i−1

(
p̂i(t)− p̂i (tn)

)
dt dx ds dy,

In =

∫∫
ΠT,ε

∫
BR+MT+ρ(x0)

∫ tn+1

tn

(
p̂i(t)− p̂i (tn)

)
dt dx ds dy.

We have that

In,i =

∫∫
ΠT,ε

∫
BR+MT+ρ(x0)

∫ tn,i

tn,i−1

(
qi
(
uΔt(x, t), u(y, s)

)− qi
(
uΔt (x, tn) , u(y, s)

))
× (

ϕε,ρΩh,τ
)
xi
(tn) dt dx ds dy

+

∫∫
ΠT,ε

∫
BR+MT+ρ(x0)

∫ tn,i

tn,i−1

qi(uΔt(x, t), u(y, s))
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×
((
ϕε,ρΩh,τ

)
xi

− (
ϕε,ρΩh,τ

)
xi
(tn)

)
dt dx ds dy

=: I1n,i + I2n,i.

Analogously,
In = I1n + I2n.

Consider the first term, namely

∣∣I1n,i∣∣ ≤ ‖fi‖Lip
∫∫
ΠT,ε

∫
BR+MT+ρ(x0)

∫ tn,i

tn,i−1

|uΔt(x, t)− uΔt(x, tn)|

× (|(ϕε,ρ)xi(tn)|Ωh,τ (tn) + ϕε,ρ(tn) |(Ωh,τ )xi(tn)|
)
dt dx ds dy.

Each term can be estimated as before, yielding

lim sup
ε→0

∣∣I1n,i∣∣ ≤ Const
Δt

d
ωR+MT+ρ,T (Δt;uΔt)

( 1

h
+

1

ρ

)
,

lim sup
ε→0

∣∣I1n∣∣ ≤ Const Δt ωR+MT+ρ,T (Δt;uΔt)
( 1

h
+

1

ρ

)
.

(5.27)

To estimate I2n,i, we note that since φ is a test function, then∫
Rd

qi
(
uΔt (y, tn) , u (y, tn)

)
φ(x, y, t, s)xi

dx = 0.

Using this observation to estimate I2n,i, we find that

I2n,i =

∫∫
ΠT,ε

∫
BR+MT+ρ(x0)

∫ tn,i

tn,i−1

[
qi
(
uΔt(x, t), u(y, s)

)− qi
(
uΔt (y, tn) , u (y, tn)

) ]
× ((ϕε,ρΩh,τ )xi

− (ϕε,ρΩh,τ )xi
(tn)) dt dx ds dy

=

∫∫
ΠT,ε

∫
BR+MT+ρ(x0)

∫ tn,i

tn,i−1

[
qi
(
uΔt(x, t), u(y, s)

)− qi
(
uΔt(x, t), u (y, tn)

) ]
× ((ϕε,ρΩh,τ )xi

− (ϕε,ρΩh,τ )xi
(tn)) dt dx ds dy

+

∫∫
ΠT,ε

∫
BR+MT+ρ(x0)

∫ tn,i

tn,i−1

[
qi
(
uΔt(x, t), u (y, tn)

)− qi
(
uΔt (y, tn) , u (y, tn)

) ]
× ((ϕε,ρΩh,τ )xi − (ϕε,ρΩh,τ )xi(tn)) dt dx ds dy

=: I2,1n,i + I2,2n,i ,

and similarly
I2n = I2,1n + I2,2n .
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It follows that

lim sup
ε→0

∣∣∣I2,1n,i ∣∣∣ ≤ Const
Δt

d
ωR+MT+ρ+

√
d h,T (Δt+ τ ;u)

( 1

h
+

1

ρ

)
,

lim sup
ε→0

∣∣I2,1n ∣∣ ≤ Const Δt ωR+MT+ρ+
√
d h,T (Δt+ τ ;u)

( 1

h
+

1

ρ

)
.

(5.28)

We write

I2,2n,i =

∫∫
ΠT,ε

∫
BR+MT+ρ(x0)

∫ tn,i

tn,i−1

[
qi
(
uΔt(x, t), u (y, tn)

)− qi
(
uΔt (x, tn) , u (y, tn)

)]
× ((ϕε,ρΩh,τ )xi − (ϕε,ρΩh,τ )xi(tn)) dt dx ds dy

+

∫∫
ΠT,ε

∫
BR+MT+ρ(x0)

∫ tn,i

tn,i−1

[
qi
(
uΔt (x, tn) , u (y, tn)

)
− qi

(
uΔt (y, tn) , u (y, tn)

)]
× ((ϕε,ρΩh,τ )xi

− (ϕε,ρΩh,τ )xi
(tn)) dt dx ds dy

=: I2,2,1n,i + I2,2,2n,i .

We also split I2,2n in a similar way,

I2,2n = I2,2,1n + I2,2,2n .

We have already established the bounds

lim sup
ε→0

∣∣∣I2,2,1n,i

∣∣∣ ≤ Const
Δt

d
ωR+MT+ρ,T (Δt;uΔt)

(1
ρ
+

1

h

)
,

lim sup
ε→0

∣∣I2,2,1n

∣∣ ≤ Const Δt ωR+MT+ρ,T (Δt;uΔt)
(1
ρ
+

1

h

)
.

(5.29)

What remains is to estimate

I2,2,2n,i − 1

d
I2,2,2n

=

∫∫
ΠT,ε

∫
BR+MT+ρ(x0)

[
qi
(
uΔt (x, tn) , u (y, tn)

)− qi
(
uΔt (y, tn) , u (y, tn)

)]
×
[ ∫ tn,i

tn,i−1

((ϕε,ρΩh,τ )xi − (ϕε,ρΩh,τ )xi(tn)) dt

− 1

d

∫ tn+1

tn

((ϕε,ρΩh,τ )xi − (ϕε,ρΩh,τ )xi(tn)) dt

]
dx ds dy

=

∫∫
ΠT,ε

∫
BR+MT+ρ(x0)

[
qi
(
uΔt (x, tn) , u (y, tn)

)− qi
(
uΔt (y, tn) , u (y, tn)

)]
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×
[∫ tn,i

tn,i−1

(ϕε,ρΩh,τ )xi
dt− 1

d

∫ tn+1

tn

(ϕε,ρΩh,τ )xi
dt

]
dx ds dy.

For any differentiable function h(t)∫ tn,i

tn,i−1

h(t) dt− 1

d

∫ tn+1

tn

h(t) dt =
1

d

∫ tn+1

tn

(
h((t− tn)/d+ tn,i−1)− h(t)

)
dt

=
1

d

∫ tn+1

tn

∫ (t−tn)/d+tn,i−1

t

h′(ξ) dξ dt.

Thus ∣∣∣∣∣
∫ tn,i

tn,i−1

h(t) dt− 1

d

∫ tn+1

tn

h(t) dt

∣∣∣∣∣ ≤ 1

d

∫ tn+1

tn

∫ tn+1

tn

|h′(ξ)| dξ dt

=
Δt

d

∫ tn+1

tn

|h′(t)| dt.

Using h(t) = (ϕε,ρΩh,τ )xi
, we find

h′(t) = (ϕε,ρ)xit
Ωh,τ + (ϕε,ρ)xi

(Ωh,τ )t + (ϕε,ρ)t (Ωh,τ )xi
+ ϕε,ρ (Ωh,τ )xit

.

Then also I2,2,2n,i − 1
dI

2,2,2
n will consist of the corresponding four terms. We now

estimate the first of these. Recall that

(ϕε,ρ)xit
(t) = ψε(t)δ

′
ρ(p(x, t))M + (δε(t)− δε(t− T )) δρ(p(x, t)).

Furthermore

0 ≤
∑
n,i

∫ tn+1

tn

|δε(t)− δε(t− T )| dt ≤ 2d.

Using the bounds∣∣δ′ρ(p(x, t))∣∣ ≤ Const

ρ2
, and |δρ(p(x, t))| ≤ Const

ρ
,

we find that

lim sup
ε→0

∑
n,i

∣∣∣∣∣
∫∫
ΠT,ε

∫
BR+MT+ρ(x0)

[
qi
(
uΔt (x, tn) , u (y, tn)

)− qi
(
uΔt (y, tn) , u (y, tn)

)]

× 1

d

∫ tn+1

tn

∫ (t−tn)/d+tn,i−1

t

(ϕε,ρ)xit
(x, ξ)Ωh,τ (x, ξ, y, s) dξ dt dx ds dy

∣∣∣∣∣
≤ Δt

d

∑
n,i

∫∫
ΠT,ε

∫
BR+MT+ρ(x0)

|uΔt(x, tn)− uΔt(y, tn)|
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×
∫ tn+1

tn

∣∣∣(ϕε,ρ)xit
(x, t)

∣∣∣Ωh,τ (x, t, y, s) dt dx ds dy
≤ Const Δt νR+MT+ρ,T (

√
d h;uΔt)

(1
ρ
+

1

ρ2

)
.

Using analogous arguments for the remaining three terms, we find that

lim sup
ε→0

∑
n,i

∣∣∣∣I2,2,2n,i − 1

d
I2,2,2n

∣∣∣∣
≤ Const Δt νR+MT+ρ,T (

√
d h;uΔt)

(
1

ρ
+

1

ρ2
+

1

ρτ
+

1

h
+

1

ρh
+

1

hτ

)
. (5.30)

Summing up, we have that

lim sup
ε→0

|Rs| = lim sup
ε→0

∑
n,i

|d In,i − In| (5.31)

≤ lim sup
ε→0

∑
n,i

(
d
( ∣∣I1n,i∣∣+ ∣∣∣I2,1n,i ∣∣∣+ ∣∣∣I2,2,1n,i

∣∣∣ )
+
( ∣∣I1n∣∣+ ∣∣I2,1n ∣∣+ ∣∣I2,2,1n

∣∣ )+ ∣∣∣d I2,2,2n,i − I2,2,2n

∣∣∣ )
≤ Const

[(
ωR+MT+ρ+

√
d h,T (Δt+ τ ;u) + ωR+MT+ρ+

√
d h,T (Δt+ τ ;uΔt)

)
×

(
1

h
+

1

ρ

)
+Δt νR+MT+ρ,T

(√
d h;uΔt

)(
1

ρ
+

1

ρ2
+

1

ρτ
+

1

h
+

1

ρh
+

1

hτ

)]
.

Combining (5.24), (5.25), and (5.26), and using the continuity of the norms to
absorb small constants into one R, finishes the proof of the theorem. ✷

Remark 5.2. If we set Si to be the exact solution operators, the error term
Emethod vanishes. Furthermore, if u0 is of bounded variation, then

νR,T (h;uΔt) ≤ ‖u0‖BVh, νR,T (h;u) ≤ ‖u0‖BVh,

ωR,T (h;u) ≤ Const ‖u0‖BVh, and ωR,T (Δt;uΔt) ≤ Const ‖u0‖BVΔt.

Then choosing τ = ρ = h we find that

‖u( · , T )− uΔt( · , T )‖L1(Rd) ≤ Const

(
Δt

h
+Δt+ h

)
.

Minimizing this with respect to h, we find that

‖u( · , T )− uΔt( · , T )‖L1(Rd) ≤ Const
√
Δt,
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as Δt → 0. Hence, dimensional splitting using exact solution operators has a
convergence rate of 1/2, as shown in [139, 257].

We shall here present two realizations of Sit that fit into the convergence frame-
work developed in Chapter 3; namely, the front-tracking method and the char-
acteristic Galerkin method. Let us first mention that the monotone difference
schemes also fit into our convergence framework. We omit, however, the details
since dimensional splitting combined with monotone schemes is analyzed in [71].

The front-tracking method. Our first example is provided by the front-tracking
method [117, 118, 126]. As explained in Chapter 4 the front-tracking method for
a scalar conservation law is based on replacing the flux function with a continuous
and piecewise linear approximation and the initial data by a piecewise constant
approximation, and then solving the resulting perturbed problem exactly.

Next, let us briefly describe dimensional splitting combined with front tracking,
see, e.g., [125] for details. Consider a uniform Cartesian (rectangular) grid defined
by the grid size Δx > 0 and let π be the usual first-order projection (grid block
averaging) operator defined on this grid. Furthermore, let fδi be the piecewise

linear approximations to fi, and S̃i,δt the solution operator associated with the
corresponding one-dimensional equation. We shall assume that δ and Δx are
related to Δt so that all three tend to zero together. The fully discrete dimensional
splitting formula is defined by letting Si,δt = π ◦ S̃i,δt and u0 = πu0.

We now use the convergence framework developed in Chapter 3 and in this sec-
tion to investigate the convergence properties of the product formula (5.4). First,

it is well-known that the solution operators Si,δt do not introduce new extrema so
that ‖uΔt‖L∞ is uniformly bounded by ‖u0‖∞. Consequently, the local integrabil-
ity condition (3.45) holds. In fact, the following stronger (non-local) integrability
condition holds: ‖uΔt( · , t)‖1 ≤ ‖u0‖1.

After [161], it is well-known that the operators Sit are L1 contractions. This is
also true for the operator π. Thanks to translation invariance, it follows for any ρ
that ∫

Rd

|uΔt (x+ ρei, t)− uΔt(x, t)| dx ≤
∫
Rd

|u0 (x+ ρei)− u0(x)| dx.

Since u0 is integrable, it follows that it has a modulus of continuity. Hence

∑
i

∫
Rd

|uΔt (x+ ρei, t)− uΔt(x, t)| dx

≤
∑
i

∫
Rd

|u0 (x+ ρei)− u0(x)| dx =: ν (|ρ| ;u0) .

Thus the space estimate (3.46) holds.
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Next, let us show that the weak time estimate (3.47) holds. To this end, let v
be a weak solution of the one-dimensional problem

vt + g(v)x = 0, x ∈ R, t > 0, v|t=0 = v0. (5.32)

Let αh be a smooth approximation to the characteristic function of the interval
[t, s] and set ϕh(x, t) = αh(t)ϕ(x) for some test function ϕ. Inserting this into the
weak formulation of (5.32), and letting h→ 0, we find that∫

R
ϕ(x) (v(x, s)− v(x, t)) dx+

∫
R

∫ s

t

ϕxg(v) dt dx = 0.

Thus ∣∣∣ ∫
R
ϕ(x) (v(x, s)− v(x, t)) dx

∣∣∣ ≤ ‖g‖Lip ‖v‖L1(R) ‖ϕx‖∞ |s− t| . (5.33)

In view of this linear estimate, we can easily deduce∣∣∣∫
Br

(uΔt(x, t+ τ)− uΔt(x, t))φ(x) dx
∣∣∣ ≤ Constr ‖∇φ‖L∞(Rd) |τ | ,

and thus (3.47) holds. In passing, we note that if v is of uniformly bounded
variation, then the above reasoning yields

‖v( · , s)− v( · , t)‖L1(R) ≤ sup
|ϕ|≤1

∫
R
ϕ(x)(v(x, s)− v(x, t)) dx

= sup
|ϕ|≤1

∫
R

∫ s

t

ϕx(x)g(v) dt dx ≤ ‖g‖Lip ‖v‖BV |t− s| .

By Remark 3.5, uΔt also possesses a temporal modulus of continuity,

ω (h;uΔt) = Const
(√

h+ ν
(√

h;uΔt

))
.

Using Theorem 3.13, there exists a subsequence of {uΔt} that converges in
L1
loc(ΠT ) to some limit u.
To ensure that the limit function is a solution of (5.2), we need to derive an

entropy estimate for the front-tracking method and verify that the error terms in
this estimate tend to zero in a suitable manner as Δt→ 0. This is identical to the
estimates (4.23)–(4.25) and (4.26), which in this case read∫

Rd

dµI
i( · , t) ≤ ν (Δx;u0) ,∫

Rd

dµII
i ≤ ∥∥fδi ∥∥Lip ν (Δx;u0) + 3 ‖u0‖L1(Rd) ‖fi‖Lip δ,∫

Rd

dµIV
i( · , t) ≤ ν (Δx;u0) .

(5.34)
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For convergence rates, the ‘method’ term (5.12) is

Emethod
g (h, τ) =

∫
Rd

dµI +

∫∫
ΠT

1

τ
dµI +

1

h
dµII + dµIV

≤ (T + 1)ν (Δx;u0)

+ T

ν(Δx;u0)
τ

+
3maxi ‖fi‖Lip

(
ν
(
Δx;u0

)
+ ‖u0‖L1(Rd) δ

)
h


≤ ConstT

(
ν (Δx;u0)

(
1 +

1

τ
+

1

h

)
+
δ

h

)
,

(5.35)

where we have assumed that
∥∥fδi ∥∥Lip ≤ 3 ‖fi‖Lip. In our case, since νT (h;u) ≤

ν(h;u0) and νT (h;uΔt) ≤ ν(h;u0), the ‘split’ term (5.13) is

Esplit
g (h, τ) = ωT (τ ;u) + 2ν

(√
dh;u0

)
+ ωT (τ ;uΔt)

+ Δt [ωT (Δt+ τ ;u) + ωT (Δt+ τ ;uΔt)]
1

h
+Δtν

(√
dh;u0

)(
1

h
+

1

hτ

)
.

The moduli of continuity ν and ω can be chosen to satisfy ν(
√
dh;u) ≤ Constdν(h, u)

and ω(Δt+τ ;u) ≤ Const(ω(Δt;u)+ω(τ ;u)). Furthermore, we have that the initial
error satisfies ∥∥u0 − u0

∥∥
L1(Rd)

≤ ν(Δx;u0).

If we use this and h = τ , we find that

‖uΔt( · , T )− u( · , T )‖L1(Rd) ≤ Const
(
Emethod
g (h) + Esplit

g (h)
)

≤ Const

[
(ωT (h;u) + ωT (h;uΔt))

(
1 +

Δt

h

)
+ (ωT (Δt;u) + ωT (Δt;uΔt))

Δt

h

+

(
ν (h;u0)

Δt

h
++ν (Δx;u0)

)(
1 +

1

h

)
+
δ

h

]
.

Now, if the initial data are of bounded variation, all the moduli of continuity can
be chosen to be linear, and we end up with

‖uΔt( · , T )− u( · , T )‖L1(Rd) ≤ Const

(
Δx+Δt+ h+

Δx+Δt+Δt2 + δ

h

)
,

and minimizing with respect to h gives

‖uΔt( · , T )− u( · , T )‖L1(Rd) ≤ Const
√
Δt+Δx+ δ. (5.36)

If u0 is less regular than B.V., we can then obtain other convergence rates for the
front-tracking and dimensional-splitting method. Summing up, we have proved
the following theorem:
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Theorem 5.3. Suppose u0 ∈ L1(Rd)∩L∞(Rd) and f1, . . . , fd ∈ Liploc(R). Define
a sequence of functions {uΔt} by (5.4), where the front-tracking method is used to
solve one-dimensional conservation laws. Then there exists a subsequence of {uΔt}
that converges to an entropy weak solution of (5.2). If u0 ∈ L∞(Rd) ∩ L1(Rd) ∩
BV(Rd), then the convergence rate is 1/2.

Remark 5.4. Convergence of dimensional splitting with front tracking was first
established in [125] in the case u0 ∈ L1

(
Rd

) ∩ L∞ (
Rd

) ∩ BV
(
Rd

)
. Convergence

rate estimates for dimensional splitting methods were first proved independently in
[257] and [139]. In Theorem 5.3, we obtain convergence in the case u0 ∈ L1

(
Rd

)∩
L∞ (

Rd
)
. However, we can relax this requirement to u0 ∈ L∞ (

Rd
)
. If we (for

simplicity) consider the semi-discrete splitting, then this can be done as follows:
In [161] it is proved that the solution operators Sit are L1 contractions on any

ball Br. Let L > 0 denote the common Lipschitz constant of the fi’s. We can then
use the localized L1 contraction result [161] to obtain∑

i

∫
Br

|uΔt (x+ ρei, t)− uΔt(x, t)| dx

≤ sup
|ε|≤|ρ|

∑
i

∫
Br+Lt

|u0 (x+ εei)− u0(x)| dx =: νr (|ρ|;u0) .

Since u0 ∈ L1 (Br + Lt), it follows that νr : [0,∞) → R is a continuous function
with νr(0) = 0. Hence, the space estimate (3.46) holds. Similarly to the proof of
Theorem 5.3, we can use this space estimate to conclude the desired convergence.

Dimensional splitting in practice. Dimensional splitting is a simple and inex-
pensive way to extend the high-resolution methods introduced for one-dimensional
conservation laws in Appendix A to multi-dimensions. In two dimensions we tem-
porarily use the notation

ut + f(u)x + g(u)y = 0 u(x, y, 0) = u0(x, y).

In Algorithms 5.1.1 and 5.1.2 we detail the dimensional splitting algorithms for
front tracking and finite volume, respectively. In Algorithm 5.1.2 the numerical
flux functions are denoted by F and G.

A particularly efficient splitting method is obtained when front tracking is used
to approximate the one-dimensional subequation (5.2), see [116, 124, 125, 139, 180,
182]. In its simplest form, the splitting method is defined over a uniform rectan-
gular grid onto which the one-dimensional, piecewise constant front-tracking solu-
tions are projected after each directional sweep. If we let π denote the projection
operator and Si,δt the one-dimensional front-tracking operator, the corresponding
fully discrete operator splitting reads

u(x1, . . . , xm, nΔt) ≈
[
πSm,δΔt · · · πS1,δ

Δt

]n
πu0(x1, . . . , xm). (5.37)
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Algorithm 5.1.1 Dimensional splitting with front tracking in 2-D

Define a uniform grid [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2].
Construct a piecewise constant initial function u0(x, y) = πu0(x, y)
Set t = 0 and Δt = T/N
For n = 0 : N − 1

For each row j = 1, . . . , Ny
Use front tracking to compute solution v(x,Δt) of

vt + f(v)x = 0, v(x, 0) = un(x, yj)
Project solution back onto grid:

un+1/2(x, y) = πjxv(x,Δt), yj−1/2 < y < yj+1/2

end
For each column i = 1, . . . , Nx

Use front tracking to compute solution v(y,Δt) of
vt + g(v)y = 0, v(y, 0) = un(xi, y)

Project solution back onto grid:
un+1(x, y) = πiyv(y,Δt), xi−1/2 < x < xi+1/2

end
end
Set u(x, y, T ) = uN (x, y).

Algorithm 5.1.2 Dimensional splitting with a conservative scheme in 2-D

Define a uniform grid [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2].
Construct an initial function u0i,j
Set t = 0 and Δt = T/N
For n = 0 : N − 1

For each row j = 1, . . . , Ny
For i = 1, . . . , Nx

u
n+1/2
i,j = uni,j − λ

[
Fni+1/2 − Fni−1/2

]
end
For each column i = 1, . . . , Nx

For j = 1, . . . , Ny

un+1
i,j = u

n+1/2
i,j − λ

[
G
n+1/2
j+1/2 −G

n+1/2
j−1/2

]
end

end
Set u(x, y, T ) = uN (x, y).
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Recall that there are three discretization parameters: the time-step Δt, the grid
size Δxi, and the parameter δ determining the approximation of Riemann fans.
For scalar problems δ is the interval length in the piecewise linear approximation
of the flux function and for systems, δ determines the size of the jumps used to
approximate continuous rarefaction waves, see Appendix A.7. The front-tracking
algorithm is unconditionally stable and this gives a natural freedom when choosing
the size of the splitting step in (5.37).

Now we shall exhibit several concrete examples, attempting to verify the con-
vergence of dimensional spitting combined with front tracking, as described in
Theorem 5.3. In Chapter 6 we will use dimensional splitting for systems of equa-
tions, in which case there is no theory available.

Example 5.5. In the first example, we consider a linear advection equation de-
scribing rotation around the origin

ut − yux + xuy = 0, u(x, y, 0) = u0(x, y). (5.38)

Strictly speaking, this equation is not covered by our theory, since the flux func-
tions depend on the location, f(u) = −yu and g(u) = xu. However, when we
apply the splitting we solve ut − yux = 0 for y constant, and ut + xuy for x con-
stant. Hence for this example the arguments proving Theorem 5.3 remain valid.
Since the equation is linear, better convergence rates can be obtained depending
on the regularity of the initial data. Also, since the flux functions are linear (and
especially piecewise linear) the parameter δ is superfluous.

We will use two sets of initial data: a smooth Gaussian bell function

u10(x, y) = exp
[−20

(
(x− 0.6)2 + y2

)]
, (5.39)

and a discontinuous profile

u20(x, y) =

{
1, if (x− 0.6)2 + y2 ≤ 0.16,

0, otherwise.
(5.40)

To compute approximations we use the front-tracking method (5.37). Table 5.1
gives the result of a grid-refinement study of the solution after one revolution for
the two initial functions u10 and u20. The errors are measured in the discrete L1

norm using a numerical quadrature rule. For smooth initial data, the operator
splitting converges with a rate equal to its formal accuracy of order 1 in L1.
For discontinuous data, the convergence rate drops to 1

2 . This indicates that for
nonlinear equations, where discontinuities develop independently of the regularity
of the initial data, this rate is optimal. However, for many non-linear equations
discontinuities can be “self-sharpening”, and this can increase the observed rate.

Example 5.5 and numerous other experiments run by the authors verify that
the estimate of order 1/2 is sharp for linear equations. In the current algorithm the
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Table 5.1. Estimated L1 errors and convergence rates after one revolution on an n × n
grid for initial data (5.39) (top) and (5.40) (bottom).

n ν = 2.0 ν = 4.0 ν = 8.0 ν = 16.0

25 1.420e-01 — 1.023e-01 — 8.624e-02 — 2.715e-01 —
50 9.362e-02 0.60 5.976e-02 0.78 3.870e-02 1.16 5.913e-02 2.20

100 5.621e-02 0.74 3.376e-02 0.82 1.936e-02 1.00 1.703e-02 1.80
200 3.158e-02 0.83 1.797e-02 0.91 9.960e-03 0.96 6.727e-03 1.34
400 1.690e-02 0.90 9.323e-03 0.95 5.024e-03 0.99 3.132e-03 1.10
800 8.798e-03 0.94 4.764e-03 0.97 2.535e-03 0.99 1.536e-03 1.03

25 5.042e-01 — 3.829e-01 — 3.203e-01 — 8.718e-01 —
50 3.578e-01 0.49 2.558e-01 0.58 1.879e-01 0.77 1.736e-01 2.33

100 2.531e-01 0.50 1.815e-01 0.49 1.293e-01 0.54 9.713e-02 0.84
200 1.797e-01 0.49 1.278e-01 0.51 9.132e-02 0.50 6.497e-02 0.58
400 1.274e-01 0.50 9.036e-02 0.50 6.424e-02 0.51 4.577e-02 0.51
800 9.030e-02 0.50 6.390e-02 0.50 4.535e-02 0.50 3.216e-02 0.51

low order comes from the smearing introduced by applying the projection operator
to discontinuous data, which is of order O(Δx1/2). Since the equation is linear,
there will be no self-sharpening mechanisms inherent in the equation to counter-
act this smearing (see the discussion in Section 4.3). For nonlinear equations,
a self-sharpening mechanism will usually counteract the smearing induced by the
projections. Convergence rates closer to 1 will therefore be observed in practice, as
will be seen in the next two examples. Further numerical experiments for dimen-
sional splitting with front tracking for scalar conservation laws have been reported
in [125, 180, 182]. Similar grid-refinement studies for systems of conservation laws
can be found in [116, 124].

Example 5.6. Consider the inviscid Burgers’ equation,

ut +
(
1
2u

2
)
x
+
(
1
2u

2
)
y
= 0, u(x, y, 0) = u0(x, y).

As initial data we choose two Riemann problems,

u10(x) =


0.5, x > 0, y > 0,

0.25, x < 0, y > 0,

−0.5, x < 0, y < 0,

0.25, x > 0, y < 0,

and u20(x) =


−0.5, x > 0, y > 0,

0.25, x < 0, y > 0,

0.5, x < 0, y < 0,

0.25, x > 0, y < 0.

Here u10(x) gives a pattern where the four original constant states are separated
by two pairs of rarefaction waves. For each pair, the two rarefaction waves meet
in a sharp kink along the line y = x, see Figure 5.1. For u20(x), the wave pattern
consists of the four constant states separated by six shocks forming two triple
points at (3t/8,−t/8) and (−t/8, 3t/8).
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u=k1u=0.25

u=k2 u=0.25

Initial data

u=0.5

u=0.25

u=−0.5

u=0.25

u=y/t

u=x/t

u=y/t

u=
x/t

x=
−

0.5
t

x=
0.25

t

Solution: k1=0.5, k2=−0.5

u=−0.5
u=0.25

u=0.5
u=0.25

y=−x/3

x=
3t/8

y=−t/8

Solution: k1=−0.5, k2=0.5

Figure 5.1. Initial data and exact solution for the two two-dimensional Riemann prob-
lems.

Table 5.2. Estimated L1-errors and convergence rates at time t = 0.5 for Burgers’
equation with initial functions u1

0 (top) and u2
0 (bottom).

Nx ν = 1 ν = 2 ν = 4 ν = 8 ν = 16

32 1.48e-02 — 1.03e-02 — 7.34e-03 — 7.27e-03 — — —
64 9.52e-03 0.63 6.63e-03 0.64 5.18e-03 0.50 3.67e-03 0.99 3.65e-03 —

128 5.99e-03 0.67 4.14e-03 0.68 3.32e-03 0.64 2.58e-03 0.51 1.83e-03 0.99
256 3.67e-03 0.71 2.53e-03 0.71 2.07e-03 0.68 1.63e-03 0.66 1.25e-03 0.55
512 2.19e-03 0.74 1.50e-03 0.75 1.27e-03 0.71 1.00e-03 0.70 7.70e-04 0.70

1024 1.28e-03 0.78 8.70e-04 0.79 7.53e-04 0.75 6.07e-04 0.73 4.91e-04 0.65

32 8.36e-03 — 6.22e-03 — 5.86e-03 — 1.17e-02 — — —
64 4.30e-03 0.96 3.12e-03 1.00 2.93e-03 1.00 5.86e-03 1.00 1.17e-02 —

128 2.17e-03 0.99 1.56e-03 1.00 1.46e-03 1.00 2.93e-03 1.00 5.86e-03 1.00
256 1.09e-03 1.00 7.79e-04 1.00 7.32e-04 1.00 1.46e-03 1.00 2.93e-03 1.00
512 5.43e-04 1.00 3.90e-04 1.00 3.66e-04 1.00 7.32e-04 1.00 1.46e-03 1.00

1024 2.72e-04 1.00 1.95e-04 1.00 1.83e-04 1.00 3.66e-04 1.00 7.32e-04 1.00

Table 5.2 shows estimated L1 errors and convergence rates for a grid-refinement
study using the dimensional-splitting method with front tracking. For the dis-
cretization of the flux function we have used parameter δu = 0.01. Here we
observe slightly higher rates compared with Example 5.5. For u20, the strong self-
sharpening effects present near the shocks will counteract the smearing introduced
by the projection operator leading to a convergence rate of approximately 1 for
all ν under consideration. For the smooth solution resulting from u10, the self-
sharpening effects are much weaker, thereby giving a lower convergence rate.

Example 5.7. In the next example, we consider initial data which equal −1 and
1 inside two circles of radius 0.4 centred at (0.5, 0.5) and (−0.5,−0.5), respectively,
and zero elsewhere inside the square [−1, 1]× [−1, 1]. Each circle will give rise to
a leading circular shock wave and a lagging rarefaction wave propagating towards
the origin. As the two leading shocks interact, they form a stationary shock aligned
with the line y = −x. To form a more complex wave pattern, we rescale the y-flux
of Burgers’ equation slightly,

ut +
(
1
2u

2
)
x
+
(
2
5u

2
)
y
= 0.
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−1 0 1
−1

0

1

Figure 5.2. Reference solution at time t = 2.0 to the “almost Burgers” equation computed
on a 211 × 211 grid.

Table 5.3. Estimated L1-errors and convergence rates at time t = 2.0 for the “almost
Burgers” equation. The errors are computed relative to a reference solution computed
on a 211 × 211 grid.
Nx ν = 2 ν = 4 ν = 8 ν = 16 ν = 32

32 1.71e-01 — 1.58e-01 — 2.23e-01 — 3.07e-01 — 4.99e-01 —
64 1.09e-01 0.65 9.75e-02 0.69 1.30e-01 0.78 2.15e-01 0.52 3.12e-01 0.68

128 6.64e-02 0.71 5.67e-02 0.78 7.28e-02 0.83 1.19e-01 0.85 2.14e-01 0.54
256 3.70e-02 0.84 2.97e-02 0.93 3.76e-02 0.95 6.18e-02 0.95 1.14e-01 0.90
512 2.04e-02 0.86 1.48e-02 1.01 1.84e-02 1.03 3.12e-02 0.99 5.87e-02 0.96

As a result, the leading shock waves will ‘finger through’ the outskirts of the
opposite rarefaction region, leaving behind a secondary curved shock, as seen in
Figure 5.2. Table 5.3 shows the result of a grid-refinement study. As above, the
observed order of convergence is above the theoretical value of 1/2, which can be
explained by the presence of strong shelf-sharpening effects in the shock regions.

Error mechanisms and computational efficiency. Two sources of errors con-
tribute to the total error in dimensional splitting. Temporal splitting errors arise
since we split the multi-dimensional equation into a sequence of one-dimensional
problems. Loosely speaking, we can say that the temporal error determines how
well we are able to resolve the dynamics of the problem. Obviously, the temporal
error decreases with decreasing splitting steps Δt. The other source of error comes
from the discretization of each individual subequation. We will henceforth refer
to this error as the spatial error. The name comes from the observation that if the
discretization method is sufficiently sophisticated to resolve the dynamics of the
one-dimensional subequation, the associated discretization error will be reflected
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Figure 5.3. Contour plots of the rotating cylinder at time tn = 2nπ/5 for n = 1, . . . , 5.
The number of time-steps is 20, 40 and 80 from left to right corresponding to CFL
numbers 15.7, 7.9, and 3.9, respectively.

in the spatial resolution of the waves present in the approximate solution.

For the splitting method (5.37) using front tracking, the main spatial error
contribution comes from the projection onto the regular grid. This error increases
with decreasing Δt since the number of times the projection is applied is inversely
proportional to Δt. The accuracy of the one-dimensional front-tracking algorithm,
on the other hand, grows linearly with Δtδ, cf., (5.35). Altogether this means that
there are two error mechanisms that work in opposite directions: the temporal
error decreases with decreasing Δt and the spatial error increases with decreasing
Δt. To minimise the overall error we must therefore find the minimum where the
temporal error balances the splitting error.

To illustrate the two error mechanisms we revisit Example 5.5.

Example 5.8. Consider the rotation of a cylinder around the origin as described
by (5.38) with initial data given by (5.39). Since the flux function is linear, the
front-tracking algorithm will be exact, (f = fδ and g = gδ) and the only sources for
error are the projection and the directional splitting of the equation. Figure 5.3
shows the temporal evolution of the cylinder computed with twenty, forty and
eighty uniform time-steps on a uniform 100 × 100 grid. With only twenty time-
steps, the cylinder is quite deformed during the rotation but retains a sharp profile.
Eighty time-steps, on the other hand, gives an adequate representation of the
rotating cylinder but also introduces considerable smearing due to the increased
number of projections. Let us also revisit the grid-refinement study reported in
Table 5.1. For fixed grid size with n > 25, the error after one rotation decreases
with increasing CFL number. This gives a clear indication that the projection
error gives the major contribution to the total error at time t = 2π. However,
judging from Figure 5.3 it is likely that the splitting error has reached a local
temporal minimum because of cancellations due to the symmetry in the problem.
If we now plot the error versus runtime as in Figure 5.4, we observe that the
highest computational efficiency is observed for ν = 16. The only exception is on
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Figure 5.4. Errors in L1 norm versus runtime for the grid refinement study in Table 5.1.
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Figure 5.5. Errors in L1 norm versus runtime for the grid refinement study in Table 5.2
for initial data u1

0 (left) and u2
0 (right).

the 25 × 25 grid, where the five splitting steps corresponding to ν = 16 are not
sufficient to resolve the dynamics of the problem properly.

Example 5.8 demonstrated that the dimensional-splitting method based upon
front tracking has the ability to take large time-steps for the linear advection
equation. Let us now revisit Example 5.6 to see if the same is true for the nonlinear
Burgers’ equation.

Example 5.9. Figure 5.5 shows plots of the L1 error versus runtime for the grid-
refinement studies reported in Table 5.2 for initial functions u10 and u20. Initial
function u10 gives a smooth Riemann solution where the four constant states are
separated by two pairs of rarefaction waves. Since the solution is piecewise smooth,
we might have expected to obtain first-order convergence. This is clearly not the
case in the upper half of Table 5.2. The reason is the influence from the projection
operator. Due to the special symmetry of the problem, the solution can in fact
be resolved by a single Godunov splitting step. With a single step, we also obtain
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Table 5.4. Convergence of the operator-splitting solution for u1
0 with a single time-step

on a sequence of Nx ×Nx grids.

Nx 32 64 128 256 512 1024

error 7.27e-03 3.65e-03 1.83e-03 9.15e-04 4.58e-04 2.29e-04
rate — 0.994 0.997 0.999 0.999 1.000

Table 5.5. Convergence of the operator-splitting solution with Nt splitting steps on a
1024× 1024 grid. Here we have used δu = 10−3.

Nt 64 32 16 8 4 2

error 7.63e-04 6.38e-04 5.20e-04 4.16e-04 3.24e-04 2.29e-04
rate — 0.258 0.293 0.324 0.361 0.498

the expected first-order convergence, see Table 5.4. When the rarefaction wave
from the first hyperbolic step in the x-direction is projected onto the grid, the
linear wave is replaced by a staircase function. After the next hyperbolic step in
the x-direction, the solution will consist of a set of constant states separated by
rarefaction waves unless the step is sufficiently large. This means that after a few
projections, the linear rarefaction profile will be represented by an irregular step
function that appears to have small kinks. For a fixed grid, the error will therefore
increase with the number of splitting steps, as can be seen from Table 5.5. In the
grid-refinement study for u10 in Table 5.2, the highest efficiency is thus observed
for ν = 16.0, since the runtime increases with increasing number of time-steps.

Initial function u20 gives a discontinuous solution where the four constant states
are separated by six shocks forming two triple points. Resolution of the triple
points and the shocks that are not aligned with the grid directions improves with
increasing number of splitting steps. This is reflected in the error in the lower
half of Table 5.2, which has a convex behavior as a function of ν for fixed grid
size. With many splitting steps, the error is dominated by the smearing of the
discontinuities caused by the projections, and with few splitting steps the error is
dominated by the splitting error; The highest efficiency is observed for ν = 4.0.

A key point when using an operator-splitting algorithm is how to choose the
splitting step. For splitting methods based upon explicit schemes such as Algo-
rithm 5.1.2, it is natural to let the size of the splitting step equal the time-step
used in the one-dimensional schemes. This (local) time-step is restricted by a
CFL stability condition and the size of the splitting step will therefore be related
to and restricted by the spatial discretization. The front-tracking method in Al-
gorithm 5.1.1 is unconditionally stable and does not offer a “natural” choice for
the splitting steps. Hence, we can let the size of the splitting step be determined
by the underlying dynamics of the equation and not by the spatial discretization.
Often this allows for splitting steps corresponding to CFL numbers well above
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Figure 5.6. Comparison of errors in L1 norm versus runtime for the front-tracking method
(FTds), dimensional splitting with the Nessyahu–Tadmor scheme (NTds) and the multi-
dimensional Nessyahu–Tadmor scheme (NT2d). The initial functions are Riemann prob-
lems given by u1

0 (left) and u2
0 (right).

unity, which in turn means that the front-tracking method will be significantly
faster than a conventional finite-volume method. This claim has been supported
by numerous computer experiments, some of which are reported in for instance
[120, 180, 182]. Here we illustrate the point by once again revisiting Example 5.6.

Example 5.10. Figure 5.6 shows a plot of the error versus runtime for the most
efficient front-tracking runs from Figure 5.5 compared with two central-difference
methods. The method NTds is the second-order Nessyahu–Tadmor scheme (see
(A.26) in Appendix A.6.1) extended to two spatial dimensions by use of dimen-
sional splitting as in Algorithm 5.1.2. The method NT2d is the multi-dimensional
version of the Nessyahu–Tadmor scheme, see (A.26) in Appendix A.6.1. Several
points can be observed. First of all, we notice that the front-tracking method is su-
perior for the case with six shocks. For the rarefaction case, we see that although
the front-tracking method is more efficient on coarse grids, the central schemes
converges faster and will eventually be more efficient. Comparing the two central
schemes, we see that the splitting scheme gives almost the same resolution as the
unsplit scheme. However, since the operational count of NTds is higher than for
NT2d, the unsplit scheme is more efficient. Notice that this is atypical behavior
for finite-volume schemes.

As we have seen above, there are two sources of errors for dimensional splitting
with front tracking: splitting errors that are also present when using a finite-
volume method in each direction, and smearing errors introduced by the projec-
tions from the irregular front-tracking description and back onto the underlying
grid. For CFL numbers around unity, the latter is dominant. Increasing the CFL
number to well above unity reduces that diffusion, but does not increase the split-
ting errors significantly. Typically, we observe feasible CFL numbers in the range
of 10–20. Dimensional splitting with front-tracking is therefore superior to the
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finite-volume method for cases that are dominated by strong shocks, but where
the underlying dynamics is relatively simple. More complex examples will be given
in the next section, where we study applications to porous media flow, which has
been a driving force behind our development of computational methodologies and
the subsequent mathematical analysis.

The Euler characteristic Galerkin method. In this method [186] one seeks
an approximation to the weak entropy solution of the one-dimensional conservation
law

ut + f(u)x = 0,

at time tn of the form

un =
∑
j

unj φj ,

where {φj} is a family consisting of piecewise constant or piecewise linear functions.
In the standard ECG method, properties of the characteristics of the conservation
law are used to establish the relation between the values un and un+1. Then this
relation and the Galerkin projection are employed to generate the ECG scheme of
the form

〈un+1 − un, φi〉 = −Δt 〈f ′ (un) ,Φni 〉 ,
where

Φni (α) =
1

f ′ (un(α))Δt

∫ yn(α)

x(α)

φi(s) ds, yn(α) = x(α) + f ′ (un(α))Δt (5.41)

where (x(α), un(α)) is a continuous parametrization of (x, un) in the (x, u)-plane.
For the purpose of obtaining a higher order of accuracy, un on the right-hand side
of (5.41) is replaced by a physically more acceptable function ũn. The authors
[186] describe two procedures for constructing ũn: continuous linear recovery and
discontinuous linear recovery. The convergence of the methods discussed is exam-
ined in L∞([0, T ], L1(R)), 0 < T < ∞, and it is proved that the limit function of
the approximation constructed in the ECG scheme, with either of the recoveries, is
an admissible solution of the conservation law. There are also some computational
examples presenting the results of the ECG schemes with and without recovery
for the linear advection equation and the inviscid Burgers equation. In [187] the
authors extend the method to two and three space dimensions, and show the same
convergence.

The details of the method are beyond the scope of this exposition, we only
note that by a result in [39], it holds that

η (u)t +
∑
i

qi(u)xi
≤ Const sup |u| t =: C, t ∈ [0, T ], (5.42)

where the constant depends only on fi and ‖η‖Lip. Using this in Theorem 5.1, we
see

Emethod = O (Δt) . (5.43)
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For simplicity we have ignored the error produced by discretization of the initial
data as this will not affect the overall result.

Remark 5.11. If we use Theorem 5.1 without dimensional splitting, that is, using
the fully d-dimensional method as the only splitting step, we find that

Esplit = ωR,T (τ ;u) + νR,T (
√
dh;u)

+ [ωR,T (Δt+ τ ;u) + ωR,T (Δt+ τ, uΔt)]

(
1

h
+

1

ρ

)
.

Using this and (5.43) we can calculate convergence rates depending on the regu-
larity of the initial data, in particular, if u0 ∈ BV, then the convergence rate of
the (unsplit) ECG method is 1/2. This was not reported in [187] or [186].

Using the split scheme, we similarly find the following result.

Theorem 5.12. Suppose u0 ∈ L1(Rd) ∩ L∞(Rd) and f1, . . . , fd ∈ Liploc(R). De-
fine a sequence of functions {uΔt} by (5.4), where the ECG scheme is used to solve
one-dimensional conservation laws. Then there exists a subsequence of {uΔt} that
converges to an entropy weak solution of (5.2). If u0 ∈ L∞(Rd)∩L1(Rd)∩BV(Rd),
then the convergence rate is 1/2.

5.2 Weakly coupled systems of conservation laws

In this section we study the splitting framework applied to weakly coupled systems
of conservation laws

uκt +
∑
i

fκi (uκ)xi
= gκ (U) , uκ|t=0 = uκ0 , κ = 1, . . . ,K, (5.44)

or
Ut +

∑
i

Fi(U)xi
= G(U), U |t=0 = U0,

where

Fi(U) =
(
f1i

(
u1

)
, . . . , fKi

(
uK

))
, G(U) =

(
g1(U), . . . , gK(U)

)
.

As was the case for scalar conservation laws, we consider initial data U0 in L
1
(
Rd

)∩
L∞ (

Rd
)
, and assume that the solution remains in the same space for each t > 0.

Furthermore, we assume that the unique weak solution to (5.44) has nondecreasing
moduli of continuity∫

Rd

|U(x+ h, t)− U(x, t)| dx ≤ ν(|h| ;U),∫
Rd

|U(x, t+ τ)− U(x, t)| dx ≤ ω(|τ | ;U),

(5.45)
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uniformly for all t and t+ τ in [0, T ]. This assumption is satisfied if U0 ∈ BV(Rd).
We propose splitting this equation into K scalar conservation laws, and one

ordinary differential equation (parametrized by x). To fix the notation, let U =
StU0 = (u1, . . . , uK) be the solution of the uncoupled system of conservation laws

uκt +
∑
i

fκi (uκ)xi
= 0, κ = 1, . . . ,K. (5.46)

Similarly let Ot be the solution operator for the system of ordinary differential
equations

dU

dt
= G(U). (5.47)

For simplicity we use the term ‘solution operator’ to denote either an exact solution
operator or a numerical method.

In this case \ = 2 (cf. (3.57)). We define our approximation UΔt(x, t) =
(u1Δt(x, t), . . . , u

K
Δt(x, t)) as follows: (recall that tn,1 = (n+ 1/2)Δt)

UnΔt = [OΔtSΔt]
n
U0
0 ,

UΔt( · , t) = S2(t−tn)U
n
Δt for tn ≤ t ≤ tn,1,

Un,1Δt = UΔt ( · , tn,1) ,
UΔt( · , t) = O2(t−tn,1)U

n,1
Δt for tn,1 ≤ t ≤ tn+1.

(5.48)

In order to avoid blow-up, we require that G and the numerical approximation to
(5.47) are such that, for all positive r,

Ot (Br) ⊂ Be(t,r) (5.49)

for some continuous function e : [0,∞)× [0,∞) → [0,∞) with e(0, r) = r for all r.
Furthermore, we assume that G(0) = 0, so that if supp (U0) is bounded, then by
finite speed of propagation ‖G(U( · , t))‖L1 ≤ Const ‖U( · , t)‖L1 .

As before we require that the methods S and O have error terms that are
partial derivatives:

η (uκ)t +
∑
i

qκ (uκ)xi
≤ (EI

1,κ
)
t
+
∑
i

(
EII

1,κ
i

)
xi

+
∑
i,j

(
EIII

1,κ
ij

)
xixj

+ EIV
1,κ,

η (uκ)t − η′ (uκ)G (U) ≤ (EI
2,κ

)
t
+ EIV

2,κ, κ = 1, . . . ,K,

(5.50)
where the error terms EI

l,κ, . . . , EIV
l,κ are bounded by positive Radon measures as

in (5.6). We also assume that the approximation is essentially bounded and has
uniform moduli of continuity, cf. (5.7).

When we establish error estimates for conservation laws without source, we
essentially add entropy estimates for the exact solution using the approximate
solution as a “constant” and for the approximate solution using the exact solution
as a “constant”, cf. Section 5.1. In the case with source, the entropy functional
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contains η′ equal to the sign function. This is a discontinuous function, and it is
difficult to obtain estimates in terms of ω(UΔt; Δt) from terms of the type

sign(UΔt( · , t+Δt)− U)− sign(UΔt( · , t)− U).

There are a couple of ways of circumventing this obstacle. One is to rewrite
the conservation law with source as a conservation law with (x, t)–dependent flux
function [170]. The main advantage of this is that a better convergence rate is
obtained for exact solution operators. The disadvantage is that it does not exactly
fit into the present framework. The other strategy is to use a symmetric test
function φ(x, t, y, s), such that φ(x, t+ σ, y, s+ σ) = φ(x, t, y, s) and φ(x, y, t, s) =
φ(y, x, s, t), see [254]. The advantage of this is that it fits very well with the
present framework, but the disadvantage is that it gives a lower order for exact
solution operators. Furthermore, this strategy does not give local (in the sense of
L1 (BR(x0))) estimates. Nevertheless, we opt to follow the second strategy here.

Before we state the main result, we present the important Kuznetsov’s lemma.
To this end, define the functional Λ(u, v, φ) as

Λ(u, v, φ) = −
∫∫∫∫
ΠT×ΠT

[
η(u(x, t), v(y, s))φt + q(u(x, t), v(y, s)) · ∇xφ

]
dt dx ds dy

+

∫∫
ΠT

∫
Rd

(|u(x, T )− v(y, s)| − |u(x, 0)− v(y, s)|)φ dx ds dy. (5.51)

Here η(u, v) = |u− v| and

q(u, v) = (q1(u, v), . . . , qd(u, v)) = sign(u− v)
(
f(u)− f(v)

)
,

f(u) = (f1(u), . . . , fd(u))

for Lipschitz continuous functions fi.

Lemma 5.13 (Kuznetsov’s lemma [166, 167]). Let the test function φ be given by
(cf. (5.21))

φ(x, t, y, s) = Ωh,τ (x, y, t, s) = δh(x− y)δ̃τ (t− s). (5.52)

Assuming that u, v ∈ L1(ΠT ) ∩ L∞(ΠT ) have moduli of continuity in space and
time, then

‖u( · , T )− v( · , T )‖L1(Rd) ≤ ‖u( · , 0)− v( · , 0)‖L1(Rd) + Λ(u, v, φ) + Λ(v, u, φ)

+ ν(
√
d h;u) + ν(

√
d h; v) + ω(τ ;u) + ω(τ ; v), (5.53)

where ω and ν denote temporal and spatial moduli of continuity, respectively.

For a proof of this lemma, see [166, 167] or [126, Theorem 4.5].
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Lemma 5.14. Let the test function φ be given by (5.52). Assume that U =
(u1, . . . , uK) is the entropy solution of (5.44), and V = (v1, . . . , vK) is a function
in L1(ΠT ;RK) ∩ L∞(ΠT ;RK) that has a temporal modulus of continuity. Then
for κ = 1, . . . ,K,

Λ(uκ, vκ, φ) ≤ 2

∫∫
ΠT

∫∫
ΠT

χ2
2(x, t) sign(u

κ(x, t)− vκ(y, s))gκ(U(x, t))φ dt dx ds dy

+ConstT

(
Δt+ ω(Δt; vκ) +

(
Δt+ ω(Δt;uκ) + ω(Δt; vκ)

)(1

τ
+

1

h

))
, (5.54)

where we recall that χ2
2 is the characteristic function on Rd × ∪n(tn,1, tn+1), and

where the constant ConstT depends on the L1(Rd) norms of uκ and vκ and T .

Proof. For simplicity we write u = uκ, v = vκ and q = (qκ1 , . . . , q
κ
d ) for some

κ = 1, . . . ,K. Thus

Λ(u, v, φ) = −2
∑
n

tn+1∫
tn,1

∫
Rd

∫∫
ΠT

(
η(u, v)φt + q(u, v) · ∇xφ

)
dt dx dy ds

+ 2
∑
n

tn+1∫
tn,1

∫
Rd

∫
Rd

(
η(u(x, T ), v)φ− η(u(x, 0), v)φ

)
dx dy ds (5.55a)

+
∑
n

tn+1∫
tn,1

∫
Rd

∫∫
ΠT

(
η(u, v)φt + q(u, v) · ∇xφ

)
dt dx ds dy

−
∑
n

tn,1∫
tn

∫
Rd

∫∫
ΠT

(
η(u, v)φt + q(u, v) · ∇xφ

)
dt dx dy ds (5.55b)

−
∑
n

tn+1∫
tn,1

∫
Rd

∫
Rd

(
η(u(x, T ), v)φ− η(u(x, 0), v)φ

)
dx dy ds

+
∑
n

tn,1∫
tn

∫
Rd

∫
Rd

(
η(u(x, T ), v)φ− η(u(x, 0), v)φ

)
dx dy ds. (5.55c)

Since u is an entropy solution, (5.55a) will give the first term on the right of (5.54),
cf. (3.30). We now have to bound (5.55b) and (5.55c). Consider first a part of
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(5.55b), more precisely, let

I :=
∑
n

tn+1∫
tn,1

∫
Rd

∫∫
ΠT

η(u, v)φt dt dx dy ds−
∑
n

tn,1∫
tn

∫
Rd

∫∫
ΠT

η(u, v)φt dt dx dy ds.

(5.56)
To this end, change variables in the first integral, t ;→ t−Δt/2, s ;→ s−Δt/2, and
note that under this change, φt(x, t, y, s) = φt(x, t+Δt/2, y, s+Δt/2). Hence

I =
∑
n

tn,1∫
tn

∫
Rd

0∫
−Δt/2

∫
Rd

η(u(t+Δt/2), v(s+Δt/2))φt dt dx dy ds

+
∑
n

tn,1∫
tn

∫
Rd

T−Δt/2∫
0

∫
Rd

(
|u(x, t+Δt/2)− v(y, s+Δt/2)|

− |u(x, t)− v(y, s)|
)
φt dx dt dy ds

−
∑
n

tn,1∫
tn

∫
Rd

T∫
T−Δt/2

∫
Rd

η(u, v)φt dx dt dy ds

=: I1 + I2 + I3.

Now

|I1| ≤
∫∫
ΠT

Δt/2∫
0

∫
Rd

(|u|+ |v|)
∣∣∣δ̃′τ (t− s)

∣∣∣ δh(x− y) dx dt dy ds.

Since both u and v are in L1(ΠT ) ∩ L∞(ΠT ), we find that

|I1| ≤ ConstT
Δt

τ
,

and similarly,

|I3| ≤ ConstT
Δt

τ
.

Also

|I2| ≤
∫∫
ΠT

∫∫
ΠT

(
|u(x, t+Δt/2)− u(x, t)|

+ |v(y, s+Δt/2)− v(y, s)|
) ∣∣∣δ̃′τ (t− s)

∣∣∣ δh(x− y) dt dx ds dy

≤ ConstT (ω(Δt;u) + ω(Δt; v))
1

τ
.
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The remaining part of (5.55b) (replacing ηφt in (5.56) by q · ∇xφ) is estimated
essentially the same way. Indeed we find that the absolute value of

∑
n

tn+1∫
tn,1

∫
Rd

∫∫
ΠT

q(u, v) · ∇xφ dt dx dy ds−
∑
n

tn,1∫
tn

∫
Rd

∫∫
ΠT

q(u, v) · ∇xφ dt dx dy ds

(5.57)
is less than

M

∫∫
ΠT

Δt/2∫
0

∫
Rd

(|u|+ |v|) |∇xδh(x− y)| δ̃τ (t− s) dx dt ds dy (5.58a)

+M

∫∫
ΠT

∫∫
ΠT

(
|u(x, t+Δt/2)− u(x, t)|+ |v(y, s+Δt/2)− v(y, s)|

)
× |∇xδh(x− y)| δ̃τ (t− s) dt dx ds dy

(5.58b)

+M

∫∫
ΠT

T∫
T−Δt/2

∫
Rd

(|u|+ |v|) |∇xδh(x− y)| δ̃τ (t− s) dx dt ds dy, (5.58c)

where M = ‖f‖Lip. So (5.58a) and (5.58c) are bounded by

ConstT
Δt

h
,

and (5.58b) is bounded by

ConstT

(
ω(Δt;u) + ω(Δt; v)

) 1

h
.

Summing up, we have found the bound on (5.55b) to be

ConstT (Δt+ ω(Δt;u) + ω(Δt; v))

(
1

τ
+

1

h

)
. (5.59)

Now we estimate the “boundary terms” (5.55c) which consists of two identical
parts evaluated for t = T and t = 0, respectively. We consider the terms with
t = T only, namely

∑
n

( tn∫
tn,1

∫∫
Rd×Rd

η(u(x, T ), v)φ dx dy ds−
tn+1∫
tn,1

∫∫
Rd×Rd

η(u(x, T ), v)φ dx dy ds

)
. (5.60)

By changing variables s ;→ s−Δt/2 in the last integral, we find that the absolute
value of (5.60) is bounded by

∣∣∣∑
n

tn,1∫
tn

∫∫
Rd×Rd

(
|u(x, T )− v(y, s)|φ(x, T, y, s)
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− |u(x, T )− v(y, s+Δt/2)|φ(x, T, y, s+Δt/2)

)
dx dy ds

∣∣∣
≤

∑
n

tn,1∫
tn

∫∫
Rd×Rd

δh(x− y)

(
|u(x, T )− v(y, s)|

∣∣∣δ̃τ (T − s)− δ̃τ (T − s−Δt/2)
∣∣∣

+
∣∣ |u(x, T )− v(y, s)| − |u(x, T )− v(y, s+Δt/2)| ∣∣

× δ̃τ (T − s−Δt/2)

)
dx dy ds

≤
∑
n

tn,1∫
tn

∫∫
Rd×Rd

δh(x− y) |u(x, T )− v(y, s)|

×
∣∣∣δ̃τ (T − s)− δ̃τ (T − s−Δt/2)

∣∣∣ dx dy ds
+
∑
n

tn,1∫
tn

∫∫
Rd×Rd

δh(x− y) |v(y, s)− v(y, s+Δt/2)| δ̃τ (T − s−Δt/2) dx dy ds

=: J1 + J2.

The term J2 is estimated as usual; the integral over x equals unity using the
approximate delta function δh(x − y). The y-integral of the difference in v is
estimated using the time modulus ω, and the integral of δ̃τ with respect to s is
estimated by unity. Thus

J2 ≤ ω(Δt; v).

To find a bound on J1 we use that u and v are integrable. Hence

J1 ≤
∑
n

tn,1∫
tn

∫∫
Rd×Rd

δh(x− y)
( |u(x, T )|+ |v(y, s)| ) ∣∣∣∣∣

∫ T−s

T−s−Δt/2

δ̃′τ (z) dz

∣∣∣∣∣ dx dy ds
≤

∑
n

tn,1∫
tn

(∫
Rd

|u(x, T )| dx+

∫
Rd

|v(y, s)| dy
)∫ Δt/2

0

∣∣∣δ̃′τ (z + T − s)
∣∣∣ dz ds

≤
(∫

Rd

|u(x, T )| dx+ sup
0≤s≤T

∫
Rd

|v(y, s)| dy
)∫ T

0

∫ Δt/2

0

∣∣∣δ̃′τ (z + T − s)
∣∣∣ dz ds

≤
(∫

Rd

|u(x, T )| dx+ sup
0≤s≤T

∫
Rd

|v(y, s)| dy
)∫ τ

0

∫ Δt/2

0

Const

τ2
dz ds

≤ ConstT
Δt

τ

(‖u(T )‖1 + sup
0≤t≤T

‖v(t)‖1
)
. (5.61)

Collecting the bounds (5.59) and (5.61) finishes the proof. ✷
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Then we have the following result:

Theorem 5.15. Let U denote the weak entropy solution of (5.44), and UΔt an
approximate solution given by (5.48). For all sufficiently small constants τ and h
we have that

‖U( · , T )− UΔt( · , T )‖1 ≤
√
K

(‖U( · , 0)− UΔt( · , 0)‖1 + Emethod + Esplit
)

×
(
1 + 2 ‖G‖Lip T exp(2 ‖G‖Lip T )

)
, (5.62)

where ‖G‖Lip denotes the Lipschitz constant of G and

Emethod = ConstT

[
sup

0≤t≤T

∫
Rd

dµI( · , t) +
∫∫
ΠT

(
1

τ
dµI +

1

h
dµII +

1

h2
dµIII + dµIV

)]
(5.63)

and

Esplit = ConstT

[
ν(
√
d h;U) + ν(

√
d h;UΔt) + ω(τ ;U) + ω(τ ;UΔt) + Δt

+ ω(Δt;UΔt) +
(
Δt+ ω(Δt;U) + ω(Δt;UΔt)

)(
1

τ
+

1

h

)]
. (5.64)

Proof. Kuznetsov’s lemma states that

‖uκ( · , T )− uκΔt( · , T )‖1 ≤ ‖u( · , 0)− uκΔt( · , 0)‖1 +Λ(uκ, uκΔt, φ) + Λ(uκΔt, u, φ)

+ ν(
√
d h;uκ) + ν(

√
d h;uκΔt) + ω(τ ;uκ) + ω(τ ;uκΔt). (5.65)

Lemma 5.14 provides an estimate for Λ(uκ, uκΔt, φ). More precisely, for κ =
1, . . . ,K,

Λ(uκ, uκΔt, φ) ≤
− 2

∫∫
ΠT

∫∫
ΠT

χ2
2(x, t) sign(u

κ(x, t)− uκΔt(y, s))g
κ(U(x, t))φ dt dx ds dy

+ConstT

(
Δt+ ω(Δt; vκ) +

(
Δt+ ω(Δt;uκ) + ω(Δt;uκΔt)

)(1
τ
+

1

h

))
. (5.66)

It remains to estimate Λ(uκΔt, u
κ, φ). Lemma 3.15, applied to the present case,

states that

−
∫∫
ΠT

(
η (uκΔt, k)φt + qκ (uκΔt, k) · ∇xφ

)
dt dx

≤
∫∫
ΠT

η′ (uκΔt, k) g
κ (UΔt)φ dt dx+ Eκ (Δt;φ) + Ĩκ1 + Ĩκ2 , (5.67)
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with

Eκ(Δt;φ) =
2∑
l=1

[ ∫∫
ΠT

χ2
l

(
|φt| dµI

lκ + 2
(∑
i

|φxi
| dµII

lκ
i

+
∑
i,j

∣∣φxixj

∣∣ dµIII
lκ
ij + |φ| dµIV

lκ
))

+

N−1∑
n=0

∫
Rd

|φ( · , tn,l)| dµI
lκ( · , tn,l)

]
, (5.68)

Ĩκ1 = 2

2∑
l=1

∫∫
ΠT

(
χ2
l −

1

2

)
qlκ (uκΔt) · ∇xφ dt dx,

Ĩκ2 = 2

2∑
l=1

∫∫
ΠT

(
χ2
l −

1

2

)
η′ (uκΔt) g

lκ (UΔt)φ dt dx.

Explicitly, we find

Eκ(Δt;φ) =
∫∫
ΠT

χ2
1

(
|φt| dµI

1,κ + 2
(∑
i

|φxi
| dµII

1,κ
i

+
∑
i,j

∣∣φxixj

∣∣ dµIII

1,κ
ij + |φ| dµIV

1,κ
))

+

N−1∑
n=0

∫
Rd

|φ( · , tn,1)| dµI
1,κ( · , tn,1)

+

∫∫
ΠT

χ2
2

(|φt| dµI
2,κ + 2 |φ| dµIV

2,κ
)

+

N−1∑
n=0

∫
Rd

|φ( · , tn+1)| dµI
2,κ( · , tn+1)

=

∫∫
ΠT

(
|φt| dµI

κ + 2
(∑

i

|φxi
| dµII

κ
i +

∑
i,j

∣∣φxixj

∣∣ dµIII
κ
ij + |φ| dµIV

κ
))

+

N−1∑
n=0

2∑
l=1

∫
Rd

|φ( · , tn,l)| dµI
lκ( · , tn,l),

where

dµI
κ = χ2

1 dµI
1,κ + χ2

2 dµI
2,κ, dµII

κ = χ2
1 dµII

1,κ,

dµIII
κ = χ2

1 dµIII
1,κ, dµIV

κ = χ2
1 dµIV

1,κ + χ2
2 dµIV

2,κ.
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Furthermore, using that q2,κ = 0, the term Ĩκ1 can be rewritten as

Ĩκ1 =

∫∫
ΠT

(
χ2
1 − χ2

2

)
qκ (uκΔt, k) · ∇xφ dt dx. (5.69)

We collect the terms involving the source term gκ, using g1,κ = 0, and find∫∫
ΠT

η′ (uκΔt, k) g
κ (UΔt)φ dt dx+ Ĩκ2 = 2

∫∫
ΠT

χ2
2 η

′ (uκΔt, k) g
κ (UΔt)φ dt dx.

Hence (5.67) reduces to (using that φ(x, t, y, s) = φ(y, s, x, t))

−
∫∫
ΠT

(
η (uκΔt, k)φt + qκ (uκΔt, k) · ∇xφ

)
dt dx

≤ 2

∫∫
ΠT

χ2
2 η

′ (uκΔt, k) g
κ (UΔt)φ dt dx+ Eκ (Δt;φ) + Ĩκ1 , (5.70)

where Eκ and Ĩκ1 are given by (5.68) and (5.69), respectively.
We now set k = uκ(y, s) and integrate over ΠT . Thus

Λ(uκΔt, u
κ, φ) ≤ 2

∫∫∫∫
ΠT×ΠT

χ2
2(x, t) η

′ (uκΔt, u
κ) gκ (UΔt)φ dt dx ds dy

+

∫∫
ΠT

Eκ (Δt;φ) ds dy +
∫∫
ΠT

Ĩκ1 ds dy. (5.71)

The term
∫∫

ΠT
Ĩκ1 ds dy is estimated as the corresponding expression (5.57), thus∫∫

ΠT

Ĩκ1 ds dy ≤ ConstT (Δt+ ω(Δt;uκΔt) + ω(Δt;uκ))
1

h
. (5.72)

Finally, the term
∫∫

ΠT
Eκ (Δt;φ) ds dy equals the term Rα given by (5.19), except

that in the present case the test function φ is simpler, corresponding to ϕε,ρ = 1.
Hence we may use the estimate of Rα derived in the proof of Theorem 5.1, namely
(5.26), with terms involving ρ absent. Thus∑

κ

∫∫
ΠT

Eκ (Δt;φ) ds dy

≤ Const

[
sup

0≤t≤T

∫
Rd

dµI( · , t) +
∫∫
ΠT

(1
τ
dµI +

1

h
dµII +

1

h2
dµIII + dµIV

) ]

= Emethod.

(5.73)
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Let now γκ be defined by

γκ(h, τ,Δt) = ν(
√
d h;uκ) + ν(

√
d h;uκΔt) + ω(τ ;uκ) + ω(τ ;uκΔt)

+ ConstT

(
Δt+ ω(Δt;uκΔt)

+
(
Δt+ ω(Δt;uκ) + ω(Δt;uκΔt)

)(1
τ
+

1

h

))
. (5.74)

Combining (5.65), (5.66), and (5.71) we find

‖uκ( · , T )− uκΔt( · , T )‖L1(Rd) ≤

‖uκ( · , 0)− uκΔt( · , 0)‖L1(Rd) + γκ(h, τ,Δt) +

∫∫
ΠT

Eκ (Δt;φ) ds dy

+ 2

∫∫∫∫
ΠT×ΠT

χ2
2(x, t) sign(u

κ(x, t)− uκΔt(y, s))(g
κ(U)− gκ(UΔt))φ dt dx ds dy.

The last term is estimated as∣∣∣∣ ∫∫∫∫
ΠT×ΠT

χ2
2(x, t) sign(u

κ(x, t)− uκΔt(y, s))(g
κ(U)− gκ(UΔt))φ dt dx ds dy

∣∣∣∣
≤ ‖gκ‖Lip

∫∫∫∫
ΠT×ΠT

|U − UΔt|φ dt dx ds dy

≤ ‖gκ‖Lip
∑
Z

∫∫∫∫
ΠT×ΠT

∣∣uZ(x, t)− uZΔt(y, s)
∣∣φ dt dx ds dy

≤ ‖gκ‖Lip
∑
Z

∫∫∫∫
ΠT×ΠT

( ∣∣uZ(x, t)− uZ(y, t)
∣∣

+
∣∣uZ(y, t)− uZ(y, s)

∣∣+ ∣∣uZ(y, s)− uZΔt(y, s)
∣∣ )φ dt dx ds dy

≤ ‖gκ‖Lip
∑
Z

(
T ν(

√
d h;uZ) + ω(τ ;uZ) +

∫ T

0

∥∥uZ( · , t)− uZΔt( · , t)
∥∥
L1(Rd)

dt
)
.

Now set

Esplit(h, τ,Δt) =
∑
κ

(
γκ(h, τ,Δt) + 2 ‖gκ‖Lip

(
ω(τ ;uκ) + T ν(

√
d h;uκ)

))
and

N(t) =
∑
κ

Nκ(t), Nκ(t) = ‖uκ( · , t)− uκΔt( · , t)‖L1(Rd) .

Thus, we have established that

N(T ) ≤ N(0) + 2 sup
κ

‖gκ‖Lip
∫ T

0

N(t) dt+ Emethod(Δt) + Esplit(h, τ,Δt).
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Finally, we use Gronwall’s inequality to conclude Theorem 5.15. ✷

Remark 5.16. If we use exact solution operators and have data with bounded
variation, then the above theorem yields

‖U( · , T )− UΔt( · , T )‖1 ≤ ConstT

(
Δt+ h+ τ +

Δt

h+ τ

)
,

which can be minimized to give a convergence rate of 1/2. This, as mentioned
before, is not optimal.

Front tracking and Euler’s method. We propose to use front tracking and
dimensional splitting to solve the multi-dimensional conservation law which can
be written as uκt +

∑
i f

κ
i (u

κ)xi = 0 as in Section 5.1, and to use the simple Euler
method to solve the ordinary differential equation uκt = gκ(U). Showing that the
resulting approximation satisfies the three basic requirements (3.45), (3.46), and
(3.47) is now an easy exercise:

Since St is an L1-contraction, we have that∥∥Un+1
∥∥
L1(Rd)

≤
(
1 + Δt ‖G‖Lip

)
‖Un‖L1(Rd) .

Hence (3.45) holds.
We then estimate the moduli of continuity of UΔt by Kružkov’s interpolation

lemma, Lemma 3.4. It is not difficult to see that∣∣∣∣ ∫Kr

φ(x) (UΔt(x, t+ τ)− UΔt(x, t)) dx

∣∣∣∣
≤ Constr

(
‖∇φ‖L∞ + ‖φ‖L∞ ‖G‖Lip

)
|τ | ,

which is (3.47). Furthermore,∫
Rd

∣∣Un+1(x+ h)− Un+1(x)
∣∣ dx

≤
(
1 + Δt ‖G‖Lip

)∫
Rd

∣∣Un,1(x+ h)− Un,1(x)
∣∣ dx.

Hence,

ν
(
h;Un+1

) ≤ (
1 + Δt ‖G‖Lip

)
ν (h;Un) , and ν (h;UΔt) ≤ Const ν (h;U0) ,

which means that (3.46) holds. From this and the Kružkov lemma, it follows that
UΔt has some temporal modulus of continuity. Furthermore, if U0 is of bounded
variation, this modulus is linear.
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Thus we find that splitting using these methods produces a sequence that
converges towards a weak entropy solution.

We have already shown that the operator St has error terms that are partial
derivatives. The operator Ot is defined by

Oτ (U) = U + τG(U),

and consequently
d

dt
η (OtU) = η′ (OtU)G(U).

This means that the entropy error in Euler’s method can be written

ηt (OtU) = η′ (OtU)G (OtU) + η′ (OtU) · (G (U)−G (OtU))

≤ η′ (OtU)G (OtU) + ‖G‖Lip |OtU − U |
=: η′ (OtU)G (OtU) + EIV

2(t).

In the context of operator splitting, we see that EIV
2 is bounded by the measure

dµIV
2 := Δt ‖G‖2Lip ‖UΔt‖L∞(Rd) dxdt,

since we are applying Oτ only for τ ≤ Δt.
The remaining part of the Emethod is the same as before, see (5.35). Hence in

this case,

Emethod(h, τ) ≤ ConstT

(
ν (Δx;u0)

(
1 +

1

τ
+

1

h

)
+
δ

h

)
. (5.75)

Setting h = τ and δ = Δx = Δt, we find that

‖U( · , T )− UΔt( · , T )‖L1(Rd) ≤
ConstT

(
Δt+ ω (h;U) + ν (h;U) + ω (h;UΔt) + ν (h;UΔt)

+
(
Δt+ ω (Δt;U) + ω (Δt;UΔt) + ν (Δt;U0)

) 1
h

)
.

Summing up, we have shown:

Theorem 5.17. Suppose U0 ∈ L1
(
Rd

)∩L∞ (
Rd

)
and f1, . . . , fd ∈ Liploc (R), and

that G is Lipschitz continuous and satisfies the no-blow up condition (5.49). Define
a sequence of functions {UΔt} by (5.48), where the front-tracking method and
dimensional splitting is used to solve the K conservation laws and Euler’s method is
used to solve the ordinary differential equation. Then the sequence {UΔt} converges
to the unique weak entropy solution of (5.44). If U0 ∈ L1

(
Rd

) ∩ L∞ (
Rd

) ∩
BV

(
Rd

)
, then the convergence rate in Δt is 1/2.

Remark 5.18. The ECG scheme and Euler’s method. Recalling the error es-
timate (5.43), we easily show that the conclusions of the above Theorem 5.17
hold if the dimensional-splitting/front-tracking approximation is replaced by the
characteristic Euler–Galerkin method.
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Monotone methods and Euler’s method. In this section we replace the front-
tracking method by a monotone method for the conservation laws. For simplicity,
we restrict ourselves to the case K = d = 1. A monotone, conservative, and
consistent method for the conservation law

ut + f(u)x = 0

is a difference method that can be cast as

un+1
i = uni − λ

(
Fni − Fni−1

)
, (5.76)

with λ = Δx/Δt, and where Fni is a numerical flux given by

Fni = F
(
uni−p, . . . , u

n
i+m

)
,

for some positive integers p and m. The method is consistent if

F (u, . . . , u) = f(u),

and monotone if
∂un+1

i

∂unj
≥ 0.

Monotone, conservative, and consistent methods converge to the entropy solution
of conservation laws. However, they are at most (formally) first-order accurate,
see, e.g., [175]. We include this example to illustrate in a simple case how the
relevant measures are obtained, not to show how our results can be applied to
state-of-the-art methods.

Let Q be given by

Q (u1, . . . , up+m+1, k) =

F (u1 ∨ k, . . . , up+m+1 ∨ k)− F (u1 ∧ k, . . . , up+m+1 ∧ k) (5.77)

where k is a constant and a∨b = max(a, b), a∧b = min(a, b). Then Q is consistent
with the entropy flux q in the sense that

Q(u, . . . , u, k) = q(u, k).

Furthermore, the result of a monotone scheme satisfies the discrete entropy in-
equality

1

Δt
(ηn+1
i − ηni ) +

1

Δx
(Qni −Qni−1) ≤ 0, (5.78)

for n ≥ 0, where η = η(u, k) = |u− k|, and ηni = |uni − k| and similarly for Qni .
Let for the moment uΔt be defined as the approximate solution of the conservation
law generated by the monotone method,

uΔt(x, t) = uni , for xi−1/2 ≤ x < xi+1/2 and tn ≤ t < tn+1. (5.79)
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We want to show (3.54) in this case that

−
∫∫
ΠT

(
η(uΔt, k)φt + q(uΔt, k)φx

)
dt dx

=−
N−1∑
n=0

∑
i

(
ηni

∫ xi+1/2

xi−1/2

(
φ (x, tn+1)− φ (x, tn)

)
dx

+ qni

∫ tn+1

tn

(
φ
(
xi+1/2, t

)− φ(xi−1/2, t)
)
dt

)
=

N∑
n=1

∑
i

∫ xi+1/2

xi−1/2

φ (x, tn) dx
(
ηni − ηn−1

i

)
+
∑
i

(
η0i

∫ xi+1/2

xi−1/2

φ (x, 0) dx− ηNi

∫ xi+1/2

xi−1/2

φ(x, T ) dx

)

+

N−1∑
n=0

∑
i

∫ tn+1

tn

φ
(
xi−1/2, t

)
dt

(
qni − qni−1

)
=

N−1∑
n=0

∑
i

[ (
ηn+1
i − ηni

) ∫ xi+1/2

xi−1/2

φ (x, tn+1) dx

+
(
qni − qni−1

) ∫ tn+1

tn

φ
(
xi−1/2, t

)
dt

]
+

∫
R

(
η(uΔt(x, 0), k)φ(x, 0)− η(uΔt(x, T−), k)φ(x, T )

)
dx. (5.80)

Now let φni be the average of φ over the grid cell [xi−1/2, xi+1/2] × [tn, tn+1]. We
multiply (5.78) by ΔxΔtφni and sum over i and n = 0, . . . , N − 2, and subtract
the resulting inequality from (5.80), yielding

−
∫∫
ΠT

(
η(uΔt, k)φt + q(uΔt, k)φx

)
dt dx

≤
N−1∑
n=0

∑
i

(
ηn+1
i − ηni

)(∫ xi+1/2

xi−1/2

φ (x, tn+1) dx− hφni

)
(5.81a)

+
N−1∑
n=0

∑
i

((
qni − qni−1

) ∫ tn+1

tn

φ
(
xi−1/2, t

)
dt− (

Qni −Qni−1

)
Δtφni

)
(5.81b)

+

∫
R

(
η(uΔt(x, 0), k)φ(x, 0)− q(uΔt(x, T−), k)φ(x, T )

)
dx. (5.81c)

The first two terms, (5.81a) and (5.81b) will give the entropy error measures. First



5.2 Weakly coupled systems of conservation laws 131

we estimate the right-hand side of (5.81a). This equals

∣∣∣∣∑
i,n

ηn+1
i − ηni

Δt

tn+1∫
tn

xi+1/2∫
xi−1/2

(
φ (x, tn+1)− φ(x, t)

)
dt dx

∣∣∣∣
≤

∑
i,n

∣∣ηn+1
i − ηni

∣∣
Δt

tn+1∫
tn

xi+1/2∫
xi−1/2

tn+1∫
t

|φt(x, s)| ds dx dt

≤
∑
i,n

∣∣un+1
i − uni

∣∣ tn+1∫
tn

xi+1/2∫
xi−1/2

|φt(x, s)| dx ds

=:

∫∫
ΠT

|φt(x, t)| dµI
1(x, t),

which defines the error term EI
1, i.e., EI

1 is defined by its action on continuous
functions e by

〈EI
1, e〉 =

∑
i,n

∣∣un+1
i − uni

∣∣ tn+1∫
tn

xi+1/2∫
xi−1/2

e(x, t) dx dt.

It is easy to see that we can bound the corresponding measure dµI
1 by∫

R
dµI

1(x, t) ≤ ωT (Δt;uΔt).

To estimate (5.81b), we write it as

∑
n,i

[ (
qni − qni−1

)(∫ tn+1

tn

φ
(
xi−1/2, t

)
dt−Δtφni

)

+
(
(q −Q)ni − (q −Q)ni−1

)
Δtφni

]
.

The first term in this expression can be bounded by

∣∣∣∣∑
n,i

qni − qni−1

Δx

tn+1∫
tn

xi+1/2∫
xi−1/2

(
φ
(
xi−1/2, t

)− φ(x, t)
)
dx dt

∣∣∣∣
≤

∑
n,i

∣∣qni − qni−1

∣∣
Δx

tn+1∫
tn

xi+1/2∫
xi−1/2

x∫
xi−1/2

|φx(z, t)| dz dx dt
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≤ ‖f‖Lip
∑
n,i

∣∣uni − uni−1

∣∣ tn+1∫
tn

xi+1/2∫
xi−1/2

|φx(x, t)| dx dt

:= 〈EII
a, φx〉,

with the relevant measure bounded by∫
R
dµII

a(x, t) ≤ ‖f‖Lip ν (Δx, u0) .

To bound the next term, recall that q(u) = Q(u, . . . , u). Then the second part
equals

−
∑
n,i

Q (uni , . . . , u
n
i )−Q

(
uni−p, . . . , u

n
i+m

)
Δx

×
∫ tn+1

tn

[∫ xi+3/2

xi+1/2

φ(x, t) dx−
∫ xi+1/2

xi−1/2

φ(x, t) dx

]
dt

≤
∑
n,i

∣∣Q (uni , . . . , u
n
i )−Q

(
uni−p, . . . , u

n
i+m

)∣∣
Δx

×
∫ tn+1

tn

∫ xi+1/2

xi−1/2

∫ x+Δx

x

|φx(z, t)| dz dx dt

≤
∑
n,i

∣∣Q (uni , . . . , u
n
i )−Q

(
uni−p, . . . , u

n
i+m

)∣∣ ∫ tn+1

tn

∫ xi+3/2

xi−1/2

|φx(x, t)| dx dt

≤ ‖F‖Lip
∑
i,n

i+m∑
j=i−p

∣∣uni − unj
∣∣ ∫ tn+1

tn

∫ xi+3/2

xi−1/2

|φx(x, t)| dx dt

=: 〈EII
b, φx〉

where F is the numerical flux function. The measure corresponding to EII
b can be

bounded by ∫
R
EII

b(x, t) ≤ ‖F‖Lip ν((m+ p)Δx;u0).

Finally we set
dµII

1 = dµII
a + dµII

b.

This is all we need to establish the terms in Emethod coming from the solution
of the conservation law; the terms coming from the Euler method are as before.
Hence the method dependent error reads

Emethod = sup
t

∫
dµI

1( · , t) +
∫∫
ΠT

(
1

τ
dµI

1 +
1

h
dµII

1 + dµIV
2

)
. (5.82)
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Furthermore, it is not difficult to show the bound

Emethod ≤ ConstT

(
1

τ
ω (Δt;uΔt) +

1

h

(
ν(Δx;uΔt) + Δt

)
+Δt

)
. (5.83)

Setting τ = h and Δx = Δt, we find that

‖u( · , T )− uΔt( · , T )‖1 ≤ ConstT

(
ν (h;u) + ω (h;u) + ν (h;uΔt) + ω (h;uΔt)

+ Δt+
1

h

(
Δt+ ν (Δt;uΔt) + ω (Δt;uΔt)

))
. (5.84)

Finally, we note that to show that these methods produce a convergent sequence,
i.e., showing that (3.45), (3.46) and (3.47) hold, is (by now) routine. Hence, we
have proved the following result. (Observe that in one dimension we have that
BV (R) ⊂ L∞ (R).)

Theorem 5.19. Suppose u0 ∈ L1 (R) ∩ L∞ (R) and f ∈ Liploc (R), and that
g is Lipschitz continuous and satisfies the no-blow up condition (5.49). Define
a sequence of functions {uΔt} by (5.48), where a monotone difference method
is used to solve the conservation law, and Euler’s method is used to solve the
ordinary differential equation. Then the sequence {uΔt} converges to the unique
weak entropy solution of (5.44). If u0 ∈ L1 (R) ∩ BV (R), then the convergence
rate in Δt is 1/2.

Source splitting in practice. In this section we shall test how the splitting of
the zeroth-order (source) term works in practice. As a test example we always use
the scalar balance equation

ut +
1

2

(
u2

)
x
= κu(1− u)

(
u− 1

2

)
. (5.85)

Here κ is a positive constant.

Example 5.20. As initial data for (5.85) we chose

u0(x) =

{
eκ(x+1)

eκ(x+1)+1
, for x ∈ [−1, 0),

eκ(x−1)

eκ(x−1)+1
, for x ∈ [0, 1),

(5.86)

and extend this periodically for x >∈ [−1, 1). The exact solution to this problem is
u(x, t) = u0(x−t/2), and it is therefore easy to compute errors, as u(x, 4) = u(x, 0).
In Figure 5.7 we show the initial function for κ = 5 and the fronts for t ∈ [0, 4].
Here we have used δ = Δx = 1/50, and a CFL-number ν = 10. At the bottom we
show the resulting piecewise constant approximate solution found by using front
tracking and Euler’s method. From Figure 5.7 we see that the location of the
shock is very accurately represented.
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Figure 5.7. (Left) The fronts in the front-tracking approximation for t ∈ [0, 4]. (Right)
The initial function (5.86), and uΔt(x, 4) found by front tracking and Euler’s method.

Table 5.6. Convergence of the operator-splitting solution to (5.86) for various Δx and ν.
Here we used δ = Δx, and κ = 5.

Δx 1/16 1/32 1/64 1/128 1/256 1/512

error (ν = 50) 3.4e-1 1.8e-1 4.7e-2 3.0e-2 1.9e-2 8.6e-3
rate — 0.9 2.1 0.7 0.7 1.4

error (ν = 10) 1.3e-1 4.2e-2 2.2e-2 9.8e-3 4.8e-3 2.2e-3
rate — 1.6 0.9 1.2 1.0 1.1

error (ν = 2) 9.0e-2 3.5e-2 1.5e-2 6.5e-3 2.6e-3 1.2e-3
rate — 1.4 1.2 1.2 1.5 1.1

The theory in this case guarantees a convergence rate of 1/2 for this problem.
Table 5.6 shows the L1 errors at t = 4 for various Δx, and for ν = 50 and ν = 10
and ν = 2. The convergence rate is actually much closer to 1 than to 1

2 , and
this indicates that our analysis is not optimal for this problem. The time spent
to compute a solution increases with decreasing time-steps, and we note that the
error decreases only slightly. To investigate this, we computed the errors and the
(approximate) time used for this problem for ν = 1, 2, 4, . . . , 64 with Δx = 1/256.
The results are shown in Figure 5.8. From Figure 5.8 we see that doubling the
effort (i.e., the CPU time), results in only a slightly smaller error.

For this specific example, with initial data given by (5.86), the characteristic
speed is positive everywhere. Therefore, the simplest example of a monotone
method is the upwind method, in this connection given by setting Fni = (uni )

2/2
in (5.76) resulting in

un+1
i = uni − Δt

2Δx

(
(uni )

2 − (
uni−1

)2)
. (5.87)

This gives a monotone method if Δx
Δt max |ui| < 1. Table 5.7 shows the convergence
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ν error
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Figure 5.8. (Left) The error vs. ν for Δx = 1/256. (Right) A log-log plot of the error
vs. the CPU time.

Table 5.7. Convergence of the operator-splitting solution to (5.86) using the upwind
method and Euler’s method, the upwind method and Heun’s method, and front-tracking
and Heun’s method for ν = 10.

Δx 1/16 1/32 1/64 1/128 1/256 1/512

error (upwind+Euler) 4.1e-2 3.6e-2 1.1e-2 6.2e-3 3.2e-3 1.7e-3
rate — 0.2 1.7 0.8 1.0 0.9

error(upwind+Heun) 4.1e-2 2.6e-2 1.1e-2 6.2e-3 3.2e-3 1.7e-3
rate — 0.7 1.3 0.8 1.0 0.9

error(f.t.+Heun) 1.3e-1 4.3e-2 2.1e-2 9.8e-3 4.8e-3 2.2e-3
rate — 1.6 1.0 1.1 1.0 1.1

of the upwind method coupled with Euler’s method for this example. For all the
examples in this section we use Δt/Δx = 0.9.

It is interesting to investigate whether we can improve the splitting method in a
simple way by using a second-order method for the ordinary differential equation.
This is not warranted by the theory, but since we observe that the convergence
rate is higher than expected anyway, it seems worth trying. Thus for the operator
Ot we use Heun’s method, i.e.,

un+1 = un +
Δt

2
(g (un) + g (un +Δtg (un))) .

The results are reported in Table 5.7. Comparing Tables 5.7 and 5.6 we observe
that a second order method for the ordinary differential equation does not give
much better results, and certainly not better convergence rates.
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Operator Splitting for Systems of Equations

The convergence theory presented later in this book is restricted to scalar equations
or weakly coupled systems. However, in this chapter we will also illustrate operator
splitting for examples not covered by the theory to show that operator splitting
is a viable numeric strategy for more general problems. In order to be consistent
with the spirit of the rest of the exposition, and as a reflection of our own previous
research activity, we have only included examples where the hyperbolic part of
the equation plays an important part. Omission of other examples and of different
methods for solving them does not in any way reflect the importance of the omitted
problems and techniques.

6.1 Operator splitting in porous media flow

In the two previous chapters we have studied two special classes of operator split-
tings: viscous splitting and dimensional splitting. Two of the examples we visited
were motivated from applications in porous media flow: Examples 4.10 and 4.11
demonstrated the applicability of viscous splitting to the polymer system modeling
a one-dimensional tertiary oil recovery process. In this section, we will demonstrate
how one can develop efficient large time-step methods for solving the saturation
equation that arises as part of standard models for flow in porous media. To this
end, we will use a combination of front tracking, dimensional splitting, and vis-
cous splitting as discussed in Sections 4.2 and 5.1. Then at the end of the section,
we show how operator splitting and front tracking can be used in a Lagrangian
framework to give highly efficient streamline methods that are currently the in-
dustry standard with respect to fast simulation. However, the splitting techniques
applied within streamline simulation are not covered by the analysis in the second
half of the book and the discussion is therefore only included to complement the
overall presentation.

For the rudiments of the modeling of porous media flow processes we refer
to [8, 54, 204]. We also recommend the recent introductory texts by Aarnes et
al. [1, 2], which include some simplified, yet efficient, Matlab routines for reservoir
simulation on Cartesian shoe-box models in three dimensions.

Two-phase, incompressible flow (of oil and water) in porous media can be
described by a system of partial differential equations consisting of an elliptic
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equation for the global fluid pressure p(x, t),

∇ · (λT∇P ) = q1(x, t) +∇ · [(λwρw + λoρo) g∇h] , (6.1)

and a parabolic equation for the saturation s(x, t) of the non-wetting phase (here
water)

φ(x)
∂s

∂t
+∇ · ZF (s, x, t)− ε∇ · (d(s, x, t)∇s) = q2(x, t), (6.2)

coupled through a semi-empirical law called Darcy’s law, which relates total fluid
velocity v(x, t) to pressure gradients

Zv(x, t) = −K(x)
[
λT (s)∇p−

(
λwρw + λoρo

)
g∇h]. (6.3)

Here φ is porosity, K is absolute permeability, g is gravity, Δρ = ρw − ρo is
density difference, h is depth, and q1 and q2 are source terms. The global pressure
is defined as

p =
1

2
(pw + po) +

1

2

∫ s

sc

(λo − λw
λ

∂pc
∂s

)
ds,

where pc = po − pw is the capillary pressure. The relative mobilities λr(s) model
that each phase will move slower through the rock in the presence of the other
phase and are given by krα(s)/µα, where k

r
α(s) is relative permeability and µα is

viscosity of phase α. The total mobility is given as λT = λo + λw. The convective
flux F (s, x) and the diffusive flux d(s, x) in the saturation equation are given by

ZF (s, x, t) = f(s)
[
Zv(x, t) + λrw(s)K(x)gΔρ∇h(x)],

d(s, x, t) = −K(x)
λrw(s)λ

r
o(s)

λrw(s) + λro(s)

∂pc
∂s

,
(6.4)

where f(s) is the fractional flow given by λrw(s)/(λ
r
w(s) + λro(s)).

To solve the coupled system (6.1)–(6.3) we will use a sequential operator split-
ting as outlined in Algorithm 6.1.1, which is often referred to as the IMPES (im-
plicit pressure, explicit saturation) algorithm or sequential splitting algorithm.

Algorithm 6.1.1 Sequential splitting for porous media flow

Set initial water saturation s0(x) = s(x, 0)
Set t = 0 and Δt = T/N
For n = 0 : N − 1

Use sn(x) to evaluate the s-dependent coefficients in (6.1) and (6.3)
Fix coefficients in (6.1) and (6.3) and solve for p(x, nΔt) and Zv(x, nΔt)
Fix Zvn(x) = Zv(x, nΔt), compute s(x, nΔt) from (6.2) with initial data sn(x)
Set sn(x) = s(x, nΔt) and t = t+Δt
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6.1.1 Dimensional splitting. For simplicity, we start by neglecting gravity and
capillary forces and set the porosity equal to unity, in which case the two-phase
model reads

∇ · Zv = 0, Zv = −K(x)λ(s)∇p, st + Zv · ∇f(s) = 0. (6.5)

To solve the saturation equation we use dimensional splitting to obtain a sequence
of one-dimensional hyperbolic problems of the form

st + vi(x)f(s)xi
= 0, s(x, 0) = s0(x). (6.6)

One can compute approximate solutions of this equation by using the extended
front-tracking method described in [181]. The dimensional-splitting method from
Algorithm 5.1.1 can therefore be applied almost directly; the only change is the
one-dimensional solution operators which are now given by (6.6).

Example 6.1. In the first example we consider a quarter five-spot test case.
The setup consists of a pattern of squares with an injection well in the centre
and production wells at the corners (±1,±1), which is repeated to infinity in all
directions. By symmetry arguments, the computational domain can be reduced
to the first quadrant, with an injection well at the origin, a production well at
(1,1), and no-flow boundaries. The wells are modeled as point sources/sinks.
Initially the reservoir is filled with oil and the permeability realization follows a
log-normal distribution. The viscosity ratio of water and oil equals 0.2, which
means that the water will tend to finger through the oil and give undesired early
water breakthrough, that is, the sudden presence of water in the production well.

Due to the unfavorable viscosity ratio, we consider two different production
strategies: a secondary recovery in which water is injected to displace the oil and
a tertiary recovery where polymer is added to the injection water to increase its
viscosity. The tertiary recovery is modeled by the polymer system introduced in
Example 4.10 on page 84,[

s
sc+ a(c)

]
t

+ Zv · ∇
[
f(s, c)
cf(s, c)

]
= 0. (6.7)

Here s denotes water saturation, c polymer concentration, and a(c) is the adsorp-
tion function. The model for the secondary recovery is a special case of (6.7) with
c ≡ 0. For the adsorption function and the fractional flow function we use

a(c) =
0.2c

1 + c
, f(s, c) =

s2

s2 + 0.2(1− s)2(1 + 50c)
.

Figure 6.1 shows a plot of the oil and water production for two different produc-
tion scenarios where we either inject pure water or we inject water with a polymer
concentration of 0.1. In the first case, the injected water fingers through the oil
because of the unfavorable viscosity ratio and gives an early water breakthrough
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Figure 6.1. (Left) Oil and water production for secondary (Case 1) and tertiary recovery
(Case 2). (Right) Percentage mass-balance error for water in the two cases.

Figure 6.2. Surface plot of the water saturation for secondary recovery (left) and tertiary
recovery (right).

(time t = 0.314) in the production well. By adding polymer to the injected fluid
in the second case, we improve the mobility ratio and obtain a later breakthrough
(time t = 0.387). Moreover, the areal sweep of the injection increases, giving a
much higher oil production. Figure 6.2 shows surface plots of the water saturation
at time t = 0.3 in both cases.

A major concern for reservoir engineers is conservation of mass. The front-
tracking method is not strictly mass conservative due to the discretization of Rie-
mann problems in terms of step functions or if an approximate Riemann solver is
used, but this mass error is in general negligible. Dimensional splitting, on the
other hand, may introduce large errors in mass conservation. A large number
of experiments show that the mass error is negligible before water breakthrough,
also for large splitting steps with CFL numbers an order of magnitude above unity.
Since the wells are modeled by a point source, the pressure and velocity will be
singular at the wells. When the water front reaches the near-well region, the mass
error increases unless the splitting step has a CFL number around unity. This sug-
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Figure 6.3. Diagonal and parallel grid of a five-spot repeated well pattern. The produc-
tion and injection wells are denoted by P and I, respectively.

gests an adaptive time-stepping strategy where the splitting steps are large when
the water front is in the middle of the reservoir and bounded by a CFL condition
around unity after water breakthrough. See [114, 120] for a thorough discussion.

Adaptive time-stepping was used in the simulation of the two recovery strate-
gies. Figure 6.1 shows that the corresponding mass error never exceeds 0.45%.

Whereas dimensional splitting (and front tracking) is a robust and efficient
method for scalar transport equations in 2-D, this is unfortunately not always the
case for the nonstrictly hyperbolic polymer system. As we will see in the next
example (from [114]), dimensional splitting with front tracking is sensitive to the
grid orientation for unstable displacements: anisotropy introduced by the splitting
may lead to unphysical fingers and this effect is accentuated as the grid is refined.

Example 6.2. In this example we consider the injection of pure water into a
reservoir that is initially filled with water and polymer with unit concentration.
The conservation equation for water is trivial in this case since it is constant for all
times. Moreover, we neglect the adsorption to obtain a linear polymer equation.
This is a simplified conceptual model designed to study numerical difficulties aris-
ing for the adverse mobility displacement (M > 1) occurring after the injection
of a polymer slug, where M is the mobility ratio between the viscosities of the
displaced fluid and the injected fluid. In the following we will use M = 10, which
implies that the total mobility is λ(c) = 1/(1 + 9c). This will create an unstable
displacement, in which the injected water tends to finger through the polymer.

The reservoir is homogeneous with a repeated five-spot well pattern, and we
use two different grid orientations, see Figure 6.3, such that the grid is diag-
onal and parallel to the main flow directions, respectively. Figure 6.4 shows the
dimensional-splitting solutions computed on a diagonal and a parallel 65×65 grid;
both solutions are plotted on the diagonal grid for comparison. The solutions are
clearly totally different. On the parallel grid, the water chooses preferred flow
directions along the grid axes and gives an unstable finger of pure water extending
from the injector and towards the producer. Similarly, on the diagonal grid, the
fluid must first move in the axial directions, which make a 45 degree with the
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Figure 6.4. Concentration contours after 0.4 pore volumes injected on the diagonal (left)
and the parallel grid (right) with Nx = Ny = 65 and CFL number 1.0. The velocity field
was updated at each time-step.

Table 6.1. Discrepancy in the discrete L1 norm between the numerical solutions on a
diagonal and parallel grid after 0.4 pore volumes injected for different spatial discretiza-
tions. All simulations used CFL number 1.0 and pressure updates at each time-step.

Nx = Ny 17 33 65 129 257

difference 0.027 0.034 0.057 0.085 0.106
rate — -0.36 -0.73 -0.58 -0.32

main flow direction (along the diagonal). This initial movement of the injected
fluid triggers unphysical fingers, and the solution on the diagonal grid therefore
contains fingers of water flowing towards the injectors in addition to the finger
towards the producer: see [114, 242] for a more thorough discussion.

The unphysical behavior on the diagonal grid is not eliminated by using a finer
grid. On the contrary, the discrepancy of the two solutions increases when the
spatial discretization parameters decreases, see Table 6.1. This is caused by earlier
breakthrough on the parallel grid and larger unphysical fingers on the diagonal grid
as the grid is refined.

6.1.2 Dimensional splitting combined with viscous splitting. Let us now
also include capillary forces in the saturation equation. This will lead to a nonlinear
second-order derivative term in the saturation equation, as can be seen from (6.4).
For simplicity only, we once again neglect gravity, and the saturation equation can
be written in the conservative form

st + Zv · ∇f(s) = ε∇ · (K(x)∇D(s)
)
, s(x, 0) = s0(x). (6.8)
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The diffusion function D(s) is an increasing function of s since ∂pc/∂s generally is
negative. However, since the mobility of one fluid will be zero when the other fluid
fills the pore space, D′(s) is zero at the endpoints s = 0 and s = 1. Equation (6.8)
will therefore degenerate to a hyperbolic equation at the endpoints in s.

To solve the equation by operator splitting, we have two choices. The first
alternative is to use dimensional splitting, giving one-dimensional sub-equations
of the form,

st + vi(x, t)fi(s)xi
= ε

(
K(x)D(s)xi

)
xi
. (6.9)

These sub-equations can then be solved by viscous splitting (4.2), for instance
using front tracking in combination with a standard finite-difference method as in
(4.12). Alternatively, we can first use a viscous splitting to obtain a hyperbolic
and a parabolic equation

st + Zv · ∇f(s) = 0, st = ε∇ · (K(x)∇D(s)
)
. (6.10)

Dimensional splitting can then be applied to one or both of the sub-equations if
necessary. Here we choose to use dimensional splitting with front tracking for the
hyperbolic sub-equation and a straightforward multi-dimensional generalization of
the finite-difference method (4.11) for the parabolic sub-equation. This approach
avoids dimensional splitting of diffusive forces and is therefore likely to have smaller
splitting errors. On the other hand, the advantage of the first approach is that it
readily opens up for the use of the corrected operator-splitting method in Algo-
rithm 4.4.1 from Section 4.4. Moreover, the parabolic substep will be faster since
an implicit scheme gives a tridiagonal systems and an explicit scheme allows for
larger time-steps than a corresponding method in multi-dimensions.

Altogether, we have now introduced three different splitting methods. The OS
method

s(x, nΔt) ≈ [HΔt πSmΔt · · · πS1
Δt

]n
πs0, (6.11)

the OSds method

s(x, nΔt) ≈ [Hm
Δt πSmΔt · · · H1

Δt πS1
Δt

]n
πs0, (6.12)

and the COS method

s(x, nΔt) ≈ [Hc,m
Δt πSmΔt · · · Hc,1

Δt πS1
Δt

]n
πs0. (6.13)

The OS splitting method is summarized in Algorithm 6.1.2 for two spatial dimen-
sions.

Example 6.3. Consider now a two-phase flow in the quarter five-spot configura-
tion from Example 6.1. For simplicity we will assume that the diffusion function is
linear D(s) = s. For the mobilities, we use the analytical expressions λw(s) = s2

and λo(s) = (1− s)2.
A natural question is to ask how fast the algorithm converges. Since the ana-

lytical solution is unknown, an indication of the convergence rate can be obtained
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Algorithm 6.1.2 OS algorithm in 2-D

Define a uniform grid [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2].
Construct a piecewise constant initial function s0(x, y) = πs0(x, y)
Set t = 0 and Δt = T/N
For n = 0 : N − 1

For each row j = 1, . . . , Ny
Use front tracking to compute solution s(x,Δt) of

st + v1(x; yj)f(s)x = 0, s(x, 0) = sn(x, yj)
Project solution back onto grid:

sn+1/3(x, y) = πjxs(x,Δt), yj−1/2 < y < yj+1/2

For each column i = 1, . . . , Nx
Use front tracking to compute solution s(y,Δt) of

st + v2(y;xi)f(s)y = 0, s(y, 0) = sn(xi, y)
Project solution back onto grid:

sn+2/3(x, y) = πiys(y,Δt), xi−1/2 < x < xi+1/2

Solve parabolic problem by finite differences on 2-D grid up to t = Δt
st = ε∇(

K(x, y)∇D(s)
)
, s(x, y, 0) = sn+2/3(x, y)

Set s(x, y, T ) = sN (x, y).
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Figure 6.5. Contour plots of water saturation at time t = 0.45 in a quarter five-spot
calculated by OS, OSds, COS and on a fine grid.
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Table 6.2. Measured errors for solution on an N ×N grid relative to a 2N × 2N grid at
time t = 0.45 for four different values of ε. The upper half is for OS with explicit finite
differences. The lower half is for OSds with implicit differences.

N ε = 5 · 10−2 ε = 5 · 10−3 ε = 5 · 10−4 ε = 5 · 10−5

64 9.60e-03 — 6.05e-03 — 5.83e-03 — 5.85e-03 —
128 4.78e-03 1.01 3.38e-03 0.84 2.94e-03 0.99 3.32e-03 0.82
256 2.50e-03 0.94 1.88e-03 0.85 1.47e-03 1.00 1.54e-03 1.11

64 5.97e-03 — 5.81e-03 — 5.77e-03 — 5.84e-03 —
128 3.91e-03 0.61 3.08e-03 0.92 2.88e-03 1.00 3.32e-03 0.81
256 2.17e-03 0.85 2.01e-03 0.62 1.47e-03 0.97 1.52e-03 1.13

by considering the self-convergence of the operator splitting. That is, we define
a sequence of meshes MΔx,MΔx/2, . . . and measure the L1 error on mesh MΔx

relative to MΔx/2. Table 6.2 gives the errors and corresponding convergence rates
measured by refining a 64 × 64 grid three times for four different values of ε. In
all runs we used only one pressure update step and CFL number 8.0. If large
time-steps are used, the resolution of shock-layers can be improved by using the
COS splitting. Figure 6.5 shows plots of approximate solutions at time t = 0.45
for ε = 0.005 obtained on a 65× 65 grid by OS, OSds, and COS with CFL number
16.0. For comparison, we include a fine grid reference solution (OS on a 257× 257
grid with CFL number 2.0). Whereas the shock layer is smeared by both OS and
OSds, the COS splitting seems to resolve it (almost) correctly.

Having indicated convergence in the previous example, we immediately turn
to another example with a touch of realism.

Example 6.4. In the final example we consider a heterogeneous reservoir with a
synthetic geomodel consisting of uniform porosity field and a Gaussian permeabil-
ity field with low-permeable blocks that are barriers to the flow. The permeability
field is given on a 257× 257 grid and has values varying between 13mD and 4.2D,
see Figure 6.7. The reservoir has five injection and five production wells, which are
all modeled as simple point sources with equal rates. The viscosity ratio µo : µw
equals 8 : 1 and ε is set to 0.01. Figures 6.6 and 6.7 show the result of a simulation
with twenty pressure updates to reach dimensionless time 1.0, which corresponds
to injection of a pore volume of water. The splitting step given by a CFL number
8.0 before water breakthrough and 1.0 after. For the operator splitting we used
the OSds method. At time t = 0.1 all the five production wells are producing
oil only. The water breaks through around time t = 0.12 in well 10, a little later
in wells 7 to 9, and around time t = 0.3 in well 6. At time t = 0.5 all wells are
producing water; for well 10 the accumulated water production almost equals the
oil production.

Concerning the quality of the simulation, we observe that the mass-balance er-
ror stays below 0.02% throughout the whole simulation. Moreover, the simulation
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Figure 6.6. Simulation of the synthetic reservoir showing twenty equally spaced saturation
contours, accumulated field production, and mass-balance error.
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Figure 6.7. (Left) Permeability plotted on a logarithmic gray scale with dark colour for
large values and light colour for small values. (Right) Accumulated production for the
five production wells.

correctly reproduces sharper gradients in the low-permeability regions.

An overview of various operator-splitting methods with applications to porous
media is given in [93]. Reference [120] contains more examples and a thorough dis-
cussion of the operator splittings used in the current section; that paper discusses
errors in mass conservation, adaptive splitting steps, grid orientation effects, and
computational efficiency for the various splittings.

In Section 5.1 we saw how dimensional splitting with front tracking is a highly
efficient method for scalar problems with simple dynamics. In many cases one
can use CFL numbers as high as 10–50 without affecting the accuracy signifi-
cantly. Unfortunately, this situation changes when sources/sinks are included in
the forcing velocity field, as is typically the case for porous media flow. Extensive
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numerical tests show that the method propagates fluid fronts very accurately in-
side the reservoir and away from the wells. Once breakthrough occurs, substantial
material balance errors are introduced if too large time-steps are used. By reduc-
ing the splitting steps to a CFL number about unity, acceptable material balance
errors are obtained. Still, for Cartesian grid models in 2-D, the above operator-
splitting methods are surprisingly robust and are able to resolve a wide range of
balances between convective and capillary forces up to breakthrough in wells.

Unfortunately, the above operator-splitting methods are not easy to extend to
more realistic models in an efficient manner. First of all, real reservoir models
are seldom given as Cartesian grids. The industry standard is to use so-called
corner-point grids, which consist of a set of hexahedral cells that are aligned in
a logical Cartesian fashion. In physical space, the rows and columns of the grid
follow geological layers and these are seldom aligned with the coordinate direc-
tions. Secondly, the magnitude of the forcing velocity field will typically have
large variations throughout space due to heterogeneities in the permeability field
and the near-singular behavior close to injection and production wells. This may
introduce severe restrictions on the global splitting steps, as observed above at
water breakthrough. Furthermore, the number of calls to one-dimensional solvers
increases dramatically for dimensional splitting in 3-D, and this makes dimensional
splitting less attractive in terms of computational efficiency.

The above arguments explain why dimensional splitting is seldom used for
industry-standard reservoir simulation. However, this does not mean that the
underlying ideas do not have their merit. In the next section, we will consider
the alternative setting of streamline simulation where front tracking and operator
splitting is used to its full potential in a leading commercial reservoir simulator.
Streamline methods [80, 258] are by many regarded as the most efficient way of
simulating large and complex reservoir models where the flow is dictated by rock
properties, well positions and rates, fluid mobility, etc.

6.1.3 Streamline methods. Two-phase models can be solved very efficiently
by using modern streamline methods, and these methods are gaining in popularity
among reservoir engineers due to their capability of solving large geological mod-
els. In the following we will discuss the operator splittings that underlie modern
streamline methods, assuming a simplified flow model given by (6.5).

A streamline associated with a velocity field Zv is defined as the line that is
everywhere tangential to the velocity field: that is, given by the relation dZx/dr =
Zv/|Zv|. For a typical reservoir that produces oil by waterflooding, the fluids will
flow along streamlines that start at injection wells and terminate at production
wells. Rather than using the arc-length to parametrize streamlines, it is common
to use the so-called time-of-flight τ , which is given by

τ(r) =

∫ r

0

φ(ζ)

Zv(ζ)
dζ,



6.1 Operator splitting in porous media flow 147

or, alternatively, by the differential relation

Zv · ∇τ = φ. (6.14)

Compared with the arc-length r, the time-of-flight takes into account the relative
voidage volume (i.e., the porosity) and can therefore be interpreted as the time
it takes to reach a given point in the reservoir for a neutral and massless particle
traveling with unit phase velocity. Next we introduce the bistream-functions ψ
and χ given by Zv = ∇ψ × ∇χ, which together with τ form a complete spatial
coordinate system. Then, we can perform a formal spatial coordinate transfor-
mation (x, y, z) ;→ (τ, ψ, χ). The gradient operator can be expressed in the new
coordinates as

∇ = (∇τ) ∂
∂τ

+ (∇ψ) ∂
∂ψ

+ (∇χ) ∂
∂χ

.

Because Zv is orthogonal to ∇ψ and ∇ξ, it follows that Zv ·∇ = φ ∂
∂τ . Combining this

with the equation for conservation of mass, ∇ · Zv = 0, we can rewrite the three-
dimensional saturation equation (6.5) as a family of one-dimensional transport
equations along streamlines,

st + ∂τf(s) = 0, s(τ, 0) = s0(τ). (6.15)

Now we can use a dimensional splitting in the transformed coordinates to define
the streamline method. That is, the solution of the saturation equation in (6.5)
can be written as

s(x, nΔt) =
[S(ψ,χ)

Δt SτΔt
]n
s0, (6.16)

where Sτ denotes the one-dimensional solution operator associated with (6.15)
and the operator S(ψ,χ) is a trivial identity operator since Zv is orthogonal to the
gradient of the two bistream-functions. For a constant (in time) velocity field, we
now have a simple method of computing the fluid flow. In the unsteady case the
velocity field is time-dependent and the coordinate transform will also depend on
time. However, if we use the sequential splitting from Algorithm 6.1.1, we avoid
this problem. For each step in the algorithm we thus impose a steady velocity field
on the saturation equation, a velocity field that is defined by the initial velocity
Zvn(x) of the time-step. The streamlines will therefore be obtained from

Zvn · ∇τn = φ,

instead of from the true velocity Zv(x, t) as in (6.14). Revisiting the operator-
splitting formula (6.16), we can now give a new meaning to the two operators

Sτ : st + ∂τnf(s) = 0,

S(ψ,χ) : st +∇ · ((Zv − Zvn)f(s)
)
= 0.

The operator S(ψ,χ) accounts for the transversal flux that arises because of tem-
poral changes in the velocity field; see [218] for a more thorough discussion. In
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practice, the effect of S(ψ,χ) is often insignificant, and this (corrective) operator
is therefore neglected. Instead, [218] proposes to use the CFL number νn defined
by the velocity residual Zv − Zvn as an indicator of the accuracy of each step in
the sequential splitting algorithm. Numerical experiments in [218] show that the
splitting is stable if ν ≤ 1, whereas unstable effects can be observed if ν > 1.

Practical implementations of the streamline method use an underlying grid
in physical space (i.e., using a grid in (x, y, z)). Streamlines are computed such
that each grid block contains at least one streamline. In the saturation solver,
saturation values are mapped from the underlying grid in physical space and onto
streamlines. This gives piecewise constant initial data defined on an irregular grid
in τ for each streamline. The solution along the streamline is computed using
an efficient one-dimensional method resulting in a new set of piecewise constant
saturation values. These saturation values are then projected onto the underlying
grid in physical space.

In general one cannot neglect gravity as was done above, and thus the satura-
tion equation assumes a more complex form

st +∇ · (Zvf(s) + Zg h(s, x)
)
= 0. (6.17)

For this equation it is natural to define a new operator splitting

s(x, nΔt) =
[SgΔt SτΔt]ns0,

where the operator Sg is defined by

st +∇ · (Zg h(s, x)) = 0

and acts along gravity lines given by dZx/dr = Zg/|Zg|. This operator splitting was
first introduced by Gmelig Meyling [105, 106] and later made popular by Bratvedt
et al. [38]. In a practical implementation of the algorithm, one must also include
projections back to an underlying grid in physical space (as discussed above). Thus
the numerical algorithm can be written

s(x, nΔt) =
[
πg SgΔt πτ SτΔt

]n
s0,

where πg and πτ denote projection operators from gravity lines and streamlines to
the grid in physical space. This operator splitting is used in current commercial
streamline simulators.

Example 6.5. Figures 6.8 and 6.9 show computations of a reservoir model de-
scribing a 1000 × 500 × 100m reservoir with five horizontal layers with different
permeabilities. Within each layer the permeability is constant. The system is
discretized using 100 grid blocks in the x and z directions and a single block
in the y direction. A reference solution was also generated using 500 blocks in
x and z directions. The pressure equation is discretized by a standard seven-
point finite-difference approximation, see, e.g., [1]. The transport equations along
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Figure 6.8. Water saturation in the (x, z) plane after 1024 days computed with different
number of sequential splitting steps.
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Figure 6.9. Water saturation in the (x, z) plane after 1024 days computed with a single
pressure update and varying number of gravity steps.

streamlines are solved using the front-tracking method, which we have seen is ca-
pable of tracking piecewise constant saturations on an arbitrary irregular grid. For
this particular case, the gravity lines are aligned with the vertical direction and
this simplifies the gravity step.

Figure 6.8 shows the resulting water saturations after simulating the above
model for 1024 days using different number of sequential steps in Algorithm 6.1.1.
Clearly the correct overall behavior, with breakthrough occurring in the third
layer, is only recovered for the stable time-step with ν < 1. The actual correction
step is not performed as the contributions to the grid block saturations are very
small, but the associated CFL number is nonetheless useful for classifying stable
time-steps.

Mapping streamline saturations to the grid significantly smears the solution,
as we also observed for the dimensional splittings in Section 5.1. Hence, the
effect of refining the gravity splitting will often be dominated by this smearing.
However, if the sequential steps are large, it is often possible to observe a significant
improvement when increasing the number of gravity steps, as shown in Figure 6.9.
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Having included gravity in the saturation solver, the final question is how to
include capillary forces. Referring to (6.2), the saturation equation can be written
in the general form

st +∇ · (Zvf(s) + Zg h(s, x)
)
= ε∇ · (K(x)∇D(s)

)
.

The obvious choice is to use a viscous splitting as in Section 6.1.1,

st +∇ · (Zvf(s) + Zg h(s, x)
)
= 0, st = ε∇ · (K(x)∇D(s)

)
,

and solve the parabolic sub-equation on the underlying grid by some standard
method. The corresponding operator-splitting method reads

s(x, nΔt) =
[HΔt πg SgΔt πτ SτΔt

]n
s0.

Unfortunately, such an operator-splitting method would suffer from the shortcom-
ings discussed in Section 4.3, and would in general require a splitting step propor-
tional to ε in order to resolve shock layers correctly. Still, it may prove useful in
particular cases and has been investigated by several authors, e.g., [25, 227].

At the time of writing it is an open question how to extend the idea of flux
corrections to this kind of splitting. Conceptually, one may apply the streamline-
bistream transformation also to the diffusion operator and introduce a splitting of
the form,

st + f(s)τ = ε∂τ
(
K∂τD(s)

)
,

st = ε∇(ψ,χ)

(
K∇(ψ,χ)D(s)

)
,

st +∇ · (Zg h(s, x)) = 0,

where the first operator is then approximated by a one-dimensional COS approxi-
mation. In 2-D, this may be conceivable since the bistream directions can be found
by direct integration of dZx/dψ = Zv⊥/|Zv|. Whether this actually will be efficient or
not is an open question.

6.2 Dimensional splitting for systems of conservation laws

The general convergence theory presented in the second half of the book only ap-
plies to scalar equations and systems of equations that are weakly coupled through
source terms. Operator splitting, however, is generally applicable to any system.
In this and the next section we will therefore show the application of various
operator splittings to systems of conservation and balance laws, for which our
convergence theory is not applicable. We will consider dimensional splitting, split-
ting of geometrical source terms and source terms modeling chemical reactions.
By doing so, we wish to further demonstrate the general applicability of operator



6.2 Dimensional splitting for systems of conservation laws 151

splitting, but also show some of the potential shortcomings and limitations one
may observe for systems of conservation laws (as we already have done for the
non-strictly hyperbolic polymer system in the previous section).

In the first examples, we study the Euler equations for an ideal, polytropic gas
which is the canonical example of a hyperbolic system of conservation laws. In
two spatial dimensions the equations read

ρ
ρu
ρv
E


t

+


ρu

ρu2 + p
ρuv

u(E + p)


x

+


ρv
ρuv

ρv2 + p
v(E + p)


y

= 0. (6.18)

Here ρ denotes the density, u and v the velocity in the x and y directions, p
the pressure, and E the total energy (kinetic plus internal energy) given by E =
ρ(u2 + v2)/2 + p/(γ − 1). In all computations we use γ = 1.4.

To solve the Euler equations we will employ two operator-splitting methods: a
method based upon front tracking (FTds), as described in [124], and the Nessyahu–
Tadmor scheme used componentwise (called NTds). For comparison with an
unsplit scheme we will include the two-dimensional extension of the Nessyahu–
Tadmor scheme (NT2d), see (A.28).

Example 6.6. Consider the Euler equations (6.18) with initial data

(ρ, u, v, p) = (r(x, y), cos θ, sin θ, 1),

where r(x, y) equals one of two functions

r1(x, y) = 1 + 0.1 cos(2πx) cos(2πy),

r2(x, y) =

{
1.0, if |x− 0.5| < 0.1 and |y − 0.5| < 0.1,

0.5, otherwise,

defined over the unit square with periodic boundary data. For constant θ, this
initial data gives a linear advection of the initial profile along a vector v =
(cos θ, sin θ).

Table 6.3 shows estimated L1-errors and convergence rates obtained through
a grid-refinement study with FTds, NTds, and NT2d on a series of grids with
Nx × Nx cells. The time-steps for the central schemes were restricted by a CFL
condition of 0.3. For the smooth solution we used central differences to construct
the slopes in the reconstruction (i.e., no limiter) and for the discontinuous profile
we used the MM2 limiter, which reduces to central differences if

1/3 ≤ |ui − ui−1|/|ui+1 − ui| ≤ 3.

For FTds, we used Nt/8 splitting steps for the discontinuous case and a CFL
condition of 8.0 in the smooth case.
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Table 6.3. Estimated L1-errors, convergence rates and runtimes in seconds for the solu-
tion of Euler equations at time t = 0.5 with initial density variation r1(x, y) and θ = π/10
(upper part) and r2(x, y) and θ = π/4 (lower part).

NT2d NTds FTds
Nx error rate time error rate time error rate time

16 4.236e-03 — 0.06 2.307e-03 — 0.07 6.771e-03 — 0.01
32 8.910e-04 2.25 0.40 3.178e-04 2.86 0.47 3.406e-03 0.99 0.05
64 2.134e-04 2.06 4.24 6.216e-05 2.35 3.72 1.704e-03 1.00 0.39

128 5.320e-05 2.00 28.50 1.564e-05 1.99 28.70 8.713e-04 0.97 2.81
256 1.335e-05 1.99 211.00 4.074e-06 1.94 225.00 4.328e-04 1.01 21.20
512 3.348e-06 2.00 1820.00 1.047e-06 1.96 1680.00 2.165e-04 1.00 168.00

16 3.181e-02 — 0.09 3.140e-02 — 0.10 1.239e-02 — 0.01
32 1.549e-02 1.04 0.57 1.510e-02 1.06 0.64 7.514e-03 0.72 0.01
64 8.977e-03 0.79 5.36 8.792e-03 0.78 4.76 5.617e-03 0.42 0.04

128 5.543e-03 0.70 36.90 5.465e-03 0.69 37.50 3.733e-03 0.59 0.18
256 3.361e-03 0.72 281.00 3.323e-03 0.72 295.00 2.662e-03 0.49 1.42
512 1.974e-03 0.77 2450.00 1.959e-03 0.76 2280.00 1.860e-03 0.52 9.45

The solution for r1 is smooth and we observe the expected first-order conver-
gence for FTds and second-order convergence for the central schemes. Somewhat
surprising, we note that NTds generally has lower error than NT2d. A comparison
of error versus runtime shows that the two second-order schemes perform almost
equally and are superior to the first-order front-tracking method.

The solution for r2 is discontinuous and therefore the convergence rates are
reduced to well below 1.0. Comparing error versus runtime shows that the front-
tracking method is far superior with a factor up to 250 in runtime on the finer grids.
The reason for this high efficiency is that there are only a small number of waves
that needs to be resolve, as opposed to the smooth case, which is approximated in
terms of a large number of small waves.

Although the above example was quite simple, it demonstrated important char-
acteristics of the methods considered. The second-order central-difference scheme
gives a fairly good resolution of smooth waves, but behaves poorly on linear dis-
continuities (contacts and shear waves). The front-tracking scheme, on the other
hand, gives excellent resolution of discontinuities, but is only first-order accurate
on smooth waves.

In the next example we will study the Riemann problem in two spatial dimen-
sions, which has a richer wave structure. The 2-D Riemann problem consists of
four uniform states, one in each quadrant. The corresponding wave structures can
be categorized into 19 different patterns [238] (see also [165, 165, 173]) when the
constant states are chosen such that the four one-dimensional Riemann problems
between the quadrants lead to a single wave that is either a shock, a rarefaction or a
contact/slip. Here we choose one of these configurations (number five from [173]),
where the similarity solution consists of four contact discontinuities/slip-lines.

Example 6.7. Consider the Euler equations (6.18) on the unit square [−0.5, 0.5]×
[−0.5, 0.5] with constant initial data in each quadrant. In primitive variables
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front tracking NTds + MM1 limiter

NT2d + MM1 limiter NTds + compressive limiter

Figure 6.10. Emulated Schlieren images of the 2-D Riemann problem, configuration
number 5 computed on a 400 × 400 grid. The plots show the magnitude of the density
gradient depicted on a nonlinear grayscale.

vi = (p, ρ, u, v) these data are

v2 = (1.0, 2.0,−0.75, 0.5), v1 = (1.0, 1.0,−0.75,−0, 5),
v3 = (1.0, 1.0, 0.75, 0.5), v4 = (1.0, 3.0, 0.75,−0.5).

Figure 6.10 shows the solutions computed by front tracking, the NTds, and a
variant of the NT2d scheme where we have included improved quadrature rules
for the flux computations to reduce grid orientation effects [183]. The runtimes are
respectively 118, 694, and 1210 CPU seconds. For the NTds and NT2d schemes we
used CFL number 0.475 (giving 264 time-steps) and for the front-tracking method
we used 100 equally spaced time-steps.

The solutions are plotted as emulated Schlieren images by depicting the norm
of the density gradient in a nonlinear graymap, that is, show (1− ‖∇ρ‖)p for p ∼
10–15. This visualization technique is particularly useful for depicting gradients in
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the density, but is also excellent for enhancing small-scale variances, for instance,
the small numerical artifacts seen as shaded vertical/horizontal lines. In the visual
norm, there is no apparent quality difference in the computations: the curved
shocks are resolved accurately and the contacts are too diffusive. To improve the
resolution of the contacts for the NTds scheme (and also for the NT2d scheme),
we can employ a more compressive (but also potentially more dangerous) limiter.
The lower-right plot in Figure 6.10 shows a computation with the SBM limiter
[184] with θ = 2.0 and τ = 0.25. For the front-tracking method, the contacts
can be sharpened by increasing the splitting step. However, this will result in the
creation of more spurious small-scale oscillations in the region bounded by the
curved shocks.

To further assess the grid-orientation effects introduced by the dimensional-
splitting approach we can study a problem with circular symmetry on a Cartesian
grid. To be specific, we study a radially symmetric version of Sod’s test problem.

Example 6.8. Consider the Euler equations subject to the initial conditions

(ρ, u, v, p)(x, y, 0) =

{
(1.0, 0, 0, 1.0), |x|2 + |y|2 ≤ 0.16,

(0.0125, 0, 0, 0.1), otherwise.

The solution consists of a circular shock wave propagating outwards from the
origin, followed by a contact discontinuity, and a rarefaction wave travelling toward
the origin.

Figure 6.11 shows a scatter plot of the solution at time t = 0.2 computed by
front tracking, the NTds and the NT2d scheme (with improved quadrature rules).
A scatter plot of a quantity is a plot of the value in each grid cell versus the dis-
tance of the cell centre from the origin. In this way we can present the spread
in the data, as a solution with perfect radial symmetry would consist of points
lying on a single line. In Figure 6.11 the solid line is a reference solution com-
puted by a splitting method with shock tracking for the reduced one-dimensional,
inhomogeneous system describing the radial flow (see Example 6.10 below).

The NTds scheme shows small grid-orientation effects and is comparable with
the multi-dimensional scheme NT2d. The front-tracking scheme, on the other
hand, clearly exhibits splitting errors, but has sharper resolution of the shock
and produces fewer overshoots in the post-shock region. The result of a grid-
refinement study is reported in Table 6.4. For the central schemes we used a
CFL condition of 0.475 and the MM2 limiter, and for the front-tracking method
we used splitting steps corresponding to CFL numbers around 1.2. We see that
the accuracy and efficiency of the three schemes are quite similar, with a slight
preference to the central schemes over the front-tracking method, for which the
analytical Riemann solver [109] applied is relatively costly compared with the
Riemann solver used in the scalar case.

In the final example we will study a dambreak problem described by the shallow
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Figure 6.11. Solution of the radially symmetric Sod’s problem computed on a 101× 101
grid using 10 time-steps for front tracking and CFL number 0.475 (giving 23 time-steps)
for the central schemes.

Table 6.4. Estimated L1-errors, convergence rates and runtimes in seconds for the solu-
tion of the radial Sod’s problem at time t = 0.2.

N NT2d NTds FTds

16 9.17e-02 — 0.01 9.06e-02 — 0.02 1.10e-01 — 0.01
32 7.28e-02 0.33 0.06 7.13e-02 0.35 0.07 6.57e-02 0.74 0.11
64 3.66e-02 0.99 0.60 3.74e-02 0.93 0.55 3.87e-02 0.76 0.53

128 2.00e-02 0.87 4.05 1.88e-02 0.99 4.13 2.54e-02 0.61 3.18
256 1.08e-02 0.89 30.20 9.71e-03 0.95 32.30 1.53e-02 0.73 21.10
512 6.06e-03 0.83 240.00 5.31e-03 0.87 261.00 9.31e-03 0.72 154.00

water equations, which are obtained by considering a depth-integrated flow, h
hu
hv


t

+

 hu
hu2 + 1

2gh
2

huv


x

+

 hv
huv

hv2 + 1
2gh

2


y

= 0.
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Here h denotes water depth, u and v are depth-averaged velocities in the x and y
directions, respectively, and g is the acceleration of gravity (set to 9.8 m/s2 in the
next example).

Example 6.9. Consider a 200m long and 200m wide water reservoir with two
different constant levels of water separated by a dam. The dam is 10m thick and
extends in the y-direction, starting at x = 95m. The dam breaks at time t = 0.0
and the breach is 75m wide and starts at y = 95m. The initial conditions are
given by

h(x, y, 0) =

{
10m, x ≤ 100m,

5m, otherwise,

u(x, y, 0) = v(x, y, 0) = 0m/s.

Figure 6.12 shows the surface elevation at times after 3.6, 7.2, and 10.8 seconds.
The solution is computed by the front-tracking algorithm on a grid with 40 × 40
cells using a Godunov splitting with a fixed splitting step corresponding to a CFL
number of 1.5. Initially the solution consists of a rarefaction wave propagating
upstream in the high-water region and a bore propagating into the downstream
side of the reservoir. In the second plot the bore has been reflected from the
upper side wall and in the third plot it has reached the wall in the downstream
direction. The front-tracking scheme resolves the bore very well, using only two
points to represent the shock (after the projection) and compares favorably with
other results reported in the literature; see [116] for a more thorough discussion.

As has been studied previously, the accuracy of the front-tracking method is
determined by two factors: splitting errors and numerical diffusion caused by the
projections onto a regular grid. The number of time-steps required to resolve the
dynamics on the coarse 40 × 40 grid corresponds to a CFL number 1.5. On a
finer grid, we expect to be able to use larger time-steps. In Figure 6.13 we show
the effect of increasing the time-step on a 200× 200 grid. By increasing the CFL
number of the splitting step from 1.0 to 1.5, we increase the resolution of the
leading bore, and by increasing the time-steps to CFL number 4.0 we also observe
improved resolution of the shock wave reflected from the upper wall. This means
that the projection error is dominant for low CFL numbers, as was observed in
the scalar case. When the splitting step is increased further, a new factor enters
the picture. In general, the projection (of shock waves) will introduce waves in the
other passive families. These weak waves are resolved and tracked in the next step
by the front-tracking solution, leading to a large number of weak wave interactions.
As the splitting step increases, these weak waves become more and more dominant
and the quality of the solution deteriorates. This effect was not observed in the
scalar case, since scalar equations only have one characteristic family.

In this section we have observed that dimensional splitting is a simple, but effi-
cient way to extend one-dimensional high-resolution methods to multi-dimensions.
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Figure 6.12. Water surface elevation for the dambreak problem after 3.6, 7.2 and 10.8
seconds.
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Figure 6.13. Contour plots of the water elevation at time t = 10.0 computed on a 200×200
grid with CFL numbers 1.0, 1.5, 4.0, and 6.0. The lower right plot is a simulation on a
800× 800 grid with CFL number 2.0.

Used in this setting, the front-tracking method can be viewed as a large time-step,
finite-volume scheme that reduces to the first-order Godunov method for CFL
numbers below 0.5.

For (conventional) finite-volume schemes, the size of the splitting step is natu-
rally determined by the underlying CFL condition that restricts the time-step in
each one-dimensional sweep. Front tracking, on the other hand, is unconditionally
stable and should in principle be ideal for application as a large-step method in
which the size of the splitting step is determined by the underlying dynamics in the
equation. This is indeed possible for scalar equations, as has been demonstrated
by several examples. For systems of equations, the range of feasible splitting steps
only extends to CFL numbers moderately larger than unity due to small-scale
oscillations coming from weak waves in the passive families introduced by the pro-
jection operator. Dimensional splitting with front tracking will therefore be most
efficient in cases that are dominated by strong discontinuities. For cases with
smooth transitions and/or interaction of many small waves, the efficiency will be
greatly reduced unless one can use a highly efficient and simplified Riemann solver,
see the discussion in [174]. If smooth parts of the wave patterns are important,
one is generally better off by using a high-order finite-volume method.
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6.3 Operator splitting for balance laws

We will now consider splitting applied to inhomogeneous (systems of) conservation
laws

ut +∇ · f(u) = h(u), u(x, 0) = u0(x), u ∈ Rm, (6.19)

where the corresponding homogeneous conservation law ut+∇·f(u) = 0 is assumed
to be hyperbolic. The function h(u) is referred to as a source term and Equation
(6.19) is often called a balance law rather than a conservation law.

A fractional steps method consists of splitting the inhomogeneous equation
(6.19) into a homogeneous hyperbolic problem vt + ∇f(v) = 0 and an ordinary
differential equation vt = h(v). Let St and Rt denote the corresponding solution
operators. Then the fractional steps approximation to (6.19) is obtained by using
either the first-order Godunov splitting

u(x, nΔt) ≈ [RΔtSΔt

]n
u0,

or the second-order Strang splitting

u(x, nΔt) ≈ [RΔt/2SΔtRΔt/2

]n
u0.

An alternative splitting is obtained by replacing the ODE vt = h(v) by the dif-
ferential equation ∇f(v) = h(v). This is particularly useful for quasi-stationary
flows for which ut ≈ 0.

High-resolution methods for balance laws is an important topic and there is an
extensive literature in this field. An excellent overview of high-resolution meth-
ods for balance laws, with or without splitting, is given in [176, Chap. 17]. Here
we will try to illustrate the use of operator splittings for balance laws by a few
examples. Unlike in the preceding sections, we will not discuss numerical con-
vergence of the splitting strategies. Instead, the examples aim to illustrate (once
again) that operator splitting is a useful strategy, but also that it may have cer-
tain potential pitfalls. Rigorous convergence results and error estimates for such
operator-splitting methods have been obtained in [170, 253, 254] for the scalar
case, and will also be discussed in Chapters 3 and 5.

The examples will be divided into three different categories: (i) examples of
geometric source terms, where we discuss radially symmetric flows and water waves
over a bottom topography; (ii) examples of reacting flows, where we discuss the
reactive Euler equations; and (iii) examples of flows with external forces, where
we discuss Rayleigh–Taylor instabilities induced by gravity when a layer of heavy
fluid is placed on top of a light fluid.

6.3.1 Geometric source terms. A physical problem that occurs in three spa-
tial dimensions can often be described by a mathematical model in one or two
spatial dimensions by using symmetries or special features of the problem. When
going from a full three-dimensional model to some lower quasi-dimensional model,
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Figure 6.14. Internal energy in the radially symmetric solution computed on a grid with
250 uniform cells using 20 equal splitting steps.

source terms are often added to the equations to model the reduced dimensional-
ity. Similarly, if the problem is posed internal or external to some given geometry,
such as for flow in a duct with variable width, extra source terms will arise to
model the geometry in the reduced model.

As an example let us consider the multi-dimensional Euler equations of gas
dynamics. For problems with cylindrical or spherical symmetry, the flow can be
described by the quasi-one-dimensional inhomogeneous equation ρ

ρu
E


t

+

 ρu
ρu2 + p
u(E + p)


r

= −α
r

 ρu
ρu2

u(E + p)

 . (6.20)

Here r denotes the radial direction, ρ the density, u the radial velocity, p the
pressure, and E the total energy. We assume that the gas is ideal and polytropic,
i.e., the energy is given by E = ρu2/2 + p/(γ − 1), where the constant γ is set
to 1.4. For α equal 1, (6.18) is equivalent to the two-dimensional equations with
cylindrical symmetry. For three-dimensional systems with spherical symmetry, α
equals 2.

Example 6.10. Consider now an explosion problem, as in Example 6.8 in the
previous section. The initial data are constant in two regions separated by a circle
of radius 0.4 centred at the origin. Inside the circle ρin = pin = 1.0, and out-
side ρout = 0.125, pout = 0.1. The velocity is zero everywhere. The left plot in
Figure 6.14 shows the radial solution (internal energy) computed using a straight-
forward approach with front tracking for the homogeneous conservation law and
the forward Euler method for the ODE. After each hyperbolic step, the front-
tracking solution is projected onto a uniform grid. Unfortunately, this projection
introduces small waves in the passive wave families near strong shocks (as dis-
cussed briefly in the previous section). These small waves pollute the solution



6.3 Operator splitting for balance laws 161

and lead to the oscillations observed in the post-shock zone. To overcome this
problem we can introduce an adaptive grid where extra grid nodes are added at
the position of all waves exceeding a prescribed threshold. In the right-hand plot
in Figure 6.14 we have recomputed the solution using the adaptive grid. In the
adaptive grid, only two extra grid points were added, one at the shock and one
at the contact discontinuity. Still, the improvement in the quality of the solution
is striking. The oscillations in the region between the shock and the contact dis-
continuity have almost disappeared and the latter wave is not smeared, as it is for
the non-adaptive (fixed-grid) method.

The depth-integrated shallow water equations for one-dimensional flows over a
variable bottom topography reads[

h
hu

]
t

+

[
hu

hu2 + 1
2gh

2

]
x

=

[
0

−(zb)xgh

]
. (6.21)

Here h denotes water depth, u is depth-averaged velocity, and g is the acceleration
of gravity. The source term on the right-hand side is a geometric source term,
where zb denotes the bottom topography.

Example 6.11. Consider a current of water flowing over an obstacle. An example
can be described by (6.21) with initial conditions

h(x, 0) = 1.0− zb(x), u(x, 0) = 1.0,

absorbing boundary conditions, and bottom topography

zb(x) =

{
0.2

(
1− x2

4

)
, −2 ≤ x ≤ 2,

0, otherwise.

The spatial domain is x ∈ [−10, 10], and we rescale the equations by setting
g = 1. To solve this equation we use front tracking in combination with first-order
Godunov splitting for the source term. As in the previous example we project the
front-tracking solution onto a grid before applying the ODE solver for the source
term. This is done in two ways, either by assuming a fixed grid or by adding
extra grid cells at strong shocks. Figure 6.15 shows solutions at times t = 5 and
10 computed with 100 and 2000 uniform grid cells by front tracking and by the
composite scheme LWLF4 [190], which consists of four dispersive Lax–Wendroff
steps followed by a diffusive Lax–Friedrichs step. We use a fixed CFL number
1.75 for the two front-tracking methods and 0.8 for LWLF4. In the adaptive-grid
method, only two extra grid cells were added. Although front tracking with a fixed
grid gives better resolution than LWLF4 on the same grid, it can by no means
compete with front tracking with two extra grid cells added at the discontinuities.
This method resolves both shocks within one grid cell.
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Figure 6.15. Shallow water flow over a topography in one dimension computed by the
composite scheme LWLF4 (top), by front tracking with adaptive grid (middle), and by
front tracking on a fixed grid (bottom).

6.3.2 Equilibrium states. In the two previous examples we have considered
flows where the primary objects of interest were relatively strong waves: a pressure
wave resulting from an explosion and the swell created by an underwater mountain.
On the other hand, many real-life applications are merely perturbations of a steady
state or some kind of underlying physical equilibrium. Resolving such phenomena
turns out to be surprisingly difficult, as we will see in the next example.

Example 6.12. The equilibrium states of the depth-integrated shallow-water
equations (6.21) are given by

hu ≡ const and
1

2
u2 + gH ≡ const

where H := h + zb is the water height relative to some reference level. In this
example we will consider a particular equilibrium state, the lake-at-rest given by

u ≡ 0 and H ≡ const.
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Figure 6.16. Approximate solution of the lake-at-rest computed using 100, 200, and 400
grid cells for CFL number 1.75 (left), and for CFL numbers 1.0, 2.0, and 4.0 for 200 cells
(right).

To study this problem, we use the same configuration as in Example 6.11, except
that we set the water velocity to zero and assume reflective boundaries. Figure 6.16
shows approximate solutions computed using 100, 200, and 400 grid cells for CFL
number 1.75 and CFL numbers 1.0, 2.0, and 4.0 for 200 cells. For all parameters,
the approximate solution contains a ‘numerical storm’ that has been created due to
splitting errors. As can be seen from the figure, the maximal wave height decreases
as the grid is refined. Similarly, the wave height increases with the size of the time-
step, as does the runtime due to a dramatic increase both in the number of wave
interactions and the number of fronts needed to represent the solution.

Similar errors are in fact observed also for unsplit schemes. This observation
has led to the development of so-called well-balanced schemes that are designed
such that the discrete flux and source terms balance exactly at the steady state,
see, e.g., [7, 110, 214, 277].

6.3.3 Reactive flows. Many physical models involve chemical reactions. Reac-
tion among the species in a flowing fluid will generally affect the dynamics of the
fluid motion through a strong coupling between the fluxes and the source terms.
In particular, if the chemical reactions take place on a much smaller time scale
than the wave speeds in the fluid, the problem is said to be stiff. Problems with
stiff source terms are generally hard to solve.

In the next two examples we will study operator-splitting methods applied to
two reactive flows; one with nonstiff and one with stiff source terms. The physical
problem consists of a simplified chemically reacting flow with two chemical species:
“burnt gas” and “unburnt gas”. The unburnt gas (the reactant) is converted to
burnt gas (the product) through a one-step irreversible process where the reac-
tion rate K(T ) depends only on temperature. We ignore the effects of viscosity,
radiation, and heat conduction.
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Then the combustion process is described by the reactive Euler equations
ρ
ρu
E
ρZ


t

+


ρu

ρu2 + p
u(E + p)
ρuZ


x

=


0
0
0

−K(T )ρZ

 .
Here Z denotes the fraction of unburnt gas, K is the reaction rate of the burning
process and depends upon the temperature T = p/ρR, where R is the universal gas
constant. The unburnt gas contains chemical energy and the total energy reads

E =
p

γ − 1
+

1

2
ρu2 + q0ρZ,

where q0 is the heat released when the gas burns. The inhomogeneous system can
be converted into an equivalent form,

ρ
ρu

Ê
ρZ


t

+


ρu

ρu2 + p

u(Ê + p)
ρuZ


x

=


0
0

q0K(T )ρZ
−K(T )ρZ

 ,
where Ê = ρu2/2 + p/(γ − 1). For this equation, the homogeneous part is the
standard Euler equations for a single ideal gas.

Example 6.13. Consider first the following simple model for the reaction rate K,

K(T ) = K0e
−E+/T ,

where K0 is the reaction rate multiplier and E+ is the activation energy. In the
computations we will use the following constants: γ = 1.2, R = 1.0, q0 = 50, and
K0 = E+ = 10.0. As initial data, we use the Riemann problem with left state
(pL, ρL, uL) = (15, 1, 3) and right state (pR, ρR, uR) = (1, 1, 0). With this initial
state, the gas will start to burn immediately and a detonation wave will form.
The detonation wave consists of an ordinary gas dynamical shock, in which the
pressure and density increase. This will heat the gas so that it burns in a thin
reaction zone behind the shock. Behind the reaction zone, there is no unburnt gas
left. Figure 6.17 shows the pressure, density and reactant mass fraction at time
t = 3.0 computed by the operator-splitting method with adaptive spatial grid.
The computation is in very good agreement with the reference solution. Accurate
representation of the leading shock is crucial in order to properly compute the
detonation wave, and the good resolution on this relatively coarse grid can be
ascribed to the adaptive grid that tracks the shock. Without grid adaptation, the
operator-splitting method gives qualitatively correct results only on more refined
grids, see Figure 6.18.
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Figure 6.17. The propagating combustion front at time t = 3.0 computed on a 150 grid
with 75 time-steps. The thin line gives a reference solution computed on a 19 200 grid.
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Figure 6.18. Convergence of the operator-splitting method without adaptive grid. The
dashed line gives the reference solution.

In the above example, the chemical reaction occurs on a time scale that is
almost of the same magnitude as that of the waves in the fluid flow. The operator
splitting method was therefore able to resolve the dynamics of the flow. In the next
example we will consider another reaction model where the reaction takes place
almost instantaneously. This gives a stiff problem for which the operator-splitting
strategy fails to compute the correct solution.

Example 6.14. Consider as above the reactive Euler equations, but now with a
simpler model for the reaction rate K,

K(T ) =

{
1/τ, T ≥ T0,

0, T < T0.

Here T0 is the ignition temperature and τ is a (small) time scale of the reaction.
The model reflects that reactions are negligible for temperatures below the ignition
temperature and almost instantaneous above.

This system is stiff, since the reaction occurs on a very small time scale τ inside
a reaction zone with spatial width proportional to τ . In practise, τ is much smaller
than both the time scale of the front propagation and the possible sizes of grid cells.
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Figure 6.19. (Left) Pressure profile of the detonation front at time t = 0.4 computed
on a 250 grid with 100 time-steps. (Right) Solution in the (x, t) plane for the first five
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Figure 6.20. Pressure profile of the detonation front at time t = 0.4 computed on a 250
grid with 45 time-steps.

To integrate the ODE we therefore use an explicit method with time-step k = τ/5.
In the computations we use q0 = R = 1, T0 = 0.22, and τ = 10−4. Figure 6.19

shows the pressure at time t = 0.4 computed by our operating splitting method on
a uniform grid with 250 cells. The solution is computed using 100 equally spaced
time-steps. This corresponds to a CFL number varying between 0.56 and 0.74,
that is, the front-tracking method in the hyperbolic step is similar to Godunov’s
method. Although the plots seem reasonable, the results are nonphysical. The
exact solution consists of a shock front propagating at speed s = 1, followed
by a deflagration wave. This profile is obtained if we decrease the number of
splitting steps to 45, giving a CFL number between 1.25 and 1.58, see Figure 6.20.
The unphysical waves are eliminated and the pressure peak in the so-called ZND
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structure is captured. On the other hand, the quality of the solution is quite poor
with unstable oscillations behind the deflagration wave and oscillations of the
pressure peak in time. The extent and structure of these oscillations are strongly
dependent upon the splitting step (and the grid size) and the method can therefore
not be considered to be stable.

To explain what goes wrong in the computation above, we can look at the
solution in the (x, t) plane. The right-hand plot in Figure 6.19 shows the solution
up to time 0.02. In the first hyperbolic step, the solution consists of a shock
followed by a contact discontinuity, both propagating with positive speeds, and a
rarefaction wave propagating with negative speed. The passing shock heats the
gas such that reaction takes place in the zone between the shock and the contact
discontinuity and burns the gas almost instantaneously. The width of this reaction
zone is a mere fraction of the width of the cells in the uniform grid. However, in
our numerical approach, we project the solution from the hyperbolic step back
onto the uniform grid before we allow the chemical reaction. Thus, the whole grid
cell, and not just the true reaction zone, is heated above the ignition temperature.
The zones ‘burned’ in the ODE steps are represented by horizontal lines in the
right-hand plot of Figure 6.19. Since the time-step is much larger than τ , the
gas burns instantaneously. Hence the interface between burnt and unburnt gas
moves faster than it should (the true wave speed of the reaction front is indicated
by a dashed line). This shortcoming is not cured by changing the order of the
operators in the splitting algorithm. The problem of unphysical wave speeds was
first discussed by Colella, Majda, and Roytburd [68].

To overcome these problems, various more advanced methods have been devised
by several authors. A simple method called the random projection method was
proposed by Bao and Jin [9], in which the ignition temperature T0 is replaced by
a random variable in order to obtain a shock propagation that is correct in the
averaged sense.

6.3.4 External forces. Source terms may also arise when external forces are
applied to a system. Physically this means that the rate of change of a conserved
quantity within a volume is balanced by the flux over the edges and the exter-
nal forces. As an example, we can include gravity in the Euler equations of gas
dynamics

ρ
ρu
ρv
ρw
E


t

+


ρu

ρu2 + p
ρuv
ρuw

u(E + p)


x

+


ρv
ρuv

ρv2 + p
ρvw

v(E + p)


y

+


ρv
ρuw
ρvw

ρw2 + p
w(E + p)


z

=


0
0
0
gρ
gρw

 .

Here the initial momentum will not be conserved since the gravity will induce an
acceleration in the vertical direction and likewise for the energy.
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Figure 6.21. Evolution of the Rayleigh–Taylor instability depicted as emulated Schlieren
images. The numerical approximation was computed by the NT2d scheme on a 266×800
grid with CFL number 0.45: MM1 limiter (upper row) and van Leer limiter (lower row).
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NT2d: van Leer NTds: van Leer front tracking

Figure 6.22. The Rayleigh–Taylor instability at time t = 8.0 computed with NT2d and
the two dimensional splitting schemes on a 266 × 800 grid. The central schemes used a
CFL number 0.45 and the front-tracking scheme 8500 equally spaced time-steps (giving
a CFL number about 1.5).

Example 6.15. We consider the simulation of a Rayleigh–Taylor instability. This
physical instability arises when a layer of heavier fluid is placed on top of a lighter
fluid and the heavier fluid is accelerated downwards by gravity. Similar phenom-
ena occur more generally when a light fluid is accelerated towards a heavy fluid.
The instability can be described by the two-dimensional Euler equations with a
gravitational term. The physical domain is [−1/6, 1/6] × [0, 1] with a gravita-
tional acceleration g = −0.1 in the y-direction. The lower fluid has unit density
and the density of the upper fluid is twice as high. The interface of the fluids
is y = 1/2 + 0.01 cos(6πx). The fluids are initially at rest and the pressure is
hydrostatic. The boundary conditions are periodic in the x-direction and reflec-
tive in the y-direction. Figure 6.21 shows the evolution of the Rayleigh–Taylor
instability computed by a splitting method with the NT2d scheme from [183] for
the homogeneous Euler equations. The interface between the light and heavy fluid
is unstable. The dissipative MM1 limiter suppresses the instability, whereas the
interface breaks up for the van Leer limiter due to less numerical dissipation.

Two additional schemes can be obtained by expanding the two-dimensional
splitting schemes introduced in Example 4 in the previous section. Plots of the
corresponding splitting solutions are given in Figure 6.22. The numerical solutions
obtained by NT2d and NTds are almost indistinguishable, while the front-tracking
computation shows a clear lack of symmetry. Of the three schemes, the NTds
scheme is by far the fastest; for the computation in Figure 6.22 the ratios of the
elapsed runtimes for NTds, NT2d, and the front-tracking scheme were 1 : 1.7 : 2.5.
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To achieve a sufficient resolution in the front-tracking computation, we eliminated
only very small waves (with strength below 10−5). Thus a very large number of
fronts were tracked and about 1.4 · 1010 front collisions were resolved, resulting in
the highest runtime.

Example 6.16. Similarly, we can extend the previous Rayleigh–Taylor simulation
to three spatial dimensions. The physical domain is [−1/6, 1/6] × [−1/6, 1/6] ×
[0.2, 0.8] with gravitational acceleration g = −0.1 in the vertical z direction. The
upper fluid has density 2 and the lower fluid 1. The interface of the fluids is at
z = 1/2+ 0.01 cos(6πmin(

√
x2 + y2, 1/6)). The fluids are initially at rest and the

pressure is hydrostatic. The boundary conditions are periodic in the horizontal
direction and reflective in the vertical direction. To compute the instability we use
a Godunov splitting as above with a three-dimensional extension of the NT scheme
(NT3d) for the homogeneous Euler equations. Figure 6.23 shows the evolution of
the instability.

6.4 Final remarks

We conclude this book by reiterating its scope, namely to provide the reader with
an overview of contemporary mathematical and numerical techniques based on
operator splitting for a class of nonlinear partial differential equations possessing
solutions with limited regularity. We use “operator splitting” as a collective term
to describe different techniques that share the common property that a complex
operator is written as a sum of simpler operators. The simpler problems are solved,
and this yields an approximate solution of the original problem. This idea is simple
and has been studied and refined by several researchers for half a century.

Compared to the existing literature on splitting methods, an original aspect
of our presentation lies in the fact that we are systematically utilizing numerical
methods and mathematical theory associated with hyperbolic problems to con-
struct fully discrete splitting methods, some of which are specifically designed to
allow for large time (splitting) steps. This “hyperbolic” approach also enables
us to provide a unifying convergence theory that applies to solutions exhibiting
complex behavior such as discontinuities (shock waves), thereby covering a large
class of mixed hyperbolic-parabolic evolution equations as well as weakly coupled
systems of such equations.

Since the solutions of these equations lack regularity, efficient and accurate
numerical computations are complicated. The operator splitting approach offers a
simple solution method: Take your favorite numerical methods for the individual,
simpler equations, apply operator splitting to combine the simple solutions to
obtain an approximate solution for the original problem. With this set-up you
can combine various techniques to produce easily implementable methods for your
complicated problem. As a result it provides an excellent tool for swift numerical
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Figure 6.23. The Rayleigh–Taylor instability at times t = 0.5, 0.6, 0.7, and 0.8 computed
with NT3d on a 100× 100× 182 grid with the MM1.3 limiter.
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investigations. Although our theoretical convergence framework only applies to
scalar and weakly coupled systems of equations, operator splitting offers a general
set-up for constructing methods for systems of equations, with good results as the
numerical examples show. For higher-dimensional problems it might be the only
applicable model. But beware! Operator splitting is not a cure-it-all method, but
nor is it snake oil.



A

A Crash Course in Numerical Methods for
Conservation Laws

In the previous chapter we discussed examples of operator splitting applied to fairly
simple equations. In most cases, we were able to derive analytical expressions for
the elementary operators and could obtain semi-analytical operator splitting ap-
proximations. This is seldom possible, and one generally has to employ some nu-
merical method and use a fully discrete operator splitting method. Analysis of such
operator splittings is the topic for this book, starting with a review of some exam-
ples in Chapter 6. As stated repeatedly throughout the book, our main emphasis is
on convection-dominated problems, where the convective part of the equation plays
a decisive role. This naturally leads to splitting methods where a conservation law
is the primary elementary equation used to build approximate solutions. This
chapter is therefore devoted to the numerical solution of such equations, giving a
crash course in the most important mathematical and numerical concepts used to
build computational methods for hyperbolic equations. For a broad-ranging intro-
duction to contemporary numerical methods for hyperbolic conservation laws, we
refer to [15, 67, 101, 104, 107, 108, 115, 159, 175, 176, 260, 262].

A.1 Hyperbolic conservation laws

The term hyperbolic conservation laws usually denotes a first-order, quasilinear
partial differential equation of the following form (in one spatial dimension)

ut + f(u)x = 0. (A.1)

Here u is some conserved quantity (scalar or vector) and f(u) is a flux function. A
conservation law usually arises from a more fundamental physical law on integral
form. In one spatial dimension, this law typically reads

d

dt

∫ x2

x1

u(x, t) dx = f
(
u(x1, t)

)−f(u(x2, t)). (A.2)

The physical law states that the rate of change of quantity u within [x1, x2] equals
the flux across the boundaries x = x1 and x = x2. The partial differential equation
(A.1) then follows under additional regularity assumptions on u.
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Several of the elementary operators we encountered in Chapter 2 were special
cases of the Cauchy problem for (A.1); that is, of the form

ut + f(u)x = 0, u(x, 0) = u0(x). (A.3)

For a nonlinear flux function f , solutions of this equation may develop disconti-
nuities in finite time, even for smooth initial data. This means that the solution
of (A.3) is understood in the weak sense,∫ ∞

0

∫
R

(
uφt + f(u)φx

)
dtdx =

∫
R
u0(x)φ(x, 0) dx. (A.4)

Here φ(x, t) is a smooth test function possessing all the necessary derivatives. The
function φ(x, t) is also assumed to have compact support, meaning that it vanishes
outside a bounded region in the (x, t)-plane.

Solutions defined by the weak form (A.4) are not necessarily unique. The
solution concept must therefore be extended to include additional admissibility
conditions to single out the correct solution among several possible candidates
satisfying the weak form. A classical method to obtain uniqueness is to add a
regularizing second-order term to (A.1), giving a parabolic equation

uεt + f(uε)x = εuεxx,

that has smooth solutions. Then the unique solution of (A.1) is defined as the
limit of uε(x, t) as ε tends to zero. In models from fluid dynamics, such a second-
order term can be proportional to the viscosity of the fluid, and the method is
therefore called the vanishing viscosity method. Since the solutions uε(x, t) are
smooth, classical analysis coupled with careful limit arguments can be used to
show existence, uniqueness, and stability of the solution of (A.1). This was first
done by Kružkov [161], whose seminal work on ’doubling of the variables’ has had
a tremendous impact on the development of modern theory for nonlinear partial
differential equations [41, 73, 126, 201, 221, 239, 240, 243].

However, using the viscosity limit as an admissibility condition is impractical.
If uε is a solution of the equation with viscosity, then

uεt + f ′ (uε)uεx = εuεxx,

and multiplying this with a convex differentiable function η′(uε) yields

η (uε)t + η′ (uε) f ′ (uε)uεx = ε (η′ (uε)uεx)x − εη′′ (uε) (uεx)
2 ≤ ε (η′ (uε)uεx)x .

Now define the entropy flux corresponding to η by

q′(u) = η′(u)f ′(u). (A.5)

If u is to be the limit of uε then we can let ε to zero and obtain

η(u)t + q(u)x ≤ 0, (A.6)
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which must be interpreted in the weak sense as∫ ∞

0

∫
R

(
η(u)φt + q(u)φx

)
dtdx+

∫
R
η(u0(x))φ(x, 0) dx ≥ 0, (A.7)

for all nonnegative test functions φ. We call (η, q) an entropy/entropy flux pair.
This name originates from thermodynamics.

Now if u is a vector with K components, u = (u1, . . . , uK), and flux function
f = (f1(u), . . . , fK(u)), (A.5) is a system ofK equations for the partial derivatives
of q,

∂q

∂ui
=

K∑
k=1

∂fk

∂ui

∂η

∂uk
i = 1, . . . ,K.

A continuous solution q can be found if and only if the mixed partial derivatives
of q are equal, which again implies that∑

k

∂fk

∂ui

∂2η

∂uk∂uj
=

∑
k

∂fk

∂uj

∂2η

∂uk∂ui
for all 1 ≤ i, j ≤ K.

Therefore, if K > 1, the existence of such entropy pairs is not obvious for a general
system of conservation laws, but such pairs exist and have a clear physical inter-
pretation for several important systems of equations, for instance in gas dynamics.

For scalar equations it can be shown that all entropy pairs with convex η are
equivalent. A common choice is the so-called Kružkov entropy pair,

η(u) = |u− k| , q(u) = sign(u− k)(f(u)− f(k)), (A.8)

where k is any constant. We say that u(x, t) is an entropy weak solution of (A.1)
if it satisfies (A.7) with the Kružkov entropy/entropy flux pair for all real numbers
k and nonnegative test functions φ.

We refer to Chapter 3 for a detailed discussion of the mathematical theory for
scalar conservation laws in the context of the more general degenerate parabolic
equations.

A.2 Finite-volume methods

Finite-difference methods use discrete differences to approximate the derivatives
in a partial differential equation. This gives discrete evolution equations for a set
of point values approximating the true solution of the PDE. Once a discontinuity
arises in the hyperbolic conservation law, the differential equation will cease to be
pointwise valid in the classical sense. Hence, it is also to be expected that classical
finite-difference approximations will break down at discontinuities, causing severe
problems for standard finite-difference methods. To overcome this computational
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problem, it turns out that instead of seeking pointwise solutions to (A.1), one
should look for solutions of the more fundamental integral form (A.2). To this end,
we break the domain [x1, x2] into a set of subdomains—which we call finite volumes
or grid cells—and seek approximations to the global solution u in terms of a discrete
set of cell averages defined over each grid cell; that is, we seek approximations to
1

Δx

∫
u(x, t) dx over each grid cell of size Δx. Such methods are usually called

finite-volume methods.
There is a close relation between finite-difference and finite-volume methods

since the formula of a specific finite-volume method in some cases may be inter-
preted directly as a finite-difference approximation to the underlying differential
equation. However, the underlying principles are fundamentally different. Finite
difference methods evolve a discrete set of point values by approximating (A.1).
Finite-volume methods evolve globally defined solutions as given by (A.2) and real-
ize them in terms of a discrete set of cell averages. The evolution of globally defined
solutions is the key to the success of modern methods for hyperbolic conservation
laws. There are many good books describing such methods. We can recommend
the books [104, 107, 108, 115, 159, 175, 176, 260, 262], see also [15, 67, 101].

A.3 Conservative methods

The starting point for a finite-volume method for (A.1) is the cell-average defined
by

uni =
1

Δxi

∫ xi+1/2

xi−1/2

u(x, tn) dx.

These cell averages are usually evolved in time by an explicit time-marching
method, obtained by integrating (A.2) in time,

un+1
i − uni =

1

Δx

∫ tn+1

tn

f(u(xi−1/2, t)) dt− 1

Δx

∫ tn+1

tn

f(u(xi+1/2, t)) dt. (A.9)

Generally, we will not be able to compute the flux integrals exactly, since the
point values u(xi±1/2, t) vary with time and are in general unknown. However,
the equation suggests that the numerical method should be of the form

un+1
i = uni − λ

(
Fni+1/2 − Fni−1/2

)
, (A.10)

where λ = Δt/Δx and Fni±1/2 is some approximation to the average flux over each
cell interface,

Fni±1/2 ≈ 1

Δt

∫ tn+1

tn

f
(
u(xi±1/2, t)

)
dt.

Any numerical method of this form will generally be conservative. To see this, we
can sum the equation over all i. The flux terms will cancel in pairs, and we are
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left with
M∑

i=−M
un+1
i =

M∑
i=−M

uni − λ
(
FnM+1/2 − Fn−M−1/2

)
.

The two flux terms vanish if we assume either periodic boundary conditions or
that u(x, t) approaches the same constant value as x→ ±∞. Thus, the numerical
method conserves the quantity u, i.e.,∫

un(x) dx =

∫
u0(x) dx.

Schemes of the form (A.10) are denoted conservative schemes.
Hyperbolic conservation laws have finite speed of propagation, unless they

degenerate in some form. It is therefore natural to assume that the average fluxes
are given in terms of their neighboring cell averages; that is,

Fni+1/2 = F
(
uni−p, . . . , u

n
i+q

)
.

The function F is called the numerical flux and will be referred to by the abbre-
viation F (un; i+ 1/2).

It is often convenient to extend the numerical approximation uni to a function
defined on all of space and time. Thus we define

uΔx(x, t) =
∑
n,i

uni χ[xi−1/2,xi+1/2)(x)χ[tn,tn+1)(t) (A.11)

where χI denotes the characteristic function of the set I.

A.4 A few classical schemes

We have now gone through the basic underlying principles for the design of schemes
for conservation laws. It is therefore time to show some examples of such schemes.

The simplest example is the upwind scheme. If f ′(u) ≥ 0, the scheme has
numerical flux F (un; i+ 1/2) = f(uni ) and reads (with λ = Δt/Δx)

un+1
i = uni − λ

[
f(uni )− f(uni−1)

]
. (A.12)

Similarly, if f ′(u) ≤ 0, the upwind scheme takes the form

un+1
i = uni − λ

[
f(uni+1)− f(uni )

]
.

In either case, the upwind scheme is a two-point scheme based upon one-sided
differences in the so-called upwind direction, i.e., in the direction where the in-
formation flows from. The idea of upwind-differencing is the underlying design
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principle behind a large number of schemes of the Godunov-upwind type, which
we will return to below.

Another classical scheme is the three-point Lax–Friedrichs scheme,

un+1
i = 1

2

(
uni−1 + uni+1

)− 1
2λ

[
f(uni+1)− f(uni−1)

]
. (A.13)

The Lax–Friedrichs scheme is based upon central differencing and is a very stable,
all-purpose scheme that will always converge, although sometimes painstakingly
slowly. The scheme can be written in conservation form by introducing the nu-
merical flux

F (un; i+ 1/2) =
1

2λ

(
uni − uni+1

)
+

1

2

[
f(uni ) + f(uni+1)

]
.

The upwind and the Lax–Friedrichs schemes are both examples of schemes that
are formally first-order in the sense that their truncation error is of order 2, see
Section A.5. Hence the schemes will converge with order 1 for smooth solutions;
i.e., the error is O(Δx) as Δx→ 0.

Better accuracy can be obtained if we make a better approximation to the
integral in the definition of the average flux. Instead of evaluating the integral at
the endpoint tn, we can evaluate it at the midpoint tn+1/2 = tn+

1
2Δt. This gives

a classical second-order method called the Richtmeyer two-step Lax–Wendroff
method

u
n+1/2
i+1/2 = 1

2

(
uni + uni+1

)− λ
[
f(uni±1)− f(uni )

]
,

un+1
i = ui − λ

[
f(u

n+1/2
i+1/2 )− f(u

n+1/2
i−1/2 )

]
.

(A.14)

The corresponding numerical flux reads

F (un; i+ 1/2) = f
(

1
2 (u

n
i + uni+1)− 1

2λ
[
f(uni+1)− f(uni )

])
.

Another popular variant is MacCormack’s method

u∗i = uni − λ
[
f(uni+1)− f(uni )

]
,

u∗∗i = u∗i − λ
[
f(u∗i )− f(u∗i−1)

]
,

un+1
i = 1

2

(
uni + u∗∗i

)
,

(A.15)

which has the numerical flux

F (un; i+ 1/2) = 1
2f(u

n
i+1) +

1
2f

(
uni − λ

[
f(uni+1)− f(uni )

])
.

To ensure stability one in general has to impose a restriction on the time-step
through a CFL condition, named after Courant, Friedrichs, and Lewy, who wrote
one of the first papers on finite difference methods in 1928 [70]. The CFL condition
states that the true domain of dependence for the PDE (A.1) should be contained
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in the domain of dependence for (A.10). All the above schemes are stable under
the CFL restriction

λmax
u

|f ′(u)| ≤ 1.

Let us now apply the four schemes to two examples to gain some insight into
their behavior.

Example A.1. We first consider the linear advection equation with periodic
boundary data

ut + ux = 0, u(x, 0) = u0(x), u(0, t) = u(1, t). (A.16)

As initial data u0(x) we choose a combination of a smooth, squared cosine wave
and a double step function,

u0(x) =


cos2

(
π 10

3 (x− 1
4 )
)
, 0.1 ≤ x ≤ 0.4,

1, 0.6 ≤ x ≤ 0.9,

0, otherwise.

Figure A.1 shows approximate solutions at time t = 10.0 computed by the four
schemes introduced above on a grid with 200 nodes using a time-step restriction
Δt = 0.9Δx. We see that the two first-order schemes smear both the smooth part
and the discontinuous path of the advected profile. The second-order schemes,
on the other hand, preserve the smooth profile quite accurately, but introduce
spurious oscillations around the two discontinuities.

Example A.2. In the next example we apply the same schemes to Burgers’
equation with discontinuous initial data

ut +
(
1
2u

2
)
x
= 0, u(x, 0) =

{
1, x ≤ 0.1,

0, x > 0.1.
(A.17)

Burgers’ equation is the archetypical example of a nonlinear equation possessing
discontinuous solutions (shock waves), forming even for smooth initial data.

Figure A.2 shows approximate solutions at time t = 0.5 computed by all four
schemes on a grid with 50 uniform grid cells and a time-step restriction λ = 0.6.
Comparing the two first-order schemes, we see that the upwind scheme resolves
the discontinuity quite sharply, whereas the Lax–Friedrichs smears it out over
several grid cells. Both second-order schemes resolve the discontinuity sharply,
but produce spurious oscillations upstream.

Although the two examples above were fairly simple, neither of the schemes
were able to compute approximate solutions with a satisfactory resolution (ex-
cept for the upwind scheme in Example A.2). The first-order methods lack the
resolution to prevent smooth linear waves from decaying and discontinuities to
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Figure A.1. Approximate solutions at time t = 10 for the linear advection equation
(A.16) computed by four classical schemes.

being smeared, whereas the second-order methods introduce nonphysical oscilla-
tions near discontinuities. Conceptually, one could imagine a possible marriage
of the two types of methods in which we try to retain the best features of each
method. The resulting scheme would then have second-order (or higher) accuracy
in smooth regions of the solution and at the same time have the stability of a first-
order scheme where the solution is not smooth. This is a key concept underlying
so-called high-resolution schemes. Assume now that θni is a quantity measuring
the smoothness of the solution at grid cell i at time tn such that θni is close to unity
if the solution is smooth and θni is close to zero if the solution is discontinuous.
Then a hybrid method with numerical flux

F (un; i+ 1/2) =
(
1− θni

)
FL(u

n; i+ 1/2) + θni FH(un; i+ 1/2)

would give the desired properties. Here FL(u
n; i) denotes a low-order flux like the

upwind or the Lax–Friedrichs flux and FH(un; i) is a high-order flux like the Lax–
Wendroff or the MacCormack flux. The quantity θni = θ(un; i) is called a limiter
and the method is called a flux limiter method. A large number of successful
high-resolution methods have been developed based on the flux limiting approach.
A review of such methods is outside the scope of this book. We will instead retrace
our steps in Section A.6 and review a more geometrical framework for developing



A.5 Convergence of conservative methods 181
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Figure A.2. Approximate solutions at time t = 0.5 of the Burgers’ equation (A.17).

high-resolution methods. However, before we do that, let us take a careful look at
the schemes introduced so far.

A.5 Convergence of conservative methods

So far, we have established an appropriate framework for designing numerical
schemes for the conservation law (A.1) and shown a few examples of such schemes.
But how can we ensure that these schemes will compute correct approximations
to the equation? Moreover, how can we be certain that a scheme will converge to
the true solution as the discretization parameters tend to zero?

To discuss this, we must first define what we mean by convergence. The clas-
sical way of analyzing convergence is to consider the truncation error LΔt and
show that this error tends to zero with the discretisation parameters; that is,
LΔt = O(Δtr) for r > 0, where r is said to be the order of the scheme. The
truncation error for a scheme in the form (A.10) is defined as

LΔt =
1

Δt

{
u(x, t+Δt)−

(
u(x, t)− λ

[
F
(
u(x, t); i

)− F
(
u(x, t); i−1

)])}
. (A.18)

We have seen above that the differential equation (A.1) is not valid in a pointwise
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sense for discontinuous solutions. Thus, the pointwise truncation error cannot be
used to establish convergence. For conservation laws, the truncation error only
defines the formal order of a scheme, i.e., the order the scheme would converge
with for smooth solutions.

Since solutions of conservation laws generally are taken in the weak sense (A.4),
they are not generally unique. Pointwise errors of the form uΔt(x, t)− u(x, t) are
therefore not well-defined, where uΔt is defined by an appropriate interpolation of
uni . Instead, we must measure the deviation in some appropriate norm. It turns
out that for scalar equations, the L1 norm is the correct norm, and we say that
an approximation uΔt converges to a function u if∫ t

0

‖uΔt(·, t)− u(·, t)‖L1(R) dt→ 0, as Δt→ 0.

A famous theorem due to Lax and Wendroff [172] says, informally, that the limits
of conservative and consistent schemes are weak solutions. A precise statement will
be given below; for a proof, see [126, Thm. 3.4]. We verified above that any scheme
in the form (A.24) is conservative. The scheme (A.10) is said to be consistent if

F (v, . . . , v) = f(v).

Moreover, one generally requires the numerical flux to be Lipschitz continuous,
i.e., that there is a constant L such that

|F (ui−p, . . . , ui+q)− f(u)| ≤ Lmax
(|ui−p − u|, . . . , |ui+q − u|).

Theorem A.3 (Lax–Wendroff theorem). Let uΔt be computed from a conserva-
tive and consistent scheme. Assume that T.V. (uΔt) is uniformly bounded in Δt.
Consider a subsequence uΔtk such that Δtk → 0, and assume that uΔt converges
in L1

loc to some u as Δtk → 0. Then u is a weak solution of the conservation law
(A.1).

We can write (A.18) as

u(x, t+Δt) = HΔt(u; i) + ΔtLΔt (A.19)

with HΔt(u; i) = u(x, t)Δt−Δx[F
(
u(x, t); i

)−F (u(x, t); i−1)]. We say the scheme
is stable on [0, T ] if ‖Hn

Δt‖ remains finite in some norm ‖ · ‖ for all n ∈ N such that
nΔt ≤ T . The error is defined by

EΔt(x, t) = uΔx(x, t)− u(x, t), (A.20)

and we say that the method converges if ‖E( · , t)‖ → 0 in some norm ‖ · ‖ as
Δx → 0. For linear equations, the Lax equivalence theorem [247] states that a
consistent scheme is convergent if and only if it is stable.

The Lax equivalence theorem does not hold for nonlinear equations. However,
similar results hold if we can prove that the numerical scheme is contractive in
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some appropriate norms. The numerical method provides a family of approximate
solutions, and we want to extract a sequence that converges to the true solution.
We thus have to show that the approximate family is compact. We say that a
subset K of a normed space S is compact1 if each sequence in K has a subsequence
that converges to a point in K. If the limit exists and is in S, but not necessarily
in K, we say that K is precompact. Recall that compactness was the key point to
establish convergence of the operator splittings in Examples 2.5 to 2.7 in Chapter 2.

The set of functions with bounded (total) variation is compact in L1. The total
variation of a continuous function equals (see, e.g., [126, App. A])

T.V. (v) = lim sup
ε→0

1

ε

∫ ∞

−∞
|v(x+ ε)− v(x)| dx.

For a piecewise constant function the definition of the total variation simplifies to

T.V. (v) =
∑
i

|vi − vi−1|.

This means that we can show that a conservative and consistent scheme will
converge if we can verify that the corresponding sequence {uΔt} has uniformly
bounded total variation. There are several ways to verify uniformly bounded total
variation (see, e.g., Example 2.5). The total variation of the exact solution of a
scalar conservation law is nonincreasing with time

T.V. (u( · , t)) ≤ T.V. (u( · , s)) , t ≥ s.

An obvious way to ensure uniformly bounded variation is therefore to require that
the scheme has the same property; that is,

T.V.
(
un+1

) ≤ T.V. (un) . (A.21)

Any scheme that satisfies (A.21) is called a total variation diminishing method,
commonly abbreviated as a TVD-method. This requirement has been a popular
design principle for a large number of successful schemes, see Section A.6.

In addition there are other properties that might be attractive for the scheme
to fulfill:

• A scheme is monotonicity preserving when it ensures that if the initial data
u0i is monotone then so is uni for any n.

• A scheme is L1 contractive if ‖uΔt( · , t)‖1 ≤ ‖uΔt( · , 0)‖1. The entropy weak
solution of a scalar conservation law is L1 contractive.

• A method is monotone if

uni ≥ vni i ∈ Z, =⇒ un+1
i ≥ vn+1

i , i ∈ Z.
1In general topology this is called sequential compactness.
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For conservative and consistent methods, these properties are related as follows:

• Any monotone method is L1 contractive.

• Any L1 contractive method is TVD.

• Any TVD method is monotonicity preserving.

Verifying that a method is monotone is quite easy. Unfortunately, it is known
that a monotone method is at most first-order accurate. A weaker assumption like
TVD is therefore used when designing modern high-order schemes.

Let us now return to the question of convergence. By combining the Lax–
Wendroff theorem and a compactness argument, we can verify that a numerical
scheme converges to a weak solution of the conservation law. On the other hand,
the theory does not say anything about whether the limit is the correct entropy
weak solution or not. However, one can show that if the scheme (A.10) satisfies a
so-called cell entropy condition in the form

η(un+1
i ) ≤ η(uni )− λ

(
Qni+1/2 −Qni−1/2

)
, (A.22)

then the limiting weak solution is in fact the entropy weak solution. Here Q is a
numerical entropy flux that must be consistent with the entropy flux q in the same
way as we required the numerical flux F to be consistent with the flux f . A cell
entropy condition is an important building block when we analyze the convergence
of various fully discrete operator splitting methods.

For an in-depth introduction to the concepts and convergence theories briefly
surveyed above, see for example [107, 159, 175, 176, 260].

A.6 High-resolution Godunov methods

A large number of successful high-resolution methods can be classified as Go-
dunov methods. In the following we will therefore introduce the general setup of
Godunov-type methods in some detail, thereby retracing some of the steps used to
derive the schemes presented in Section A.3. For simplicity, the presentation is in
one spatial dimension, but the same ideas apply also in several space dimensions.

We start by defining the sliding average ū(x, t) of u( · , t), namely

ū(x, t) =
1

Δx

∫
I(x)

u(ξ, t) dξ, I(x) = {ξ | |ξ − x| ≤ 1
2Δx}. (A.23)

If we now integrate (A.1) over the domain I(x)× [t, t+Δt], we obtain an evolution
equation for the sliding average ū(x, t),

ū(x, t+Δt) = ū(x, t)− 1

Δx

∫ t+Δt

t

[
f
(
u(x+ 1

2Δx, s)
)− f

(
u(x− 1

2Δx, s)
)]
ds.

(A.24)
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This equation is the general starting point for any Godunov-type finite-volume
scheme, and the careful reader will notice that (A.9) is a special case of (A.24).
To make a complete numerical scheme we must now define how to compute the
integrals in (A.23) and (A.24). This can generally be done through a three-step
algorithm called reconstruct–evolve–average (REA) due to Godunov:

1. Starting from known cell-averages uni in grid cell [xi−1/2, xi+1/2) at time
t = tn, we reconstruct a piecewise polynomial function û(x, tn) defined
for all points x. The simplest possible choice is to use a piecewise constant
approximation such that

û(x, tn) = uni , x ∈ [xi−1/2, xi+1/2).

This will generally result in a method that is formally first order. To obtain
a method of higher order, we use a piecewise polynomial interpolant pi(x)
such that

û(x, tn) =
∑
i

pi(x)χi(x),

where χi(x) is the characteristic function of the ith grid cell [xi−1/2, xi+1/2).

2. Then we evolve the hyperbolic equation (A.1) exactly (or approximately)
with initial data û(x, tn) to obtain a function û(x, tn +Δt) a time Δt later.

3. Finally, we average the function û(x, tn + Δt) over an interval I as in the
definition of a sliding average (A.23).

The averaging step generally leaves us with two basically different choices,
leading to two classes of methods. Choosing x = xi in (A.23) gives what is referred
to as upwind methods and choosing x = xi+1/2 gives central (difference) methods,
see Figure A.3. To see the fundamental difference between these two classes of
methods we consider the temporal integrals in (A.24). In the upwind class, the
integral of f(u( · , t)) is taken over points xi±1/2, where the piecewise polynomial
reconstruction û(x, tn) is discontinuous. This means that one cannot apply a
standard integration rule in combination with a standard extrapolation. Instead,
one must first resolve the local wave-structure arising due to the discontinuity.
This amounts to solving a so-called Riemann problem. We will come back to this
briefly below. For the central methods, the sliding average is computed over a
staggered grid-cell [xi, xi+1], which means that the flux integral is evaluated at the
points xi and xi+1, where the initial data û(x, tn) is smooth. If the discretization
parameters satisfy a CFL condition which states that λ times the maximum local
wave-speed is less than one half, the solution û(x, t) will remain smooth at these
points for t ∈ [tn, tn + Δt]. The flux integral can thus be computed using some
standard integration scheme in combination with a straightforward extrapolation
according to (A.1).
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xi−1/2 xi+1/2 xi+3/2 xi−1/2 xi xi+1/2 xi+1 xi+3/2

Figure A.3. Computation of sliding averages for upwind schemes (left) and central
schemes (right).

A.6.1 High-resolution central schemes. The classical example of a central
difference scheme is the Lax–Friedrichs scheme, as given in (A.13). The Lax–
Friedrichs scheme has a staggered version, which can be derived within the Godunov-
framework introduced above if we assume a piecewise constant reconstruction and
use a one-sided quadrature rule for the flux integrals in (A.24),

un+1
i+1/2 = 1

2

(
uni + uni+1

)− λ
[
f(uni+1)− f(uni )

]
.

The scheme is stable under the CFL restriction (Δt/Δx)maxu |f ′(u)| ≤ 1/2. No-
tice that this scheme can be converted to a nonstaggered scheme by averaging the
staggered cell-averages over the original grid

un+1
i = 1

2

(
un+1
i−1/2 + un+1

i+1/2

)
= 1

4

(
uni−1 + 2uni + uni+1

)− 1
2λ

[
f(uni+1)− f(uni−1)

]
,

which is almost in the same form as the Lax–Friedrichs given in (A.13).

As an example of high-resolution schemes, we will now derive the second-order
extension of the staggered Lax–Friedrichs scheme as introduced by Nessyahu–
Tadmor [213]. This scheme, henceforth referred to as NT, is the simplest possible
example of high-resolution central schemes and will be used in the next section as
a building block for several discrete operator splitting schemes.

For simplicity, we first consider the scalar case. Assume a grid with uniform
cell size Δx. Let uni approximate the cell-average over the ith cell [xi−1/2, xi+1/2]

at time tn = nΔt and un+1
i+1/2 the cell-average over the staggered cell [xi, xi+1] at

time tn+1 = (n + 1)Δt. Since we seek a second-order method, the scheme starts
with a piecewise linear reconstruction,

ûi(x, tn) = uni + (x− xi)si, x ∈ [xi−1/2, xi+1/2].

We will come back to how to compute si below.

If we now insert the piecewise linear reconstruction into (A.24) and evaluate
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the sliding average over the staggered grid cell, we obtain

un+1
i+1/2 =

∫ xi+1

xi

û(x, t) dx− 1

Δx

∫ tn+1

tn

[
f(û(xi+1, t))− f(û(xi, t))

]
dt

=
1

2

(
uni + uni+1

)
+

Δx

8

(
si − si+1

)
− 1

Δx

∫ tn+1

tn

[
f(û(xi+1, t))− f(û(xi, t))

]
dt.

It turns out that it is sufficient to approximate the flux integrals by the midpoint
rule to obtain second-order accuracy; that is, we set∫ tn+1

tn

f(û(xi, t)) dt ≈ Δtf
(
û(xi, tn + 1

2Δt)
)
,

and similarly at point x = xi+1. To complete the scheme, we need to determine
how to compute the point-values û(xi, tn+1/2) and û(xi+1, tn+1/2). If we assume
that the discretisation satisfies a CFL condition (Δt/Δt)max |f ′(u)| ≤ 1/2, the
solution û(·, t) will be continuous at the midpoints. Thus, we can use an extrapo-
lation of (A.1) in time using a Taylor series

û(xi, tn+1/2) ≈ û(xi, tn) +
Δt

2
∂tû(xi, tn)

= û(xi, tn)− Δt

2
∂xf(û(xi, tn)) ≈ uni − Δt

2
σi.

The flux gradient σi can either be computed directly as f ′(uni )si or as the slope
from a piecewise linear reconstruction of the fluxes of the cell averages. (The careful
reader will have noticed that for a piecewise linear reconstruction, the cell averages
uni coincide with the point values û(xi, tn).)

This is almost the full story of the scheme. The only delicate point we have not
touched is how to compute the slopes si in the piecewise linear reconstructions.
A natural candidate is, of course, to use discrete differences, either one-sided or
central differences. This means that the slopes si could be given by any of the
formulas

s−i = uni − uni−1, s+i = uni+1 − uni , sci =
1

2

(
uni+1 − uni−1

)
.

Whereas the two one-sided differences are first-order approximations for smooth
data, the central difference is second order and would generally be the preferred
choice. However, one can show that all three choices lead to schemes that are
formally second-order accurate on smooth solutions of (A.1). For discontinuous
solutions, on the other hand, using any of the three approximations may lead to
the formation of unphysical oscillations that spread out from a discontinuity, as
seen in Examples A.1 and A.2. For scalar equations, the corresponding schemes



188 A A Crash Course in Numerical Methods for Conservation Laws

will violate two fundamental properties of the physical solution: boundedness in
L∞ and bounded variation, see Example 2.5 in Chapter 2. To illuminate this
point, let us consider the following set of cell averages

uni =

{
1, i ≤ k,

0, i > k,

for which we have
s−k = 0, s+k = −1, sck = − 1

2 .

Obviously, a new maximum will be introduced in û(x, tn) for the two candidate
slopes s+k and sck. Similarly, if the function uni is reversed from a backward to
a forward step, both s−k and sck will introduce new extrema. The formation of
new extrema, and the resulting creation of unphysical oscillations, can of course
be completely avoided if we use a piecewise constant approximation, but then
the formal order of the scheme would be reduced to first order. Altogether, this
suggests that we should try to put some more intelligence into the scheme and
use the local behavior of the cell averages to determine how to compute si. This
“intelligence” comes in the form of a nonlinear function called a limiter ; that is,

si = Φ
(
uni − uni−1, u

n
i+1 − uni

)
, Φ(a, b) = φ

( b
a

)
a. (A.25)

This limiter has much of the same purpose as the flux limiter θ(un; i) introduced
at the end of Section A.3.

Under certain restrictions on the function φ, one can show that the resulting
scheme has diminishing total variation; that is,

T.V.
(
un+1
i+1/2

)
=

∑
i

|un+1
i+1/2 − un+1

i−1/2| ≤ T.V. (uni ) =
∑
i

|uni − uni−1|.

See [184] for a more detailed discussion of the use of limiters for the Nessyahu–
Tadmor scheme. A robust example of a limiter is the minmod limiter

ΦMM (a, b) =


a, if |a| < |b| and ab > 0,

b, if |b| < |a| and ab > 0,

0, if ab ≤ 0,

or alternatively
φMM (r) = max

(
0,min(r, 1)

)
.

The minmod limiter is ’conservative’ in the sense that it uses a first-order recon-
struction when the one-sided finite differences have different sign, thereby intro-
ducing an undesired clipping of local extrema. At the other extreme, the superbee
limiter

φSB(r; θ) = max
(
0,min(θr, 1),min(r, θ)

)
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which yields ΦSB using (A.25), generally gives a steeper (often called a more
compressive) reconstruction. See [184] for an in-depth discussion of limiters for
the Nessyahu–Tadmor scheme.

Summing up, we have derived a predictor-corrector scheme of the form

u
n+1/2
i = uni − λ

2
σi,

un+1
i+1/2 =

1

2

(
uni + uni+1

)− λ
(
gni+1 − gni

)
,

gni = f(u
n+1/2
i ) +

1

8λ
si,

si = Φ
(
uni − uni−1, u

n
i+1 − uni

)
,

σi = Φ
(
f(uni )− f(uni−1), f(u

n
i+1)− f(uni )

)
.

(A.26)

The scheme is formally second order. Moreover, under appropriate assumptions
on the time-step and the limiter function Φ one can prove that this scheme gives
solutions that are bounded by their initial data in L∞ norm and have diminishing
total variation. Thus, unlike the classical second-order schemes, the NT scheme
mimics the properties of the exact scalar solution.

The major advantage of the NT scheme is that it is both compact and simple
to implement, particularly since it does not require the use of any characteristic
information or solution of local Riemann problems (see Section A.6.2). The only
requirement is an estimate of the maximum wave-speed needed to impose a CFL
restriction on the time-step.

Example A.4. Let us now apply the NT scheme to the linear advection equation
and Burgers’ equation as considered in Examples A.1 and A.2. We use two different
limiter functions, the dissipative minmod limiter and the compressive superbee
limiter. Figure A.4 shows the approximate solutions computed with the same
parameters as in Figures A.1 and A.2, except for the time-step which is now
Δt = 0.475Δx. The improvement in the resolution is obvious. On the other hand,
we see that there is some difference in the two limiter functions. The dissipative
minmod limiter always chooses the lesser slopes and thus behaves more like a
first-order scheme. The compressive superbee limiter picks steeper slopes and has
a tendency of overcompressing smooth linear waves, as observed for the smooth
cosine profile.

If higher accuracy is wanted, one must use a spatial reconstruction of higher
order and a more accurate temporal extrapolation in terms of more predictor steps
such as in higher-order Runge–Kutta methods, see [28, 29, 179, 191]. Similarly,
semi-discrete nonstaggered schemes have been developed [162–164], for which only
the spatial derivatives are discretized, leading to a set of ordinary differential
equations that can be integrated by an ODE solver. See [250] for a comprehensive
overview of all schemes that have been developed within the class of nonoscillatory
central schemes.
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Figure A.4. Approximate solutions of the linear advection and Burgers’ equation com-
puted by the NT scheme with two different limiters.

There are different ways to extend central schemes to systems of conservation
laws. The simplest method, which we will use for the NT scheme later in this book,
is to apply the scheme directly to each component of the vector of unknowns [213].
This greatly simplifies the implementation of central schemes and is possible since
the schemes do not use the eigenstructure of the underlying system.

To derive high-resolution schemes for conservation laws in multi-dimensions we
can apply similar ideas. In two spatial dimensions, the conservation law reads

ut + f(u)x + g(u)y = 0, u(x, y, 0) = u0(x, y). (A.27)

As in one dimension, we introduce the sliding average

ū(x, y, t) =
1

ΔxΔy

∫
I(x)

∫
J(y)

u(ξ, η, t) dξdη,

and integrate (A.27) over the domain I(x)×J(y)× [t, t+Δt] to derive an evolution
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equation for the sliding average

ū(x, t+Δt)

= ū(x, t)

− 1

ΔxΔy

∫ t+Δt

t

∫
J(y)

[
f
(
u(x+ 1

2Δx, y, s)
)− f

(
u(x− 1

2Δx, y, s)
)]
dyds

− 1

ΔxΔy

∫ t+Δt

t

∫
I(x)

[
g
(
u(x, y + 1

2Δy, s)
)− g

(
u(x, y − 1

2Δy, s)
)]
dxds.

Secondly, we make a piecewise linear reconstruction in each spatial direction,

ûij(x, y, tn) = unij + (x− xi)s
x
ij + (y − yj)s

y
ij ,

(x, y) ∈ [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2].

We now evaluate the sliding average over the staggered grid cell, defined anal-
ogously as for the one-dimensional case, and use the midpoint rule to approxi-
mate the flux integrals. Altogether this gives the two-dimensional version of the
Nessyahu–Tadmor scheme [134],

un+1
i+1/2,j+1/2 =

1

4

(
unij + uni+1,j + uni+1,j+1 + uni,j+1

)
+

1

16

(
sxij + sxi,j+1 − sxi+1,j − sxi+1,j+1

)
+

1

16

(
syij − syi,j+1 + syi+1,j − syi+1,j+1

)
− λ

2

[
f(u

n+1/2
i+1,j ) + f(u

n+1/2
i+1,j+1)

]
+
λ

2

[
f(u

n+1/2
i,j ) + f(u

n+1/2
i,j+1 )

]
− µ

2

[
g(u

n+1/2
i,j+1 ) + g(u

n+1/2
i+1,j+1)

]
+
µ

2

[
g(u

n+1/2
i,j ) + g(u

n+1/2
i+1,j )

]
,

u
n+1/2
ij = unij −

λ

2
σxij −

µ

2
σyij ,

(A.28)

where λ = Δt/Δx, µ = Δt/Δy. As for its one-dimensional counterpart, the
scheme is compact and easy to implement, can be applied to systems in a compo-
nentwise fashion, and has fairly good accuracy.

High-resolution central schemes have seen a rapid development in recent years
and are by now established as simple and versatile schemes for integrating conser-
vation laws in several dimensions. We refer the reader to [249] for an introduction
to central schemes. The website [250] constitutes a comprehensive source of in-
formation on central schemes, including their extensions to higher order, unstruc-
tured grids, semi-discrete versions, and applications proving the versatility of the
schemes.
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A.6.2 High-resolution upwind schemes. To derive upwind schemes, we re-
turn to the sliding average in (A.23). Let us for simplicity assume that the re-
constructed function û(x, tn) is piecewise constant. To evolve the solution, we see
from Figure A.3 that in order to compute the integral of the flux function over
the cell boundaries, we must solve a series of simple initial-value problems of the
form,

ut + f(u)x = 0, u(x, 0) =

{
uL, x < 0,

uR, x > 0.

This is commonly referred to as a Riemann problem, which has a self-similar
solution of the form u(x, t) = v(x/t;uL, uR) and consists of a set of constant states
separated by simple waves (rarefaction, shocks and contacts). Since a hyperbolic
equation has finite speed of propagation, the global solution û(x, t) for sufficiently
small t can be constructed by piecing together the local Riemann solutions. In
general it can be quite complicated to solve Riemann problems, at least for systems
of conservation laws. However, to compute the flux integrals in (A.24) we only
need the solution of the Riemann problem along the ray x/t = 0, where the
solution is constant u(0, t) = v(0;uL, uR). Thus, the general form of the upwind
Godunov-methods reads

un+1
i = uni − λ

[
f
(
v(0;uni−1, u

n
i )
)− f

(
v(0;uni , u

n
i+1)

)]
. (A.29)

A specific scheme is obtained by devising a method to compute the (approximate)
solution of the local Riemann problems.

Example A.5. Let us consider the scalar case with a convex flux function that
satisfies f ′′(u) > 0 (the case f ′′(u) < 0 is similar). In this case the Riemann
solution consists of either a single rarefaction wave or a single shock. If f ′(u) is
either strictly positive or strictly negative, the single wave will move to one side
only, and the Godunov scheme simplifies to the upwind scheme (A.12). If not,
the solution must consist of a rarefaction wave moving in both the positive and
negative direction. Inside the rarefaction wave there is a single sonic point us
where f ′(us) is zero, and the wave is therefore called a transonic rarefaction wave.
Summing up our observations, the Godunov flux reads

Fni+1/2 =


f(uni ), σi+1/2 > 0 and uni > us,

f(uni+1), σi+1/2 < 0 and uni+1 < us,

f(us), uni < us < uni+1.

Here σi+1/2 = [f(uni+1)− f(uni )]/(u
n
i+1 − uni ) is the Rankine–Hugoniot speed asso-

ciated with the jump. A similar formula holds for the case when f ′′(u) < 0.

The Godunov flux derived in the above example can be written in a more
compact form, which is also valid for an arbitrary nonconvex flux function f(u),

Fni+1/2 =

{
minu∈[un

i ,u
n
i+1]

f(u), uni ≤ uni+1,

maxu∈[un
i+1,u

n
i ]
f(u), uni ≥ uni+1.

(A.30)
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If f(u) is nonconvex, the flux may have several sonic points, one at each of its
local critical points.

Working with the exact Godunov flux in an actual implementation is a bit
cumbersome since the formula requires the computation of the minimum or maxi-
mum of f(u) over an interval. It is therefore customary to replace formula (A.30)
with another formula based upon an approximation to the Riemann problem. This
approach is also much easier to generalise to systems of conservation laws.

Let us first assume that the solution is a continuous wave (i.e., a rarefaction
wave). This gives the Engquist–Osher scheme, which is a natural extension of the
upwind scheme to nonconvex flux functions. The Engquist–Osher flux function
reads

Fni+1/2 = f(0) +

∫ un
i

0

max(f ′(v), 0) dv +
∫ un

i+1

0

min(f ′(v), 0) dv. (A.31)

Alternatively, we can approximate the Riemann problem by a single shock.
Then the flux can be written as

Fni+1/2 = f(uni ) + σ−
i+1/2(u

n
i+1 − uni ),

or alternatively as

Fni+1/2 = f(uni+1)− σ+
i+1/2(u

n
i+1 − uni ).

Here s+ = max(s, 0) and s− = min(s, 0). By averaging the equivalent expressions
we obtain the numerical flux

Fni+1/2 = 1
2

[
f(uni ) + f(uni+1)− |σi+1/2|(uni+1/2 − uni )

]
.

This can be interpreted as a central flux approximation plus a viscous correction
with coefficient |σi+1/2|. The formula can quite easily be extended to systems of
equations and gives what is commonly referred to as the Roe linearization of the
Riemann problem. For transonic waves the coefficient σi+1/2 may vanish or be
close to zero and the added dissipation is insufficient to stabilise the computation.
It is therefore customary to add extra dissipation in the form of an entropy fix.
For more details, consult for instance [176].

High-resolution versions of the upwind schemes can be obtained by using a
higher-order reconstruction of the cell averages. This is beyond the scope of the
current book. The interested reader can find the relevant details in a number of
books, for example [107, 108, 115, 159, 175, 176, 260, 262].

A.7 Front tracking

In this section we will introduce a completely different method that does not fall
into the class (A.10). Still, the method will prove to be particularly versatile when
applied to one-dimensional equations as part of an operator splitting approach.
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Figure A.5. Piecewise constant approximation of a Riemann solution in state space. The
shock wave connecting uL is kept, while the rarefaction wave connecting uR is replaced
by a set of (small) jump discontinuities.

The term front tracking has been used to describe a number of methods that
perform some form of explicit tracking of discontinuities. Most of these methods
use a regular grid to represent continuous parts of the solution and add extra
degrees of freedom to represent (moving) discontinuities.

We will use the term front tracking to signify a different method, described
in, e.g., [126]. For earlier papers on the method we refer to [72, 117, 118]. Front
tracking is a mathematical algorithm for computing exact solutions of a certain
subclass of equations on the form (A.1). The algorithm can also be used for
numerical computations; the resulting method is unconditionally stable, has no
numerical dissipation and is very fast. Due to its versatility as a computational
(and mathematical) method, the front-tracking method will be used extensively
in the rest of the book as a basic solution method for hyperbolic conservation laws
in one spatial dimension. We will therefore introduce the method in more detail.

Consider the Cauchy problem (A.3). Let ũ0 be a piecewise constant approx-
imation to u0. Since the conservation law is L1 continuous with respect to its
initial data, the solution v(x, t) of the Cauchy problem

vt + f(v)x = 0, v(x, 0) = ũ0(x), (A.32)

can be made to approximate u(x, t) arbitrarily well by choosing an appropriate
approximation ũ0(x) to u0(x). Let us therefore look at the solution to (A.32)
in more detail. Since the initial data is piecewise constant, the Cauchy problem
initially consists of a set of local Riemann problems. The solution of each of these
Riemann problems is a similarity solution consisting of a set of constant states
separated by simple waves giving either smooth transitions (for rarefaction waves)
or discontinuities along space-time rays (for shocks or contacts).

The key idea in the front-tracking algorithm is to approximate each Riemann
solution by a step function; that is, replace the smooth rarefaction waves by a series
of (small) jump discontinuities and keep shocks and contacts. For scalar equations,
the approximation of the Riemann problem is obtained implicitly through a piece-
wise linear approximation of the flux function. For systems, the Riemann solution
is discretized in the phase plane so that shocks and contacts are retained and rar-
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first interaction second interaction

Figure A.6. Front-tracking construction of a piecewise constant solution depicted in the
(x, t)-plane.

efaction waves are approximated by step functions, see Figure A.5. In either case,
the result is a discrete, approximate Riemann fan consisting of constant states
separated by space-time rays of discontinuity (fronts). The global solution is ob-
tained by piecing together the local Riemann fans and is evolved forward in time
by tracking the discontinuities. The piecewise constant solution is valid as long as
the discontinuities do not interact. When two (or more) rays collide, they define
a new local Riemann problem. This Riemann problem can be solved and the ap-
proximate piecewise constant wave fan can be inserted in the global solution, see
Figure A.6. This construction can be continued forward to an arbitrary time.

The front-tracking algorithm is summarized in Algorithm A.7.1. In an imple-
mentation of a standard finite-volume method, the basic data-structure consists
of a grid and an associated array of cell averages uni . In an implementation of the
front-tracking algorithm, the basic data structure is a set of front objects that rep-
resent the propagating discontinuities. The following data is associated with each
discontinuity: left and right states uL and uR, point of origin (x0, t0), propagation
speed σ, and possible collision point (xc, tc) with another front object. To track
the fronts, we use two lists, a spatial list F, where the fronts are sorted from left
to right, and a collision list C, where front collisions are sorted with respect to
collision time in ascending order. A thorough discussion of the implementation of
the front-tracking algorithm is given in [169].

Most of the algorithmic functions in Algorithm A.7.1 should be self-explanatory,
except for the Riemann solver. We will therefore explain this function in more de-
tail. To this end, consider a scalar Riemann problem

ut + f(u)x = 0, u(x, 0) =

{
uL, x < 0,

uR, x > 0.
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Algorithm A.7.1 The front-tracking algorithm

Construct a piecewise constant initial function ũ0(x) = ũi, for x ∈ [xi−1/2, xi+1/2]
F = {∅}, C = {∅}, and t = 0
Solve all initial Riemann problems in ũ0(x)

{fL, . . . , fR} = RiemannSolver(ũi, ũi+1;xi+1/2, t)
fend = RightMostFront(F)
Append(F, {fL, . . . , fR})
c = ComputCollision(fend, fL)
C=Sort({C, c})

While (t ≤ T ) and C >= {∅} do
(c, xc, tc) = GetNextCollision(C) and remove c from C
{fL, . . . , fR} = FindAllFrontsInCollision(c)
fp = FindNeighbor(fL,to left)
fn = FindNeighbor(fR,to right)
F = {. . . , fp, fn, . . . }
uL = GetLeftState(fL)
uR = GetRightState(fR)
{fL, . . . , fR} = RiemannSolver(uL, uR;xc, tc)
F = {. . . , fp, fL, . . . , fR, fn, . . . }
cL = ComputeCollision(fp, fL)
cR = ComputeCollision(fR, fn)
C = Sort({C, cL, cR})
set t = tc

endwhile

If uL > uR the solution of the Riemann problem is a self-similar function given by

u(x, t) =


uL, x/t < f ′c(uL),(
f ′c
)−1

(x/t), f ′c(uL) < x/t < f ′c(uR),
uL, x/t ≥ f ′c(uR).

Here fc(u) is the upper concave envelope of f over the interval [uR, uL] and (f ′c)
−1

the inverse of its derivative. Intuitively, the concave envelope is constructed by
imagining a rubber band attached at uR and uL and stretched above f in between.
When released, the rubber band assumes the shape of the concave envelope and
ensures that f ′′(u) < 0 for all u ∈ [uR, uL]. The case uL < uR is treated sym-
metrically with fc denoting the lower convex envelope. Assume now that the flux
function f(u) is continuous piecewise linear between the points {u1, u2, . . . , uN},
where u1 = uR and uN = uL. In this case, the Riemann solution takes a particu-
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Algorithm A.7.2 Piecewise linear envelope function in case u1 < uN

i = 1, k = 1, I = {1}
while i < N

σmax = −∞
for j = N, . . . , i+ 1

Δ =
(
f(uj)− f(ui)

)
/
(
uj − ui

)
If Δ > σmax: k = i and σmax = Δ

end
I = {I, k}
i = k

endwhile

larly simple form

u(x, t) =


uN = uL, x < xN−1(t),

ui, xi(t) < x < xi−1(t), i = N − 1, . . . , 2,

u1 = uR, x ≥ x1(t),

where each space-time ray xi(t) satisfies the Rankine–Hugoniot condition

dxi
dt

=
fc(ui+1)− fc(ui)

ui+1 − ui
= σi, xi(0) = 0.

Having obtained an explicit formula for the Riemann solution, the only remaining
problem is to determine the envelope function. Algorithm A.7.2 gives a simple
algorithm for the case u1 < uN . After the algorithm, the piecewise linear envelope
function is given by the points {uI(1) = u1, uI(2), . . . , uI(M) = uN}, whereM ≤ N .
When used as a numerical method, front tracking is unconditionally stable and has
first order convergence with respect to the approximation of the initial data and the
Riemann problems. For scalar equations it can even be shown that the number
of steps in the algorithm is finite. Moreover, since the front-tracking algorithm
computes the exact solution of an equation within the same class of equations,
the approximation will automatically satisfy the same mathematical properties as
the true solution. This means, for instance, that the front-tracking approximation
is by definition bounded in L∞, has bounded variation, and satisfies a Kružkov
entropy inequality.

Example A.6. Figure A.7 shows the front-tracking construction for a scalar equa-
tion with piecewise constant initial data and nonconvex flux function f(u) = u3.
Initially, each Riemann problem is solved by a single discontinuity. As t increases,
the solution develops two shocks as constant states with larger values of |u| over-
take constant states with smaller values of |u|.
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Figure A.7. Front-tracking construction of the exact analytical solution.

The front-tracking method has an obvious generalization to equations of the
form

ut + V (x, t)f(u)x = 0, u(x, 0) = u0(x). (A.33)

This equation will arise in some of the operator splitting examples studied in
Chapter 6. Equation (A.33) has (almost) the same permissible discontinuities as
the original conservation law ut + f(u)x = 0. The difference is that instead of
following straight lines, the permissible discontinuities of (A.33) follow paths that
satisfy a differential equation of the form

ẋ(t) = V (x, t)σ, x(t0) = x0, (A.34)

where σ is the usual Rankine–Hugoniot velocity. Tracking discontinuities and
computing (potential) intersections is the core of the front-tracking algorithm. For
a general discontinuity path satisfying (A.34), this is a nontrivial exercise, since
one would typically have to rely on some ODE solver to compute the solution of
(A.34). However, if V (x, t) is the tensor product of two piecewise linear functions,
(A.34) can be solved explicitly, giving formulas for computing possible intersections
of two shock paths in explicit form. This means that the front-tracking algorithm
can be used to compute solutions to (A.33) if we make such a piecewise linear
spline approximation to the velocity V (x, t) in (A.33); see [181] for more details.
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For a comprehensive introduction to the front-tracking method, both from a
mathematical and a numerical point of view, we refer to [126]. A variant of the
front-tracking method was also used by Bressan in his seminal work on the theory
of systems of conservation laws, see, e.g., [41].

Lucier [195] has developed a second-order front-tracking method for scalar
conservation laws. Instead of approximating the flux function by a polygon, i.e.,
a piecewise linear and continuous function, Lucier considered a quadratic spline
approximation. Furthermore, the initial data is replaced by a continuous piecewise
linear approximation rather than the piecewise constant approximation considered
here. The method applies to convex flux functions.
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1998.

[89] S. Descombes and M. Schatzman. Strang’s formula for holomorphic semi-
groups. J. Math. Pures Appl. (9), 81(1):93–114, 2002.

[90] J. Douglas, Jr. and H. H. Rachford, Jr. On the numerical solution of heat
conduction problems in two and three space variables. Trans. Amer. Math.
Soc., 82:421–439, 1956.
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[168] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva. Linear and
quasilinear equations of parabolic type. American Mathematical Society,
Providence, R.I., 1967.

[169] J. O. Langseth. On an implementation of a front tracking method for hy-
perbolic conservation laws. Advances in Engineering Software, 26(1):45–63,
1996.

[170] J. O. Langseth, A. Tveito, and R. Winther. On the convergence of operator
splitting applied to conservation laws with source terms. SIAM J. Numer.
Anal., 33(3):843–863, 1996.

[171] D. Lanser and J. G. Verwer. Analysis of operator splitting for advection-
diffusion-reaction problems from air pollution modelling. J. Comput. Appl.
Math., 111(1-2):201–216, 1999.

[172] P. Lax and B. Wendroff. Systems of conservation laws. Comm. Pure Appl.
Math., 13:217–237, 1960.

[173] P. D. Lax and X.-D. Liu. Solution of two-dimensional Riemann problems
of gas dynamics by positive schemes. SIAM J. Sci. Comput., 19(2):319–340
(electronic), 1998.

[174] R. J. LeVeque. A large time step generalization of Godunov’s method for
systems of conservation laws. SIAM J. Numer. Anal., 22(6):1051–1073, 1985.

[175] R. J. LeVeque. Numerical methods for conservation laws. Lectures in Math-
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front tracking, 106

front tracking, 196
OS
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piecewise linear envelope, 197
sequential splitting
porous media flow, 137

alternating direction implicit (ADI), 3
AOS

additive operator splitting, 7

Baker–Campbell–Hausdorff formula, 3
balance laws, 24
Bochner spaces, 14
bounded variation, 15
Buckley–Leverett profile, 84
Burgers’ equation, 58, 179

inviscid, 108

Cauchy problem, 6, 17
cell entropy condition, 184
CFL condition, 178
combustion, 164, 165
compact, 183
conservation law

scalar, 5
viscous, 22

conservative method, 176
consistent scheme, 182
convection-diffusion equation, 6

dambreak problem, 154
degenerate parabolic, 5
degenerate parabolic

point degeneracy, 5

diffusive term, 5

ECG scheme, 115
Engquist–Osher scheme, 193
entropy flux, 32

numerical, 184
entropy function, 32
entropy weak solution, 175

definition, 32, 37
entropy, entropy flux triple, 32
essential variation, 15
Euler equations, 151, 160, 164, 165, 167
explosion problem, 160

flow in porous media, 84, 137, 138, 142,
144, 148

flux limiter, 180
fractional steps method, 3

Godunov splitting
first order, 159

heat equation, 5, 19
high-resolution schemes, 180

IMPES (implicit pressure, explicit satu-
ration), 137

Kolmogorov’s compactness criterion, 27
Kružkov interpolation lemma, 29
Kružkov entropy pair, 175
Kuznetsov’s lemma, 118

L1 contractive, 183
lake-at-rest, 162
Lax equivalence theorem, 182
Lax–Friedrichs scheme, 178, 186
Lax–Wendroff theorem, 182
Lie–Trotter–Kato formula, 3
limiter, 180, 188

minmod, 188
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superbee, 188
Lipschitz continuity

weak, 40
Lipschitz function, 15

MacCormack’s method, 178
matrices, 18
modulus of continuity, 27

spatial, 40
temporal, 40

monotone scheme, 183
monotonicity preserving scheme, 183
MUSCL scheme, 74

Nessyahu–Tadmor scheme (NT), 186
NT

see Nessyahu–Tadmor scheme, 186
NT2d, 114
NTds, 114
numerical flux, 177

order of a scheme, 182

polymer flooding, 84
porous medium equation, 6
precompact, 183
predictor-corrector scheme, 189

quarter five-spot, 138, 142

random projection method, 167
Rayleigh–Taylor instability, 169
reservoir flow equation

two-phase, 6
Richtmeyer two-step Lax–Wendroff scheme,

178
Riemann problem, 192

sedimentation, 6
shallow water equations, 155

flow over an obstacle, 161
sliding average, 184
Sod’s test problem, 154
Strang splitting, 7

second-order, 159

time-of-flight, 146
Tonelli variation, 15
total variation, 15, 183
total variation diminishing (TVD), 183
transport

linear and diffusion, 22
transport, linear, 20
Trotter formula, 3
truncation error, 181

upwind scheme, 177

vanishing viscosity method, 174

weakly coupled, 5
well-balanced, 163






