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Abstract
Multiscale methods developed to solve coupled flow equations for reservoir simulation are based on a hierarchical strategy in
which the pressure equation is solved on a coarsened grid and transport equation is solved on the fine grid as a decoupled system.
The multiscale mixed finite-element (MsMFE) method attempts to capture sub-grid geological heterogeneity directly into the
coarse-scale via mathematical basis functions. These basis functions are able to capture important multiscale information and are
coupled through a global formulation to provide good approximation of the subsurface flow solution.

In the literature, the general formulation of the MsMFE method for incompressible two-phase and compressible three-phase
flow has mainly addressed problems with idealized flow physics. In this paper, we present a new formulation that accounts for
compressibility, gravity, and spatially-dependent capillary and relative-permeability effects.

We evaluate the computational efficiency and accuracy of the method by reporting the result of series of representative
benchmark tests that have a high degree of realism with respect to flow physics, heterogeneity in petrophysical model, and
geometry/topology of the corner-point grids. In particular, the MsMFE method is validated and compared against Shell’s in-house
simulator MoReS. The fine-scale flux, pressure, and saturation fields computed by the multiscale simulation show a noteworthy
improvement in resolution and accuracy compared with coarse-scale models.

Introduction
The flow of hydrocarbons in subsurface rock formations is affected by physical processes occurring on multiple length (and
time) scales, from the micrometer scale of individual pores to the kilometer scale of reservoir rock formations. Modern reservoir
characterization and geostatistical modeling techniques aim to integrate information from these different scales to build high-
resolution models with multi-million cells that describe the heterogeneous reservoir properties in great details. Solving multiphase
flow equations on highly detailed geo-cellular models has a very high computational cost, and it is therefore common to perform
some kind of data reduction to derive discrete flow equations on a much coarser model. Not only does this upscaling process
consume a considerable number of man-hours, but the loss of potentially important fine-scale properties introduces a bias in the
simulation that is often hard to estimate and control.

In the past few years, there has been an increasing interest in methods that attempt to reduce or bypass the need for upscaling.
So-called multiscale methods (Efendiev and Hou 2009) are designed to accurately and effectively solve problems having multiple
scales and offer a systematic framework for incorporating effects from an unresolved scale into the global flow equations in a
manner that is consistent with the underlying differential operators. For reservoir simulation, this means that fine-scale petrophys-
ical and geological details are captured directly into the coarse-scale simulation model without the need of explicit computation
of effective coarse-scale properties.

The literature contains a wide range of multiscale methods that are applicable to reservoir simulation, including dual-grid
methods (Guerillot and Verdiere 1995; Audigane and Blunt 2004; Arbogast 2002; Arbogast and Bryant 2002), (adaptive) local-
global methods (Chen et al. 2003; Chen and Durlofsky 2006), finite-element methods (Hou and Wu 1997), mixed finite-element
methods (Chen and Hou 2002; Aarnes 2004; Aarnes et al. 2008; Aarnes and Efendiev 2008; Alpak et al. 2011; Pal et al. 2012),
and finite-volume multiscale methods (Jenny et al. 2003; Lee et al. 2008; Hajibeygi and Jenny 2009, 2011; Parramore et al. 2012).
Although the methods have certain algorithmic differences, they share a common basic concept for incorporating fine-scale into
coarse-scale flow equations. The local flow effects of fine-scale petrophysical properties are estimated by solving a local flow
problems and represented as a set of multiscale basis functions that have a fine-scale subresolution. Boundary conditions used
to localize each basis function can be set using local or global information, or possibly a combination thereof, see e.g., (Alpak
et al. 2011). The global flow problem can then be posed in terms of the multiscale basis functions to compute a reduced set of
degrees-of-freedom associated with a coarser grid. Altogether, this gives a robust and accurate method for upscaling the flow
equations. Alternatively, the basis functions can be used to reconstruct pressure and mass-conservative flux fields that can be fed
into an transport solver formulated on the original geo-cellular or some intermediate grid.

Despite their obvious similarities, multiscale methods should not be confused with upscaling. A comprehensive comparison
of multiscale method with state-of-the-art upscaling methods for elliptic problems in porous media is presented by Kippe et al.
(2008). Whereas the intent of upscaling is to generate approximate coarse-scale solutions, the main objective of the multiscale
method is to obtain efficient and accurate approximations on a fine or intermediate scale (Farmer 2002). Moreover, the natural
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coupling between local and global scales in multiscale methods avoids the inconsistency and non-physical coarse-scale properties
that are often associated with many upscaling techniques.

In the following, we will discuss a particular multiscale method, the multiscale mixed finite-element (MsMFE) method, and
discuss how this method can be extended to account for gravity, compressibility, and spatially-dependent relative-permeability
and capillary-pressure functions. The resulting method is implemented as a software prototype using the MATLAB Reservoir
Simulation Toolbox (MRST) (Lie et al. 2012; SINTEF 2011) and applied to a set of challenging test cases with flow physics,
petrophysical heterogeneity, and grid complexity that is representative of real-life models. In particular, the efficiency and accu-
racy of the MsMFE method is assessed by benchmarking it against Shell’s in-house reservoir simulator MoReS.

1 Mathematical model and fine-scale discretization
Two-phase flow in a porous medium can be modeled as a coupled system consisting of an elliptic flow equation and a parabolic
transport equation that can be derived from the continuity equation over each phase α and Darcy’s law describing the relationship
between phase velocity ~vα and phase pressure pα. The phase saturation Sα represents the fraction of accessible pore volume
filled by a phase α, ρα is the density of phase α, and qα denotes the sources/sink terms representing injection/production wells.
Introducing capillary pressure pc = po − pw and assuming that the two phases (water and oil) fill the pore volume, So +Sw = 1,
we can derive the following equation for oil pressure and total velocity ~v = ~vw + ~vo,

∇ · ~v = q, ~v = −Kλ
[
∇po − g̃(Sw)∇z + h(Sw)∇pc

]
, (1)

and an evolution equation for the water saturation

φ
∂Sw

∂t
+∇ · fw(Sw)

[
~v +Kλo(Sw)

(
(ρw − ρo)g∇z +∇pc(Sw)

)]
=
qw
ρw
. (2)

Here, q = qo + qw is the total flow rate; the permeability tensor K is either diagonal or full and will typically be discontinuous
across internal boundaries of the domain; φ denotes the porosity; and λα = kri/µα the phase mobility, in which kri and µα

denote the relative permeability and viscosity of phase α, respectively. Moreover, λ = λw + λo is the total mobility, fα = λα/λ
is the fractional flow function of phase α, g denotes gravity, and g̃(Sw) = (fw(Sw)ρw + fo(Sw)ρo)g. The form of the function
h(Sw) depends upon the choice of primary pressure variable. Here, we will use oil pressure, for which h(Sw) = fw(Sw). For
simplicity, we will henceforth drop the subscripts on the primary variables p and S.

The computational domain Ω is discretized as a set of {Ci} of N non-overlapping and matching polyhedral cells. The flow
and transport equations Eq. 1–Eq. 2, will be solved sequentially: First, Eq. 1 is solved to provide explicit fluxes at the cell
interfaces, which are then fed into Eq. 2 to evolve the saturations a time step ∆t.

To simplify the presentation of the multiscale method, we will in the following work with three basic unknowns for the
pressure equation: ui denotes the vector of outward fluxes from cell Ci, pi denotes the pressure at the cell center, and πi the
pressure at the cell faces. Standard, locally conservative discretization methods can then be in a form that uses Darcy’s law to
relate the three quantities u, pi, and π through a matrix T i of one-sided transmissibilities,

ui = T i

[
eipi − πi − g̃(Si)∆zi + h(Si)

(
eipc(~xi, Si)− pci

)]
, ei = (1, ..., 1)T , (3)

where ∆zi denotes the vector of differences in the z-coordinate of the cell center ~xi and the face centroids and the capillary
pressure pci at the cell faces is defined as the linear interpolation of the capillary pressure in the neighboring cells. Alternatively,
one can use multipoint methods to define transmissibilities on structured and unstructured grids using multi-point fluxes, see e.g.,
(Wheeler et al. 2012; Pal et al. 2006; Pal and Edwards 2007; Parramore et al. 2012).

By augmenting Eq. 3 with flux and pressure continuity across cell face, we can derive the following discrete linear system for
the global flow problem,  B C D

CT 0 0
DT 0 0

 u
−p
π

 =

 −G(S)∆z +H(S)∆pc

q
0

 . (4)

Here, u denotes the outward face fluxes ordered cell wise (fluxes over interior faces and faults appear twice with opposite signs),
p denotes the cell pressure, and π the face pressures, where each side in the presence of a fault is considered as a separate face.

The first row in the block-matrix equation corresponds to Eq. 3 for all grid cells, for which the right-hand terms G(S)∆z and
H(S)∆pc are the one-sided face contributions corresponding to gravity and capillary effects. The matrix B is block diagonal,
with one block T−1

i defined per cell. The matrix C is also block diagonal and has one block entry ei per cell that duplicates the
cell pressures to one value for each of the cell’s faces. Hence, in the second row of Eq. 4, the transposed matrix CT sums the
face fluxes to define one mass-conservation equation per cell. Finally, each column of D corresponds to a unique face and has
one (for boundary faces) or two (for interior faces) unit entries corresponding to the index of the face in the cell wise ordering.

In the following, the transport equation Eq. 2 will be solved on the fine-scale using a standard transport solver with upstream-
weighted mobilities and two-point discretization of the second-order capillary term. The temporal discretization may be explicit
or implicit. If needed, improved numerical accuracy could have been obtained by using higher-order upwind schemes, like the
wave-oriented multi-dimensional schemes Lamine and Edwards (2009, 2010).
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Fig. 1— The left plot shows the coarse grid defined hierarchically on top the fine grid so that each coarse block consists
of a singly-connected set of cells. The diagram to the right shows the workflow for the multiscale simulation using the
MsMFE method.

2 Multiscale mixed finite elements

The key idea of the multiscale mixed finite-element method is to construct a special approximation space, consisting of a set
of coarse-scale basis functions that satisfy a flow equation locally. The MsMFE method is therefore formulated based on two
hierarchically nested grids as illustrated in Figure 1. Rock and rock-fluid properties are given on the fine-scale geo-cellular grid,
whereas the basis functions and corresponding degrees-of-freedom are associated with a coarse simulation grid used to solve the
global flow problem. The blocks in the coarse grid are defined as a connected set of cells from the fine grid, and can in principle
have arbitrary shapes. However, the best numerical resolution is obtained if the blocks are somewhat regular, follow the layered
structures of stratigraphic grids (Aarnes et al. 2008), and/or adapt to high-contrast features (Natvig et al. 2012).

Basis functions are computed numerically by solving a local flow problem over each pair of neighboring grid blocks, inside
which the flow is driven by source terms rather than boundary conditions, which are normally used in flow-based upscaling.
Using these local basis functions, the effects of the fine-scale heterogeneity can be incorporated into the discretized coarse-scale
flow problem in a way that is consistent with the local fine-scale properties of the differential operators. Figure 1 summarises our
workflow for multiscale simulation.

Multiscale approximation. To formally define the MsMFE method, we start by writing the solution to Eq. 4 as the sum of the
basis functions plus a fine-scale residual,

u = Ψuc + ũ, p = Φpc + p̃, π = Ππc + π̃. (5)

Here, uc denotes the vector of outward fluxes over the coarse-block interfaces, pc denotes the vector of coarse-block pressures,
and π denotes the vector of coarse-block face pressures. Likewise, ũ, p̃, π̃ are reminder terms having variations on the fine grid.
The matrices Ψ, Φ, and Π represent the fine-scale reconstruction operators for ~v, p, and π. Each column in Ψ corresponds to a
multiscale basis function for the flux associated with a unique coarse-grid face and is represented as a nf × 1 vector of fine-scale
fluxes.

For compressible flow, we also need to define fine-scale variations for the pressure basis so that each column of Φ is a
basis function associated with unique cell and each column of Π corresponds to a basis function defined over a coarse face.
For incompressible flow, on the other hand, pressure is seldom used explicitly except to determine well-rates through the use
of appropriate well models. Hence, we define the pressure to be constant within each coarse block and replace Φ by a simple
prolongation operator I that maps a constant value from each coarse block onto the cells of the block. Likewise, Π is replaced
by a prolongation operator J that maps a constant value from each coarse face onto the individual cell faces of the coarse
face. Altogether, this defines a reconstruction operator R = diag(Ψ, I,J) that enables us to map the degrees-of-freedom
xc = [uc,−pc,πc] on the coarse-scale to the corresponding fine-scale quantities x = [u,−p,π].

Coarse system. To form a global system on the coarse grid, we need a compression operator that will bring the fine-scale
system Eq. 4 to the space spanned by our multiscale basis functions. Here, RT is a natural choice since the transposed of the
prolongation operators I and J correspond to the sum over all fine cells of a coarse block and all fine-cell faces that are part of
the faces of the coarse blocks, respectively. Multiplying Eq. 4 from the left by RT, substituting x = Rxc, and rearranging terms,
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we obtain ΨTBΨ ΨTCI ΨTDJ
ITCTΨ 0 0
JTDTΨ 0 0

 uc

−pc

πc

 =

ΨT
(
H(S)∆pc −G(S)∆z

)
−ΨT

(
Bũ−Cp̃+Dπ̃

)
IT q − ITCT ũ

−JTDT π̃

 . (6)

The fine-scale reminder terms can be eliminated as follows: p̃ disappears if we interpret the coarse-scale pressure as the w-
weighted average of the true pressure, pic =

∫
Bi
wpd~x, where w is the source term used to define basis functions, see Eq. 8. The

other two remainder terms ũ and π̃ are simply neglected, and this gives the following coarse-scale system ΨTBΨ ΨTCI ΨTDJ
ITCTΨ 0 0
JTDTΨ 0 0

 uc

−pc

πc

 =

ΨT
(
H(S)∆pc −G(S)∆z

)
IT q
0

 . (7)

Multiscale basis functions. There are two different ways to compute basis functions: in the single-block method, one has to
specify fine-scale fluxes over the coarse interface to which the basis function is associated. The method is not very accurate unless
the interface flux incorporates some kind of global flow information. Herein, we will therefore use a two-block method that does
not impose any condition on the interface between two coarse blocks. The resulting method is not convergent, but will typically
give reasonable accuracy on finite grids. To define the method, we consider two blocks Bi and Bj that share a common coarse
face Γij = ∂Bi∩∂Bj , and letBij be a singly-connected subset of Ω that containsBi andBj . Neglecting the influence of gravity
and capillary forces, the two-block multiscale basis function is defined as

~ψij = −K∇φij , ∇ · ~ψij = wij(~x) =


wi(~x), if ~x ∈ Bi,

−wj(~x), if ~x ∈ Bj ,

0, otherwise,
(8)

in Bij with ~ψij · ~n = 0 on ∂Bij . If Bij 6= Bi ∪Bj , we say that the basis function is computed using overlap or oversampling to
lessen the impact of the artificial no-flow condition on the boundary.

The purpose of the weight function wij(~x) is to distribute the divergence of the velocity, ∇ · ~v over the coarse block. To
produce a unit flow across the interface Γij , the weight function should be chosen on the form wi(x) = θ(x)/

∫
Bi
θ(x)dx. The

function θ(x) can be defined in several ways. For incompressible flow, the simplest choice is to set θ(~x) ≡ 1 or θ(~x) = trace(K)
away from the possible wells and θ(~x) = q(~x) in grid blocks penetrated by wells. This will reproduce the lowest-order Raviart–
Thomas basis on rectangular blocks with homogeneous, isotropic permeability.

Capillary forces. To account for capillary forces, we introduce an additional set of basis functions defined as

~ψc
ij = −K

(
∇φcij − h(S)∇pc(S)

)
, ∇ · ~ψc

ij = 0. (9)

Using an extra set of basis functions instead of adding capillary effects directly in Eq. 8 has the advantage that we avoid the
problem of having to scale the relative contributions of the physical capillary terms and the artificial source term wij and reduce
the saturation dependence in our set of basis functions.

Compressibility. The basic flow model Eq. 1 can be extended to compressible flow as follows

∇ · ~v = q − ct
∂p

∂t
+
(
γ(S, p)~v + β(p)Kg∇z

)
· ∇p, ~v = −λK

(
∇p− g̃(S)∇z

)
, (10)

where ct denotes total compressibilities and β(p) and γ(S, p) are known functions of pressure- and saturation-dependent param-
eters. (To simplify the presentation, capillary forces have been neglected in Eq. 10).

A discrete system on mixed form can be derived by linearizing Eq. 10 and using a mimetic discretization vi = T i(piei−πi),[
Bn C

CT P n(pn+1
ν+1)

][
vn+1
ν+1

−pn+1
ν+1

]
=

[
fn(pn+1

ν )

gn(pn,pn+1
ν )

]
. (11)

Here, ν indicates iterations in a nonlinear solver. Similarly, the superscript n indicates that B, P , f , and g are functions of the
saturation and pressure at the previous time step and will henceforth be dropped for brevity. For compressible flow, the pressure
is no longer immaterial and our basis functions should thus also include subscale pressure variations. From the definition of
the basis functions Eq. 8, it follows that the basis functions for pressure and flux should scale similarly. Hence, we use the
following saturation-dependent multiscale decomposition for pressure, p = Ipc +ΛΦvc + p̃, where Λ = diag(λ0`/λ`) and λ0
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is the mobility used to calculate basis function `. Introducing the multiscale expansion in Eq. 11, applying compression operator
diag(ΨT, IT ), and neglecting residual terms, we obtain the coarse-scale system[

ΨTBΨ ΨTCI

IT (CTΨ− P νΛΦ) ITP νI

] [
vν+1
c

−pν+1
c

]
=

[
ΨTfν

IT gν

]
(12)

that needs to be solved iteratively to construct a multiscale approximation.
To get a fine-scale approximation that converges to zero fine-scale residual, we need to include an equation for the residual

terms that were neglected in Eq. 12[
B C

CT P

] [
v̂ν+1

−p̂ν+1

]
=

[
f c −ΨTBΨvc +ΨTCIpc

gc − IT (CTΨ− P νΛΦ)vc + ITP νIpc

]
. (13)

If the residuals have a localized structure, this equation can be solved efficiently by using a standard iterative, overlapping Schwarz
method. Hence, the resulting iterative method, iMsMFE for short, consists of an outer loop, in which we iterate over Eq. 12 and
Eq. 13 to reduce the fine-scale residual, and two inner loops that are used to solve Eq. 12 and Eq. 13, respectively.

3 Numerical results
In this section, we will validate the MsMFE method on test cases involving realistic reservoir geometries and properties. The aim
of the first test case is assess the computational efficiency of the method on a large-scale geological model with approximately
700,000 cells. The second test case compares the performance of the multiscale method with the Shell standard simulator (MoReS
2010). Case three and four aim to validate the multiscale method for incompressible two-phase flow with gravity and spatially-
dependent capillary pressure and relative permeability. Case three involves two regions with different relative permeability and
capillary curves, whereas the fourth case corresponds to a sector model with multiple regions with a different relative permeability
and capillary curve associated with each region. The final test case demonstrates the use of MsMFE for compressible three-phase
flow.

To perform the numerical experiments, the MsMFE methods described above have been implemented as software prototypes
in Matlab, using the Matlab Reservoir Simulation Toolbox (MRST) (Lie et al. 2012; SINTEF 2011). The main purpose of
MRST is to simplify the prototyping and testing of new computational methods on general unstructured grids, and for this
reason, computational efficiency has in several cases been sacrificed for the sake of generality and flexibility of the toolbox.
For the MsMFE implementation, in particular, the data structure used to represent the basis functions is far from optimal and
significant computational overhead is incurred, e.g., when extracting basis functions to assemble coarse systems. To get a more
reliable assessment of the computational efficiency of the MsMFE method, we have developed a C-accelerated version of the
incompressible method, in which all steps except for the linear solve of the coarse system are performed in C via a MEX interface
to Matlab. However, in both the C-accelerated and the pure Matlab versions, the basis functions are, for the sake of generality,
computed using a mimetic discretization with a TPFA inner-product, which is a factor 3–10 less efficient than using a standard
cell-centered TPFA implementation.

All runtimes reported in the following refer to simulations performed on a computer with Intel Core2 Duo Processors (6M
Cache, 2.80 GHz, 1066 MHz FSB) and 4 GB RAM.

Example 1 (Shell geomodel) In the first test case, we evaluate the efficiency of the MsMFE solver implemented in MRST and,
in particular, compare the C-accelerated version to its pure Matlab counterpart. To this end, we consider a realistic large-scale
geomodel shown in Figure 2, for which the full simulation grid consists of 253 × 258 × 38 cells. In the simulation, cells with
zero porosity or permeability are set to be inactive, giving a total of 721, 999 active cells. Furthermore, we set the minimum
permeability to 1 micro darcy. We use a two-phase model where water is injected into oil, with a mobility ratio of 10. In our
timing experiments, we will focus exclusively on the pressure equation and not consider the transport solves that would have been
performed on the fine scale. Our simulation setup consists of first computing basis functions, and then solving the global pressure
equation one thousand times. To mimic a worst-case scenario of effects arising from saturation updates, the pressure system is
initialized by assigning a random relative permeability value in each cell before each pressure solve. By updating the pressure
one thousand times, we get a picture of where the time is spent during a dynamic simulation. For instance, given a pressure step
of ten days, our test will mimic a simulation of 27 years of production.

First we compare time consumption on a subset of the Shell geomodel. The results are displayed in Table 1. The C-accelerated
code gives a reduction in runtime of over 80% compared to the pure MATLAB implementation even though the MEX interface
is not optimal since data must be copied between C and MATLAB. Solving the same system on the fine scale with the AGMG
multigrid solver (AGMG 2012; Notay 2010) takes 200 seconds, giving a reduction in runtime compared to the fine-scale solver
of 86% for the pure Matlab solver and 97% for the C-accelerated solver.

The results for the C-accelerated code on the full Shell geomodel are shown in Table 2. For large data sets, as in this
case, implementing the whole multiscale simulator in a compiled language would be much more efficient, since a significant
computational overhead is induced when using the MEX interface to copy data between MATLAB and C in the C-accelerated
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(a) (b)

Fig. 2— The Shell geomodel. The plot in (a) shows the full 253 × 258 × 38 model with a 15 × 15 × 7 coarse grid imposed.
The plot in (b) shows a subset of the full model.

Table 1— Runtimes in seconds for one thousand pressure updates for a 20× 20× 12 subset of the Shell geomodel with a
3× 3× 3 coarse grid. Fine-scale solution with AGMG: 200.07 seconds.

Task C-accelerated pure Matlab
Construct coarse grid (x1) 0.01 0.08% 0.02 0.07%
Compute basis functions (x1) 0.74 14.53% 1.68 6.05%
Assemble coarse system (x1000) 0.94 18.37% 20.09 72.20%
Solve coarse system (x1000) 1.81 35.14% 1.92 6.90%
Reconstruct fine flux (x1000) 1.64 31.86% 4.11 14.76%
Total time 5.14 100.00% 27.82 100.00%
Reduction compared to AGMG 97% 86%

Table 2— Time consumption in seconds for the full 253 × 258 × 38 Shell geomodel with 1000 pressure steps, for C-
accelerated multiscale code without updating the basis functions.

Task/coarse dim 10× 10× 5 15× 15× 7
Construct coarse grid (x1) 0.09 0.01% 0.01 0.01%
Compute basis functions (x1) 323.42 40.48% 224.24 31.33%
Assemble coarse system (x1000) 46.46 5.82% 54.69 7.64%
Solve coarse system (x1000) 25.35 3.17% 54.12 7.56%
Reconstruct fine flux (x1000) 403.62 50.52% 382.61 53.46%
Total time 798.95 100.00% 715.76 100.00%

MRST code. In particular, for the reconstruction of fine-scale fluxes, which is the most expensive operation reported in Table 2,
over 50% of the time is spent copying data. Because of large memory consumption, we were not able to run the AGMG solver on
the full model.

We expect that the results presented above extend readily to incompressible black-oil models in the absence of gravity and
capillary forces: the key to efficiency is to exploit the natural parallelism in computing basis functions and reuse basis functions
from one step to the next.

Example 2 (Carbonate reservoir, sector model) The geometrical and physical properties used in this particular sector model
are based on a real-field carbonate reservoir. The sector model dimensions are 2 km by 2 km in the areal dimension and about
50 m in the vertical dimension. The fine-scale model has 20× 20 cells in the lateral direction and 93 layers in vertical direction.
The coarse grid for the multiscale and the upscaled models consists of 5× 5× 11 blocks. Figure 3 shows the fine-scale porosity
distribution, the hierarchical grid used by the multiscale method, and the upscaled porosity distribution on the coarse model. The
reservoir is produced using a five-spot injection pattern, with one injector at each corner of the model and one producer in the
center, see Figure 4. The fluid and the reservoir data used for the simulations are presented in Table 3. The model represent a
scenario mimicking 2000 days of production.
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Fig. 3— Sector model of a carbonate reservoir. The left plot shows the porosity on the Figure showing the multiscale grid
overlaying the fine scale model on the left and upscaled model on right

Fig. 4— Five-spot well pattern for the sector model with one injector in each of the four corners and one producer in the
middle of the model.

Table 3— Fluid and reservoir data used for the sector model
Property Value Units

Water viscosity 0.393 cP
Oil viscosity 1.1 cP
Water density 1138 Kg/m3

Oil density 832 Kg/m3
Connate water saturation 0.2 -
Irreducible oil saturation 0.2 -
Initial reservoir pressure 6000 psi

Well injection rate 10000 bbl/day
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Fig. 5— Water cut and oil production curves for the carbonate sector model.

In the following, we will compare four different simulations: using standard MRST solvers on the coarse and fine grids, using
the MsMFE method, and using Shell’s simulator MoReS (MoReS 2010) on the fine grid. Figure 5 reports the resulting water-cut
and oil-production curves. It can be seen from the plots that the MoReS fine-scale, the MRST fine-scale, and the multiscale
production curves for oil production and water cut almost coincide, whereas the coarse/upscaled model shows some deviation
from the two fine-scale production curves. Moreover, we notice that the multiscale simulation is in close agreement with the
fine-scale simulation results obtained by MoReS.

Figure 6 shows the corresponding saturation profiles computed in the four different simulations. The coarse model produces
significantly different results than the other three simulations, and would not have been used for simulation in practice. On
the other hand, the cost of updating the pressure is almost the same for the coarse-scale and the multiscale simulation, and
the coarse-scale saturation profiles have been included to demonstrate what can be gained by exploiting the subresolution that
is inherent in the multiscale basis functions to compute saturations. However, the most interesting comparison is between the
fine-scale MoReS and the multiscale/fine-scale MRST simulations. Clearly, the volumetric sweeps predicted by the multiscale
simulation is in close agreement with the two fine-scale simulations.

The previous example validated the fine-scale and multiscale MRST solvers against Shell’s in-house reservoir simulator for a sec-
tor model with realistic heterogeneity and geometry, but with simplified flow physics. In the next example, we will consider an ex-
ample with a simple geometry but more realistic flow physics that includes gravity and spatially-dependent relative-permeability
and capillary curves.

Example 3 (Two saturation regions) We consider a simple 2D box that consists of two saturation regions that have different
relative-permeability and capillary curve. The permeability of the medium is equal 100 milli darcy throughout the whole domain,
and the porosity is homogeneous and equal 0.3. The reservoir is initially fully saturated with oil and is represented on a regular
Cartesian grid with 20× 20 cells, which we have partitioned uniformly into 5× 5 coarse blocks, see Figure 7. Water is injected
at the rate of 0.5 m2/day from the bottom of the domain and oil is produced from the top. Gravity is acting in the z-direction.
The transport loop runs with a pressure step of 0.1 year. The initial fine-scale and multiscale pressure distributions are shown in
Figure 7.

Figure 8 compares production curves and the evolution of the saturation profiles computed by the fine-scale and multiscale
simulations. Because of the different capillary curves, the saturation profile of the injected water will be significantly different in
the upper and lower parts of the domain. Altogether, the multiscale method is able to capture the (unresolved) fine-scale effects
quite accurately, giving an approximate solution that is only slightly different from the fine-scale solution. This is confirmed in
the right part of the figure, which shows the percentage discrepancy between the fine-scale and the multiscale simulation along
with curves depicting the corresponding saturations in the production well.

Example 4 (Sector model with nine regions) We consider a sector model that covers an area of 3 km by 3 km and has a thick-
ness of approximately 100 m. The model has nine different saturation regions that each corresponds to a rock-type that is
represented by its own relative permeability and capillary curves, shown in Figure 9. Petrophysical data and well placement are
presented in Figure 10. Initial reservoir pressure is 4728.23 psi and the reservoir is produced by two wells that are located at
diagonally opposite corners of the model in a quarter five-spot pattern. The injection well operates at a rate constraint of 3000
STB per day. The production well operates at a bottom-hole pressure constraint of 100 psi.
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Fig. 6— Saturation profiles for the carbonate sector model.

Fig. 7— The plot to the left shows two different linear capillary curves corresponding to the two saturation regions shown
in the upper-middle plot. The lower-middle plot shows the placement of injection and production well and subdivision into
coarse blocks. The plots to the right show the initial pressure distribution computed by the fine-scale and the multiscale
solvers.
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Fig. 8— The plots to the left show saturation profiles for the fine-scale and multiscale simulation for the box model.
Capillary effects are clearly visible in the saturation distribution. The fine-scale and multiscale saturations are very
similar. The plots to the right show the percentage discrepancy between fine-scale and multiscale simulation and water
saturation in production well.

Fig. 9— The left plot shows the sector model of a reservoir with nine different saturation regions. The middle and left
plots show the corresponding relative permeability and capillary pressure curves, respectively.

Fig. 10— Petrophysical data for the 21 × 21 × 13 sector model. The left plot shows the permeability, which spans the
interval from 50 mD to 400 mD, and the middle plot shows the porosity, which varies in the interval [0.02, 0.12]. The right
plot shows the well placement and a 5× 5× 3 coarse grid, outlined on top of the original geo-cellular model.
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Fig. 11— Water saturation distribution in the sector model after twenty years computed by the fine-scale solver (left) and
the multiscale solver (right).

Fig. 12— The plots show, from left to right: percentage discrepancy between the saturation in the fine-scale and multiscale
solutions as a function of time, water saturations in the production well versus time, and oil and water cuts.

Figure 11 shows the water saturation after twenty years computed by the fine-scale solver and the MsMFE solver operating
on a 5× 5× 3 coarse grid. The computed solutions are not identical, but the solutions exhibit the same qualitative behavior and
clearly demonstrate the effect of using different capillary and relative permeability curves in the different regions of the model.
Figure 12 gives a more detailed analysis of the difference between the two flow predictions. The discrepancy in saturation rises up
to 4.25% until water breakthrough, but then starts to drop. Likewise, the saturation in the production well and the oil and water
cuts show that although the breakthrough deviates slightly in the two simulations, the solutions seem to eventually converge.
Alltogether, the plots show that the multiscale simulation is able to account for gravity and spatial variations in capillary and
relative permeability to provide a reasonably accurate fine-scale flow prediction.

In the last test, we consider a three-phase flow problem described by the compressible, black-oil equations. There are several
ways to discretize and solve these equations, and a prerequisite for successful application of the iterative MsMFE methodology is
to have a robust numerical formulation for the fine-scale problem that solves the flow and transport in separate steps. To the best
of our knowledge, it is not yet clear that there exists such a formulation that is fully robust, efficient, and can be written on the
mixed (hybrid) formulation used to derive the MsMFE method. Herein, we will use a sequential method with a standard mixed
formulation for the pressure equation and an implicit transport solver with saturation as primary variable. and simply assume that
this is a reasonable solution strategy for the fine-scale equations.

Example 5 (Compressible three-phase flow) We consider a sector of a reservoir in the shape of a 500× 500× 15m shoebox,
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Fig. 14— Oil production, gas production, and gas cut computed by the fine-scale and the multiscale solvers for a 3D
compressible three-phase test case.

realized on a grid consisting of 10 × 10 × 3 cells. The model is initially filled with oil at 200 bar. The reservoir is produced by
two wells that are located in opposite corners of the model which are set to operate at a fixed bottom-hole pressure of 300 and
200 bar, respectively. Gas is the injected fluid. Both fluids are assumed to be compressible, with a compressibility of 5 · 10−3 bar
for the oil and the gas following an ideal gas law. The fluids have linear relative permeabilities and a viscosity of 1 cP for the oil
and 0.1 cP for the gas. The heterogeneous permeability distribution and the well pattern are shown in Figure 13.

Our primary interest for this example is to investigate how well the multiscale method is able to predict the global flow
responses in this pressure-controlled system; that is, how accurate the method predicts oil and gas rates in the injector and
producer, as well as the gas cut in the producer. Figure 14 reports a comparison of these quantities computed by the fine-scale
solver, the iterative MsMFE method on a5× 5× 1 coarse grid, and the original MsMFE method without iterations on the same
coarse grid. In the simulation, we have used equally spaced time steps, each of length 40 days, to reach the final time of 600
days. The MsMFE method clearly underestimates the oil production, whereas the gas production and gas cut are calculated quite
accurately. By adding extra iterations in the iMsMFE method, the multiscale method calculates a correct profile also for the oil
production.

4 Conclusions
In this paper we have reviewed a multiscale mixed finite-element method for incompressible two-phase flow and discussed how to
extend the method to include more realistic flow physics like gravity and spatially-dependent capillary and relative-permeability
curves. The method has been validated and benchmarked on a large number of test cases that focus on on geological and
petrophysical models with a high degree of realism, or on realistic flow physics on synthetic grid models designed to exemplify
certain behavior. Selected results from four of these test cases were presented above. Altogether, these benchmark cases show
that the MsMFE method is efficient, robust, and reasonably accurate compared to the fine-scale simulation and hence has a
significant potential for accelerating simulation of two-phase flow applications, particularly for incompressible flow. Compared
with coarse-scale models, the multiscale method gives a significant improvement of the accuracy and resolution of the flux,
pressure, and saturation fields at a comparable computational cost. Combined with a large degree of robustness, this emphasizes
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the importance of the MsMFE method for its ability to capture fine-scale heterogeneity.
The MsMFE method can also be extended to compressible flow and has a certain potential both for weakly and strongly

compressible problems, including black-oil methods. Here, however, the formulation of the method hinges on an effective
operator-splitting method for the underlying fine-scale problem. Although good results can be obtained in many cases, there is
a need for more research to improve the robustness of the methods for application to practical simulation of black-oil models of
industry-standard complexity.
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