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Abstract

We present a set of algorithms for sequential solution of flow and transport that can be used for efficient simulation of polymer
injection modeled as a two-phase system with rock compressibility and equal fluid compressibilities. Our formulation gives a
set of nonlinear transport equations that can be discretized with standard implicit upwind methods to conserve mass and volume
independent of the time step. In the absence of gravity and capillary forces, the splitting is unconditionally stable and the resulting
nonlinear system of discrete transport equations can be permuted to lower triangular form by using a simple topological-sorting
method from graph theory. This gives an optimal nonlinear solver that computes the solution cell by cell with local iteration
control. The single-cell systems can be reduced to a nested set of nonlinear scalar equations that can be bracketed and solved
with standard gradient or root-bracketing methods. The resulting method gives orders-of-magnitude reduction in runtimes and
increases the feasible time-step sizes. For cases with gravity, the same method can be applied as part of a nonlinear Gauss–Seidel
method. Altogether, our results demonstrate that sequential splitting combined with standard upwind discretizations can become
a viable alternative to streamline methods for speeding up simulation of advection-dominated systems.

1 Introduction
Heavy-oil resources are estimated to be more than twice the resources of conventional crude oil. Reservoirs containing heavy
oil are challenging to produce, primarily because the oil has much higher viscosity than water, which will cause injected water
to finger through the reservoir and leave a large percentage of the hydrocarbons behind as residual or non-recoverable oil [9].
Enhanced oil recovery is therefore essential to increase each field’s lifetime and ultimately the world’s oil producible resources.

Polymer flooding is a widely used EOR strategy [7, 23, 24], in which a dilute solution of a water-soluble polymer molecules
is injected to increase the effective water viscosity and thereby establish more favorable mobility ratios between the injected
and the displaced fluids. The addition of long-chain polymer molecules causes a reduction in the permeability and may also
cause the water to behave like a non-Newtonian fluid, i.e., be resistant to flow at low velocities. This allows preferential filling
of high-permeable zones and increases the areal sweep efficiency. Altogether, this results in a highly nonlinear fluid behavior
and increased stiffness of the governing transport equations. In particular, because the water viscosity is strongly affected by the
polymer concentration, it is crucial to capture polymer fronts sharply to resolve the nonlinear displacement mechanisms correctly.

Polymer fronts are, unlike water fronts, not self-sharpening and high numerical resolution is therefore required to limit the
numerical diffusion that would otherwise bias or deteriorate simulation results. High numerical resolution can be achieved by
using a fine grid, by introducing a higher-order discretization, or through a combination of the these two approaches. Herein,
we will focus on high grid resolution, and consider methods for simulating polymer flooding on high-resolution geo-cellular
grid models, which are currently outside the reach of conventional solvers based on fully implicit discretizations. To enable
simulation of large grid models, we apply a sequential solution method in which pressure and saturations/concentrations are
updated in separate steps, e.g., as is commonly used in streamline simulators [6, 21] or the chemical simulator UTCHEM. For the
particular models considered herein, the splitting conserves mass and volume and has no restriction on the pressure and transport
steps. This enables us to use efficient solvers that are specially targeted at the equations found in each of the sequential steps.
For the pressure step, we use a standard two-point discretization, combined with a highly efficient, algebraic multigrid, linear
solver. For the saturation/concentration equations, we apply a standard, upstream mobility-weighted, finite-volume discretization
in space and implicit, first-order discretization in time. This choice may seem strange, given our goal of solving models with a
high number of cells. However, our motivation is that geo-cellular models tend to have large differences in cell volumes and face
areas that effectively preclude the use of explicit time stepping methods that are common for high-order discretization methods.
Instead, we will develop a set of nonlinear solvers that are robust over a large span of CFL numbers and so fast that numerical
diffusion can be reduced by using high grid resolution and time steps that are near the CFL limit of explicit schemes for the cells
that contribute most to the numerical diffusion. The rationale is that first-order implicit and explicit schemes in practice will have
equal numerical diffusion if the time step of the implicit method is approximately the same as the CFL restriction for explicit
schemes in cells with high flow and large volumes. Moreover, localized methods like the discontinuous Galerkin method can be
applied if higher approximation order is required for the spatial discretization.

The key to developing highly efficient transport solvers is the observation that the density contrast between the injected water
and the oil is typically (much) smaller in the recovery of heavy oil than in traditional oil field operations, which implies a looser
coupling between viscous and gravity forces. We exploit this loose coupling to introduce a splitting between advection and gravity
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segregation in the transport step. In the absence of gravity, the advective transport equations can be discretized by a standard,
implicit, upstream mobility-weighted method to give a discrete nonlinear system that can be permuted to triangular form and
solved cell-by-cell with local control over the nonlinear iterations [13, 14, 16]. When gravity is present, one can formulate an
effective nonlinear Gauss–Seidel method that relies entirely on solving single-cell problems. Each single-cell problem can be
solved using a standard Newton–Raphson method, or it can be reduced to a nested set of scalar nonlinear equations that can be
bracketed and thus is guaranteed to have a unique solution for arbitrary large time steps. Altogether, this gives a very robust
and efficient method that is fully competitive with state-of-the-art streamline methods [2, 5, 21], and exploits the same physical
features of the governing equations. Our method, however, is based solely on standard finite-volume discretizations and hence
avoids certain difficulties that are inherent in streamline methods: lack of mass conservation, allocation of fluxes to streamlines,
mapping between streamlines and physical grid, tracing of streamlines in irregular geometries, etc.

2 Mathematical Model and Discretization
In the following, we will consider a set of polymer models that have many of the features that are typically supported by con-
temporary commercial simulators. To this end, the polymer flooding process will be described by an immiscible, two-phase,
three-component flow model that may include the effects of adsorption, rock compressibility, identical phase compressibilities,
pressure-dependent transmissibility, gravity, but capillary effects are not included. The assumption of equal fluid compressibili-
ties is essential to devise an unconditionally stable, sequential splitting method, but except for that, the model is essentially the
same as in a commercial simulator [20]. The results presented in the following can also be extended to models that account for
dead pore volume, but this effect has been left out for brevity.

2.1 Mathematical model. To derive a model, we start from the conservation equations for oil, water, and polymer

∂

∂t
(ραφSα) +∇ · (ρα~vα) = 0, α ∈ {w, o}, (1a)

∂

∂t
(ρwφSwc) +

∂

∂t
(ρr,ref(1− φref)â) +∇ · (cρw~vwp) = 0. (1b)

Here, ρα, ~vα, and Sα denote density, velocity, and saturation of phase α, the porosity is denoted by φ and is assumed to be
a function φ(p) of pressure only, c the polymer concentration, and ~vwp the velocity of water containing diluted polymer. The
function â models the amount of polymer that is adsorbed in the rock. The time scale of adsorption is much higher than that of
mass transport and we will assume that adsorption takes place instantaneously so that â is a function of c only. The reference rock
density is ρr,ref and the reference porosity φref. Sources and sinks may be included in a manner equivalent to boundary conditions,
and are left out of the above equations.

To get a solvable system, Eq. 1 must be supplied by a set of closure relations. Simple PVT behaviour is modeled through
the formation-volume factors bα = bα(p), defined by ρα = bαρ

S
α, where ρSα is the surface density of phase α. We make the

simplifying assumption that bo = bw = b, so that the phases have the same compressibility behaviour. Inserting this into Eq. 1,
the system can be simplified by dividing each equation with the relevant surface density ρSα,

∂

∂t
(bφSα) +∇ · (b~vα) = 0, α ∈ {w, o}, (2a)

∂

∂t
(bφSwc) +

∂

∂t
((1− φref)a) +∇ · (bc~vwp) = 0, (2b)

where we for convenience have introduced the short-hand a = âρr,ref/ρ
S
w.

Darcy’s law for the two phases can be written ~vα = −Kλα(∇p − b(p)ρSαg∇z), where K denotes rock permeability, λα =
kα/µα denotes the fluid mobility for phase α, g is the gravity constant, and z the coordinate in the vertical direction. We introduce
the total mobility λ = λo + λw and let fα = λα/λ denote the fractional flow of phase α. As long as the relative permeabilities
λα are nonnegative, monotone, and equal zero for Sα = 0, the fractional flow functions fα(Sα) will be monotone and have
end-point values fα(0) = 0 and fα(1) = 1. With this, the equation for the total velocity ~v = ~vw + ~vo reads

~v = −Kλ
(
∇p−

∑
α

bρSαfαg∇z
)
. (3)

Next, we describe a simple fluid model for polymer diluted in water. The concentration of polymer is so small that the only
physical property affected is the viscosity. To model the viscosity change of the mixture, we will use the Todd–Longstaff model
[22]. This model introduces a mixing parameter ω ∈ [0, 1] that takes into account the degree of mixing of polymer into water.
Assuming that the viscosity µm of a fully mixed polymer solution is a function of the concentration, the effective polymer
viscosity is defined as

µp,eff = µm(c)ωµ1−ω
p , µp = µm(cmax). (4)
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Compute initial conditions p0
i , S0

i , and c0i
foreach time step tn+1 do

Compute pressure pn+1
i and fluxes vn+1

ij by solving Eq. 10 for all cells Ci
Compute Sn+1

i , cn+1
i by solving Eq. 9 (with α = w in Eq. 9a) for all cells Ci

Algorithm 1: Sequential splitting method for pressure and transport.

The viscosity of the partially mixed water is given in a similar way by

µw,e = µm(c)ωµ1−ω
w . (5)

The effective water viscosity µw,eff is defined by interpolating linearly between the inverse of the effective polymer viscosity and
the partially mixed water viscosity

1

µw,eff
=

1− c/cmax

µw,e
+
c/cmax

µp,eff
. (6)

To take the incomplete mixing into account, we introduce the velocity of water that contains polymer, which we denote ~vwp. For
this part of the water phase, the relative permeability is denoted by krwp and the viscosity is equal to µp,eff . We also consider the
total water velocity, which we still denote ~vw and for which the viscosity is given by µw,eff . Darcy’s law then gives us

~vw = − krw
µw,effRk(c)

K(∇pw − ρwg∇z), ~vwp = − krwp
µp,effRk(c)

K(∇pw − ρwg∇z) = m(c)~vw, (7)

as we assume that the presence of polymer does not affect the pressure and the density. We have also assumed that the relative
permeability does not depend on mixing so that krwp = krw. The function Rk(c) denotes the actual resistance factor and is
a non-decreasing function that models the reduction of the permeability of the rock to the water phase due to the presence of
absorbed polymer. A useful formula for m(c) can easily be derived as follows:

m(c) =
µw,eff

µp,eff
=
[(

1− c

cmax

)( µp
µw

)1−ω
+

c

cmax

]−1

. (8)

2.2 Discretization. To discretize Eq. 2, we first introduce a grid consisting of cells {Ci} that each have a bulk volume Vi,
integrate over each cell in space, and apply a standard implicit method for the temporal derivative. This gives the discrete
transport equations (

biφiSα,i
)n+1 −

(
biφiSα,i

)n
+

∆t

Vi

∑
j

(
bijvα,ij

)n+1
= 0, (9a)

(
biφiSw,ici + (1− φref,i)ai

)n+1

−
(
biφiSw,ici + (1− φref,i)ai

)n
+

∆t

Vi

∑
j

(
bijcijvwp,ij

)n+1
= 0. (9b)

Here, subscripts i denote quantities associated with cell Ci and subscripts ij denote quantities associated with the interface
between cells Ci and Cj . Superscripts denote time steps. To derive a discrete pressure equation, we sum the two phase equations,
Eq. 9, using the condition Sw + So = 1 to obtain(

biφi
)n+1 −

(
biφi

)n
+

∆t

Vi

∑
j

(
bijvij

)n+1
= 0, (10)

where vij denotes the flux corresponding to the total velocity ~v. This flux can be expressed as vij = Tij(pi − pj + gij) if we
discretize Eq. 3 by a standard two-point flux approximation. Here, Tij denotes the transmissibility between cells Ci and Cj .
The equation necessary to compute discrete pressures and fluxes is now formed by combining Eq. 10 with the expression for the
discrete flux.

3 Solution Strategy
Our overall system will consist of a pressure equation, Eq. 10, and two transport equations, Eq. 9a with α = w for the water
saturation and Eq. 9b for the polymer concentration. To solve this coupled system, we use a standard sequential solution procedure
as outlined in Algorithm 1 that separates and solves the pressure and transport equations in consecutive steps.

The dynamics of the transport problem is generally determined by the balance between viscous and gravity forces. For
heavy-oil systems, however, gravity segregation is typically a weak effect compared to viscous flow because of large injection
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Reorder cells according to the fluxes {vn+1
ij }Ni=1

Compute Sn+1
i , cn+1

i iteratively:
foreach cell Ci i = {1, . . . , N} do

Solve the 2× 2 single-cell problem defined by Eq. 11: find S and c such that Rnw,i(S, c) = 0 and Rnc,i(S, c) = 0.
(S, c)→ (Sn+1

i , cn+1
i )

Algorithm 2: Advection step for a system that can be completely reordered..
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Fig. 1—Illustration of the reordering idea for a quarter-five spot simulation on a Voronoi grid. The two plots to the left
show the natural numbering of the cells together with the resulting sparsity pattern of the discrete transport equations.
The two plots to the right show the new ordering induced by the topological sort and the resulting sparsity pattern.

rates and small differences in the densities of the oil and water phases. This means that the transport will mainly be co-current,
giving a unidirectional flow property that can be exploited to develop efficient transport solvers. If gravity effects are negligible,
this sequential splitting method will be unconditionally stable in the sense that it is mass conservative, preserves consistency
between pressures and masses, has no time-step restriction between pressure and transport steps, and has no time-step restrictions
on the transport steps. In the next subsection, we will also show that each transport step can be solved using a finite number of
operations, independent of the size of the time size of the splitting step ∆t = tn+1 − tn.

3.1 Advection step: the single-cell problem. If gravity is neglected and a monotone method like the standard two-point flux-
approximation scheme is used to discretize the pressure equation, the velocity field ~v has no loops. The discrete equivalence
of this property is that the directed graph describing the fluxes is acyclic and hence can be topologically sorted. Using the
reordering induced by the topological sort, all cell neighbours of cell Ci can be divided into two index sets: U(i) denotes all
upwind neighbors of cell Ci and D(i) denotes all downwind neighbors. If we use upstream-cell evaluation for the fractional flow
function fij , the discrete transport equations can be written as two residual equations

Rw,i(S
n+1, cn+1) =

(
biφiSi

)n+1 −
(
biφiSi

)n
+

∆t

Vi

∑
j∈U(i)

(
f(Sj , cj)bijvij

)n+1
+

∆t

Vi
f(Si, ci)

n+1
∑
j∈D(i)

(
bijvij

)n+1
, (11a)

Rc,i(S
n+1, cn+1) =

(
biφiSici + a(ci)(1− φref,i)

)n+1 −
(
biφiSici + a(ci)(1− φref,i)

)n
+

∆t

Vi

∑
j∈U(i)

(
m(cj)cjf(Sj , cj)bijvij

)n+1
+
(
m(ci)cif(Si, ci)

)n+1 ∆t

Vi

∑
j∈D(i)

(
bijvij

)n+1
. (11b)

All upwind cells Cj , j ∈ U(i) will appear before cell Ci in the reordered numbering, and if the residual equations in Eq. 11 are
solved in the topologically sorted order given by the flux, the saturation and concentration values Sn+1

j and cn+1
j have already

been computed when we visit cell Ci. Hence, the only unknowns in Eq. 11 are the values of saturation and concentration in the
cell Ci, Sn+1

i and cn+1
i . In other words, performing a topological sort enables us to permute the nonlinear system of discrete

transport equations, Eq. 15, to a block-triangular form, as illustrated in Fig. 1. Because of the block-triangular form, the solution
can be computed one cell at the time as outlined in Algorithm 2. This method was first introduced by Natvig and Lie [16, 17],
who demonstrated two orders-of-magnitude speedup for several examples of incompressible two-phase flow.

Algorithm 2 gives us local control over the iteration process, meaning that the number of iteration steps needed per cell is no
longer forced to be the maximum needed by the worst cell, as for a standard implicit method solving for all cells simultaneously.
With local control the average number of steps is much reduced, for example by exploiting that the residual will be identical to
zero ahead of the displacement fronts in many flooding scenarios. Hence, no iterations are required in the corresponding cells.
This is demonstrated in [15]. To achieve further gains in efficiency compared with a standard Newton–Raphson method, we
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Fig. 2—Illustration of loops occuring in discretized transport equations. The plots show the sparsity pattern of the
nonlinear system for four different cases with diminishing influence of loops, from left to right: (i) all cells connected in
one big loop, (ii) the majority of cells involved in eight loops, (iii) a minor fraction the cells involved in seven small loops,
and (iv) an almost completely reorderable system containing only two small loops. When solving the nonlinear system,
the local residual equations for the cells inside the red squares are coupled and must be solved simultaneously.

must devise an efficient method for solving each of the single-cell problems defined in Eq. 11. We start by simplify the residual
equations. That is, we let S and c denote Sn+1

i and cn+1
i and introduce seven constants, k0, . . . , k6, in which we collect terms

involving cells that have already been computed (i.e., Cj for j ∈ U(i)), quantities that depend on the known pressure solution
(pn+1
i , vn+1

ij ) at time n + 1, and terms from the previous time step n. Then, we can write Eq. 11 as a 2 × 2 nonlinear system of
the form

Rw(S, c) = k0 + k1S + k2f(S, c) = 0, (12a)
Rc(S, c) = k3 + k4Sc+ k5a(c) + k6m(c)cf(S, c) = 0. (12b)

The straightforward way of solving this system is by applying a gradient method. However, it is not obvious that this method will
converge, or even that Eq. 12 has a unique solution. Fortunately, Lie et al. [15] recently proved that Eq. 12 has a unique solution
for a simpler flow model without polymer adsorption and resistance factor, and that this solution can be computed in a finite
number of iterations, independently of the size of the time step. The key idea in the proof is to use Eq. 12a to formally eliminate S
as a function of c, and then insert this function S(c) into Eq. 12b to obtain a nonlinear scalar equationRc(S(c), c) = 0. In general,
S(c) cannot be computed analytically, but must instead computed numerically by solving Eq. 12a for each fixed c. The resulting
algorithm for the single-cell problem is hence a nested loop of iterations over nonlinear scalar equations h(c) = 0 that each can
be solved robustly using bracketing scalar root-finding algorithms. If h(a) differs in sign from h(b), the function h crosses zero
at least once in the interval [a, b], which is thus guaranteed to contain a root. Given a valid initial interval, bracketing algorithms
cannot fail to find a root if the function h is well behaved. The same result can be proved for the system considered herein and
the proof can also be extended to models that account for dead pore volume [20], provided that one makes certain modifications
to eliminate the instability inherent in the model which allows for the computation of infinite polymer concentrations; details will
be given in forthcoming papers.

There are several robust bracketing root-finding methods for solving scalar equations e.g., bisection or modified regula falsi,
as well as hybrid methods like Brent’s method that combine bisection, secant, and inverse quadratic interpolation. In our imple-
mentation we have used a modified regula falsi method described by Ford [8], the Pegasus method, for both solves. This method
only requires the evaluation of residuals, which are simple to implement and typically inexpensive to compute compared to the
Jacobians required by gradient methods. Bracketing methods may not always have optimal convergence, but can still be used as
nonlinear solvers in their own right or as robust fallback strategies for more efficient gradient-based methods when solving the
single-cell problem, as demonstrated by Lie et al. [15].

3.2 Advection step: nonlinear Gauss–Seidel iterations. In the general case, we are not guaranteed that the total velocity
~v does not contain loops, i.e., blocks of mutually dependent cells that cannot be solved one by one in order. This happens in
particular if gravity effects are included in the total velocity ~v or if a non-monotone method is used to discretize the pressure
equation, Eq. 10. Fig. 2 shows examples of loops occurring in discretized transport equations.

In [16, 17], the coupled multi-cell systems were solved using a standard stabilized Newton method. However, numerical
experiments indicate that it is more efficient to use a simple iterated, nonlinear Gauss–Seidel in which we solve the multi-cell
block one cell at a time, and repeat the process until an acceptable converged solution is obtained. This method will be outlined
in the following. By applying the reordering, we ensure an optimal block structure of the nonlinear system in which the number
of the loops and the size of each loop are minimized. The loop segments are solved in the correct order so that, for a given loop,
the equations are well-posed and the only unknowns are the saturations and concentrations in the cells that belong to the loop.
Let us now consider a loop of size N`. We drop the superscript n + 1 and with a slight abuse of notation let S = [S1, . . . , SN`

]
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and c = [c1, . . . , cN`
] denote the values of saturation and concentration in the cells that belong to the loop. The residuals given

by Eq. 11 take the following form

Rw(S, c) = k0 + k1

 S1

...
SN`

+ k2

 f(S1, c1)
...

f(SN`
, cN`

)

 , (13a)

Rc(S, c) = k3 + k4

 S1c1
...

SN`
cN`

+ k5

 a(c1)
...

a(cN`
)

+ k6

 m(c1)c1f(S1, c1)
...

m(cN`
)cN`

f(SN`
, cN`

)

 (13b)

where k0, k3 are vectors and k1, k2, k4, k5, k6 are matrices that do not depend on S and c and are defined analogously as in
Eq. 12. In the nonlinear Gauss–Seidel method, we loop through all the cells that belong to the loop and in each cell Ci solve
the local 2× 2 nonlinear single-cell problem to update Si and ci, using values from previous time or iteration step in all upwind
cells. This process is repeated until the residuals are below a prescribed tolerance. Let superscript k denote the iterations of the
Gauss–Seidel algorithm. Then, for k = 1, 2, . . ., we compute sequentially Ski and cki for i = 1, . . . , N` by solving the single-cell
problems

0 = Rkw,i(S, c) = Rw,i(S
k
1 , . . . , S

k
i−1, S, S

k−1
i+1 , S

k−1
N`

, ck1 , . . . , c
k
i−1, c, c

k−1
i+1 , c

k−1
N`

), (14a)

0 = Rkc,i(S, c) = Rc,i(S
k
1 , . . . , S

k
i−1, S, S

k−1
i+1 , S

k−1
N`

, ck1 , . . . , c
k
i−1, c, c

k−1
i+1 , c

k−1
N`

). (14b)

The single-cell problem of Eq. 14 takes the form of Eq. 12 and can be solved in the same robust manner that is described in the
previous subsection. The convergence of the method can be established for small time steps, but the proof is omitted for brevity.
The proof also shows that the convergence speed increases when the dependence of the residuals with respect to the components
belonging to the cells downward in the loop is small, that is,∣∣∣∣∂Rw,i∂Sj

∣∣∣∣+

∣∣∣∣∂Rw,i∂cj

∣∣∣∣� 1 and
∣∣∣∣∂Rc,i∂Sj

∣∣∣∣+

∣∣∣∣∂Rc,i∂cj

∣∣∣∣� 1 for all i and j > i.

In the special case in which the cells C1, . . . , CN`
are reorderable, we have ∂Rw,i

∂Sj
=

∂Rw,i

∂cj
=

∂Rc,i

∂Sj
=

∂Rc,i

∂cj
= 0 for all i and

j > i and the solution can then be found in exactly one iteration. The necessary steps for solving the advection problem are
summarized in Algorithm 3.

Reorder cells according to the fluxes {vn+1
ij }Ni=1

→ A sequence of blocks Bn of mutually dependent cells, for n = 1, . . . , NB
for ` = 1, . . . , NB do

if block B` contains only one cell then
Solve single-cell problem Eq. 12 for the cell in B`.

else
Apply the non linear Gauss–Seidel algorithm to the block B`:
while cell residuals exceed tolerance do

for n = 1, . . . , N` do
Solve single-cell problem Eq. 14 for cell Cn in block B`

Algorithm 3: Advection step for a system that can only be partially reordered.

3.3 Gravity splitting. If gravity effects cannot be neglected, we need to introduce an additional operator splitting for the
transport equations, Eq. 9, to be able to utilize the reordering methods discussed in the two previous subsections. This operator
splitting method was first introduced within streamline simulation [4, 10, 11], but can also offer certain benefits for finite-volume
methods, e.g., as discussed in [14].

First, we solve the advective equations that account for viscous effects (for brevity subscripts w have been dropped)(
bφS∗

)n+1

i
−
(
bφS

)n
i

+
∆t

Vi

∑
j

(
bf(S∗, c∗)v

)n+1

ij
= 0, (15a)

(
bφc∗S∗ + (1− φref)a(c∗)

)n+1

i
−
(
bφcS + (1− φref)a(c)

)n
i

+
∆t

Vi

∑
j

(
bm(c∗)c∗f(S∗, c∗)v

)n+1

ij
= 0, (15b)
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using the Gauss–Seidel method described in Algorithm 3. This gives us intermediate saturation and concentration distributions
S∗,n+1 and c∗,n+1, which are then used as initial conditions for a second set of segregation equations that account for gravity
effects (

bφ(S − S∗)
)n+1

i
+

∆t

Vi

∑
j

(
bλof(S, c)(ρw − ρo)gK∇z

)n+1

ij
= 0, (16a)

(
bφc(S − S∗) + (1− φref)(a(c)− a(c∗))

)n+1

i
+

∆t

Vi

∑
j

(
bm(c)cλof(S, c)(ρw − ρo)gK∇z

)n+1

ij
= 0. (16b)

In the segregation equation, all cells will in principle be coupled and hence solved for simultaneously using a Newton–Raphson
method. However, in cases where the geo-cellular model only contain vertical cell columns, the segregation equations will
decouple between columns and can hence be solved one column at the time. Linearizing the segregation equation inside a single
column leads to a tridiagonal system that can be solved very efficiently using the Thomas algorithm. Likewise, our numerical
experiments show that using a nonlinear Gauss–Seidel algorithm, similar to the one outlined in Section 3.2, can also be very
efficient for cases with small density differences. To this end, we visit the cells inside the column in an alternating pattern,
sweeping both from above and below. Solving for multiple columns is an operation that is straightforward to parallelize. For
cases without vertical columns, one may also foresee a nonlinear Gauss–Seidel method that iterates over a loop of column solves.

Finally, we note that by summing Eq. 15 and Eq. 16 we obtain

(
bφS

)n+1

i
−
(
bφS

)n
i

+
∆t

Vi

∑
j

((
bf(S∗, c∗)v

)n+1

ij
+
(
bλof(S, c)(ρw − ρo)gK∇z

)n+1

ij

)
= 0, (17a)

(
bφcS + (1− φref)a(c)

)n+1

i
−
(
bφcS + (1− φref)a(c)

)n
i
+

∆t

Vi

∑
j

((
bm(c∗)c∗f(S∗, c∗)v

)n+1

ij
+
(
bm(c)cλof(S, c)(ρw − ρo)gK∇z

)n+1

ij

)
= 0, (17b)

which implies, after summing over all the cells, that∑
i

(
bφS

)n+1

i
=
∑
i

(
bφS

)n
i
, and

∑
i

(
bφcS + (1− φref)a(c)

)n+1

i
=
∑
i

(
bφcS + (1− φref)a(c)

)n
i
. (18)

In other words, the total masses of water, oil, and polymer are conserved.

4 Numerical examples
In this section will present a few numerical experiments that demonstrate the utility of our numerical strategy and verify and
validate the corresponding simulator that was implemented as part of the Open Porous Media (OPM) initiative [19]. The simulator
is available as free and open-source code and can be downloaded from the OPM website under the GPLv3 license. For simplicity,
all simulations reported in the following were performed on a single core.

In the following examples, all 2 × 2 single-cell problems are either solved by the bracketed solver discussed above or by a
standard Newton–Raphson solver with the nested bracketing method as a fallback if Newton iterations fail.

4.1 Example 1: Polymer slug in a 1D reservoir. In the first example, we will verify our simulation against a commercial
simulator [20] for three different polymer models of increasing complexity. To this end, we consider a 1D homogeneous reservoir
1500 m long that is initially filled with an oil with viscosity 5 cP. To produce the oil, we first inject water with viscosity 0.5 cP
from the left side for 300 days, and then a polymer slug for 500 days, before continuing injection of pure water for another 2000
days. The polymer will increase the water viscosity by a factor twenty. The base-case model uses linear relative permeabilities as
reported in Table 1, water viscosity 0.5 cP, oil viscosity 5.0 cP, no adsorption, no dead pore space, and a Todd–Longstaff mixing
parameter ω = 1. In the second model, we include adsorption as given in Table 1 and dead pore space equal to 0.15. In the third
model, the mixing parameter is set to ω = 0.5. The computed solutions plotted in Fig. 3 show excellent agreement for all three
cases, with only a slight deviation for the third model.

4.2 Example 2: a cubic reservoir In the second example, we will investigate how our numerical methods scale with an
increasing number of grid cells. To this end, we consider an idealized, synthetic test case consisting of a homogeneous reservoir
in the form of a cube described on a grid with n × n × n grid cells. A total of one pore volume of water is injected in the cell
at the bottom south-west corner and fluids are produced from the cell at the upper north-east corner. Polymer is injected in the
period between 0.2 and 0.5 PVI. No-flow boundary conditions are prescribed on all outer boundaries. The fluids are described
using the base-case model from the previous example.
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TABLE 1—Fluid data for Example 1.

Relative permeabilities
Sw krw kro
0.2 0.0 1.0
0.7 0.7 0.0
1.0 1.0 0.0

Viscosity
c m(c)

0.0 1.0
7.0 20.0

Adsorption
c â(c)

0.0 0.0000
2.0 0.0015
8.0 0.0025

Compressibility
Phase Value (bar−1)
rock 3.00 · 10−6

water 3.03 · 10−6

oil 1.25 · 10−7

0 500 1000 1500 2000 2500

Polymer and water at position 2/3 − BASE

days

 

 

opm−polymer

baseline

0 500 1000 1500 2000 2500

Polymer and water at position 2/3 − ADS+DPS

days

 

 

opm−polymer

baseline

0 500 1000 1500 2000 2500

Polymer and water at position 2/3 − ADS+DPS+MIX

days

 

 

opm−polymer

baseline

Fig. 3—Comparison of 1D polymer slug computed by the OPM polymer solver (red lines) and a commercial simulator
(black lines) for three different model configurations: base-case model, base-case model with adsorption and dead pore
space, and with mixing parameter ω = 0.5.
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Fig. 4—CPU times for the n× n× n reservoir in Example 2. The left plot shows total CPU time as a function of the size
of the model. The right plot shows the CPU time per cell as a function of the size of the model.
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Fig. 4 reports the CPU times for the pressure and transport solvers. The pressure solver uses the algebraic multigrid linear
solver from dune:istl [3]. As expected, the runtime of the pressure solver does not scale linearly with the number of cells,
but increases with an average factor of 1.13. (This factor would most likely be higher for highly heterogeneous petrophysical
data). The transport solver, on the other hand, scales linearly because the fluxes do not contain any loops and hence the discrete
transport equations can be permuted to a sequence of 2× 2 single-cell problems.

4.3 Example 3: Norne. To validate our method, we consider a reservoir model representing Norne, a Norwegian Sea reservoir.
The experiments presented in the following represent a plausible simulation case, but do not represent a real polymer injection
operation. The Norne model [12] is only used to provide realistic reservoir geometry, petrophysical parameters, and well posi-
tions. Fluid properties and well schedules are synthetic, but based on realistic heavy-oil cases from elsewhere in the world. We
emphasize that the view expressed in this example are the views of the authors and do not necessarily reflect the views of Statoil
and the Norne license partners.

The Norne model shown in Fig. 5 consists of approximately 45000 cells, and is a faulted corner-point grid with fairly complex
and heterogeneous geometry: the ratio of cell volumes between the largest and smallest cell is 3.6 · 105, while the ratio between
largest and smallest interface area is 2.7 · 109. Most cells have 6 neighbours, but some have as many as 21, due to faults. The
permeability ranges from 0.3 mD to 4 darcies. The model contains 20 wells, of which 6 are injectors and 14 are producers. The
reservoir is initially filled with oil and connate water, and simulated allowing for compressible rock and fluids. For the fluid
model, we use the data described in Table 2 and Fig. 5, water and oil densities of 962 and 1080 kg/m3, water and oil viscosities
of 0.48 and 180 cP, and a Todd–Longstaff mixing parameter ω = 1.

TABLE 2—Fluid data for Example 3.

Viscosity
c m(c)
0 1.0

0.5 3.6
1.0 6.3
1.5 12.5
2.0 25.8
3.0 48.0

Adsorption
c â(c) c â(c)

0.000 0.000000 1.250 0.000019
0.250 0.000010 1.500 0.000019
0.500 0.000012 1.750 0.000020
0.750 0.000016 2.000 0.000030
1.000 0.000018 3.000 0.000030

Compressibility
Phase Value (bar−1)
rock 3.0 · 10−6

water 5.0 · 10−5

oil 5.0 · 10−5

dead pore space: 0.05
residual resistivity factor: 1.3
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Fig. 5—Left plot: the Norne model with injection wells shown in blue and production wells shown in red. Right plot:
relative permeability curves.

We compare a plain water injection scenario lasting 4000 days to a polymer injection scenario, in which a polymer solution
is injected between days 300 and 800. The 4000 days have been computed over 73 steps with time-steps ranging from 1 day
initially, to 100 days in the latter half. In the left part of Fig. 6 we have plotted the total water cut of both scenarios, and can
clearly see that the polymer has the effect of delaying water breakthrough, and changes the shape of the curves. In the right part
we have plotted the water-cut curves of the three producers with earliest breakthrough.

The CPU time of the two simulations are reported in Table 3, where we clearly see that the computation time is dominated
by the pressure part which takes five times longer than the transport solver for polymer flooding and eight times longer for water
flooding. For the transport solver, a large part of the runtime is used by the gravity segregation solver; running with no gravity
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Fig. 6—Comparison of water-cut curves for Norne test case with water injection and polymer flooding.
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Fig. 7—Comparison of water-cut curves for the base-case model and models without gravity and/or compressibility for
polymer flooding (left) and water injection (right).

reduces the runtime by a factor 2–3 in both cases. The effect of gravity is small in this case, the density difference between the two
phases being 12%, and Fig. 7 shows that the water-cut curves with and without gravity are almost indistinguishable. Neglecting
gravity should therefore be a reasonable assumption.

The second effect that contributes to increase the runtime is compressibility. Running with incompressible rock and fluids
reduces runtime by a factor 3.7 for the pressure solver. The water-cut curves are similar to the compressible case, but the water
breakthrough comes significantly later. Allowing for rock compressibility with the porosity multiplier restricted to being a linear
function of pressure gives curves closer to the base case, while keeping the low computational cost of a linear pressure part.

TABLE 3—CPU times in seconds for the Norne model measured using a single core on 2.5 GHz Intel i7 processor.

Compressible model Incompressible model
Case Polymer flooding Water injection Polymer flooding Water injection
Pressure solver 100 sec 99 sec 27 sec 27 sec
Transport solver 19 sec 12 sec 19 sec 11 sec
– without gravity 7.8 sec 5.7 sec 3.8 sec 2.4 sec
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4.4 Example 4: a real field model. As a last validation test, we consider a realistic case based on a real-field model of a
heavy-oil reservoir. The model consists of 600 000 cells and has approximately forty wells. Petrophysical data, fluid properties,
and well positions are from the real model, but the injection strategy and well controls are purely synthetic. To produce oil,
polymer is injected along with water from all injection wells at a concentration that increases the water viscosity by a factor fifty.
Polymer and water are assumed to be perfectly mixed (i.e., we use ω = 1).

Fig. 8 shows water saturation and polymer concentration after 1000 days. To compute the solution, we use two different time
step sizes of 5 and 100 days, respectively, and in the advection step, we use both the bracketed and the Newton single-cell solver.
Fig. 8 reports the corresponding number of iterations used in the last time step for all methods. A key observation from the figure,
is that the computational work is limited to regions around wells and near the oil-water contact, where either the water saturation
or polymer concentration changes.

For the pressure step, we use AGMG [1, 18] as linear solver. Each pressure solve converges within 4 nonlinear iterations and
takes approximately 10 seconds on a Linux workstation with a 2.6 GHz Intel i7 processor. Motivated by the previous example
(and preliminary numerical experiments), we neglect the influence of gravity. With this assumption, one transport step takes
approximately 0.5 seconds. This means that we obtain twenty transport steps for the cost of a single pressure step, thereby giving
us the possibility of reducing the time-steps to increase the resolution of polymer fronts. These results are encouraging, but further
research is needed to find an optimal time-stepping strategy for achiving the best accuracy for the given computational cost.

5 Conclusions
We have presented a highly efficient simulation method for realistic models of polymer flooding in heavy-oil reservoirs. The key
points to the efficiency of our method are: (i) to exploit the loose coupling between flow and transport to enable special solvers
for the respective equations; (ii) to exploit the weak influence of gravity and split the transport calculation into an advective
and a segregation part; and (iii) to localize the nonlinear solves of the advective part of transport step to significantly reduce
computational costs. A further advantage is that we have an unconditionally stable method for solving the localized single-cell
problems that avoids time-step restrictions induced by stability problems. In particular, the method is very robust with respect
to time steps and the large differences in cell volumes that are typically present in realistic high-resolution geo-cellular models.
The method is particularly efficient for systems in which rock compressibility dominates fluid compressibilities and gravity only
governs slow processes; such systems are highly relevant for enhanced recovery of heavy oil.

The method is implemented as part of the Open Porous Media (OPM) initiative [19] and is freely available from the website
under the GPLv3 license. The current software implements a polymer model that includes dead pore space, adsorption, and
permeability reduction. Initial testing indicate that the method works well even if the fluids have different compressibility, but
further research is needed to understand the limitations for practical reservoir simulations. In addition, research will also be
needed to develop efficient localization strategies for the nonlinear iterations for flow fields that contain large loops and have
stronger gravity effects.
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