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Summary. Even though the art of reservoir simulation has evolved through more
than four decades, there is still a substantial research activity that aims toward
faster, more robust, and more accurate reservoir simulators. Here we attempt to
give the reader an introduction to the mathematics and the numerics behind reser-
voir simulation. We assume that the reader has a basic mathematical background
at the undergraduate level and is acquainted with numerical methods, but no prior
knowledge of the mathematics or physics that govern the reservoir flow process is
needed. To give the reader an intuitive understanding of the equations that model
filtration through porous media, we start with incompressible single-phase flow and
move step-by-step to the black-oil model and compressible two-phase flow. For each
case, we present a basic numerical scheme in detail, before we discuss a few alter-
native schemes that reflect trends in state-of-the-art reservoir simulation. Two and
three-dimensional test cases are presented and discussed. Finally, for the most basic
methods we include simple Matlab codes so that the reader can easily implement
and become familiar with the basics of reservoir simulation.

1 Introduction

For nearly half a century, reservoir simulation has been an integrated part
of oil-reservoir management. Today, simulations are used to estimate pro-
duction characteristics, calibrate reservoir parameters, visualise reservoir flow
patterns, etc. The main purpose is to provide an information database that
can help the oil companies to position and manage wells and well trajectories
in order to maximise the oil and gas recovery. Unfortunately, obtaining an
accurate prediction of reservoir flow scenarios is a difficult task. One of the
reasons is that we can never get a complete and accurate characterization of
the rock parameters that influence the flow pattern. And even if we did, we
would not be able to run simulations that exploit all available information,
since this would require a tremendous amount of computer resources that
exceed by far the capabilities of modern multi-processor computers. On the
other hand, we do not need, nor do we seek a simultaneous description of the
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flow scenario on all scales down to the pore scale. For reservoir management it
is usually sufficient to describe the general trends in the reservoir flow pattern.

In the early days of the computer, reservoir simulation models were built
from two-dimensional slices with 102 − 103 grid cells representing the whole
reservoir. In contrast, reservoir characterizations today model the porous rock
formations by the means of grid-blocks down to the meter scale. This gives
three-dimensional models consisting of multi-million cells. Despite an aston-
ishing increase in computer power, and intensive research on computation
techniques, commercial reservoir simulators can seldom run simulations di-
rectly on geological grid models. Instead, coarse grid models with grid-blocks
that are typically ten to hundred times larger are built using some kind of
upscaling of the geophysical parameters. How one should perform this upscal-
ing is not trivial. In fact, upscaling has been, and probably still is, one of the
most active research areas in the oil industry (see e.g., [7, 13, 14, 31]). This
effort reflects that it is a general opinion that, with the ever increasing size
and complexity of the geological reservoir models, we cannot run simulations
directly on these models in the foreseeable future.

Along with the development of better computers, new and more robust
upscaling techniques, and more detailed reservoir characterizations, there has
also been an equally significant development in the area of numerical methods.
State-of-the-art simulators employ numerical methods that can take advan-
tage of multiple processors, distributed memory workstations, adaptive grid
refinement strategies, and iterative techniques with linear complexity. For the
simulation, there exists a catalogue of different numerical schemes that all
have their pros and cons. With all these techniques available we see a trend
where methods are being tuned to a special set of applications, as opposed to
traditional methods that were developed for a large class of differential equa-
tions. As an example, we mention the recent multiscale numerical methods
[4, 5, 12, 18, 19, 24] that are specially suited for differential equations whose
solutions may display a multiple scale structure. Although these methods re-
semble numerical schemes obtained from an upscaling procedure, they are
somewhat more rigorous in the sense that they exploit fine-scale information
in a mathematically more consistent manner.

It is possible that multiscale methods can help bridge the gap between
the size of the geological grid and the size of the simulation grid in reservoir
simulation. This type of contribution would certainly take reservoir simula-
tion a big leap forward, and could simplify reservoir management workflow
considerably. However, although upscaling is undoubtedly an important part
of reservoir simulation technology, neither upscaling nor multiscale techniques
will be discussed here. This part of the reservoir simulation framework is dis-
cussed separately elsewhere in this book [1]. Here our purpose is to present
a self-contained tutorial on reservoir simulation. The main idea is to let the
reader become familiar with the mathematics behind porous media flow sim-
ulation, and present some basic numerical schemes that can be used to solve
the governing partial differential equations. Moreover, to ease the transition
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from theory to implementation, we supply compact Matlab codes for some of
the presented methods applied to Cartesian grids. We hope that this material
can give students or researchers about to embark on, for instance, a Master
project or a PhD project, a head start.

We assume that the reader has knowledge of mathematics and numerics
at the undergraduate level in applied mathematics, but we do not assume
any prior knowledge of reservoir simulation. We therefore start by giving a
crash course on the physics and mechanics behind reservoir simulation in Sec-
tion 2. This section presents and explains the role of the various geophysical
parameters and indicates how they are obtained. In Section 3 we present the
basic mathematical model in its simplest form: the single-phase flow model
giving an equation for the fluid pressure. Here we also present some numerical
schemes for solving the pressure equation. Then, in Section 4 we move on to
multiphase flow simulation. Multiphase flows give rise to a coupled system
consisting of a (nearly) elliptic pressure equation and a set of (nearly) hyper-
bolic mass transport equations, so-called saturation equations. To balance all
terms in these equations properly is a difficult task, and requires quite a bit
of bookkeeping. Therefore, to enhance readability, we make some simplifying
assumptions before we start to discretise the equations. Section 5 is therefore
devoted to immiscible two-phase flow where gas is allowed to be dissolved in
the oleic phase. These assumptions give rise to what is known as the black-oil
model. We then show how to discretise both the pressure equation and the
saturation equations separately, and explain how to deal with the coupling be-
tween the pressure equation and the saturation equations. Finally, in Section
6, we make some additional assumptions and present a Matlab code for a full
two-phase flow simulator. For illustration purposes, the simulator is applied
to some two-dimensional test-cases extracted from a strongly heterogeneous
reservoir model that was used as a benchmark for upscaling techniques [13].

2 A Crash Course on the Physics and Mechanics behind
Reservoir Simulation

The purpose of this section is to briefly summarise some aspects of the art of
modelling porous media flow and motivate a more detailed study on some of
the related topics. More details can be found in one of the general textbooks
describing modelling of flow in porous media, e.g., [6, 11, 15, 20, 27, 29, 33].

Over a period of millions of years, layers of sediments containing organic
material built up in the area that is now below the North Sea. A few centime-
tres every hundred years piled up to hundreds and thousands of meters and
made the pressure and temperature increase. Simultaneously, severe geolog-
ical activity took place. Cracking of continental plates and volcanic activity
changed the area from being a relatively smooth, layered plate into a com-
plex structure where previously continuous layers were cut, shifted, or twisted
in various directions. As the organic material was compressed, it eventually
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turned into a number of different hydrocarbons. Gravity separated trapped
water and the hydrocarbon components. The lightest hydrocarbons (methane,
ethane, etc.) usually escaped quickly, whilst the heavier oils moved slowly to-
wards the surface. At certain cites, however, the geological activity had created
and bent layers of low-permeable (or non-permeable) rock, so that the migrat-
ing hydrocarbons were trapped. These are today’s oil and gas reservoirs in the
North Sea, and they are typically found at about 1 000–3 000 meters below
the sea bed.

Although we speak about a porous medium, we should remember it is
solid rock. However, almost any naturally formed rock contains pores, and
the distribution and volume fraction of such pores determine the rock proper-
ties, which in turn are the parameters governing the hydrocarbon flow in the
reservoir.

2.1 Porosity

The rock porosity, usually denoted by φ, is the void volume fraction of the
medium, that is, 0 ≤ φ < 1. The porosity usually depends on the pressure;
the rock is compressible, and the rock compressibility is defined by:

cr =
1
φ

dφ

dp
, (1)

where p is the overall reservoir pressure. For simplified models, it is customary
to neglect the rock compressibility and assume that φ only depends on the
spatial coordinate. If compressibility cannot be neglected, it is common to use
a linearization so that:

φ = φ0

(
1 + cr(p− p0)

)
. (2)

For a North Sea reservoir, φ is typically in the range 0.1–0.3, and com-
pressibility can be significant, as e.g., witnessed by the subsidence in the
Ekofisk area. Since the dimension of the pores is very small compared to any
interesting scale for reservoir simulation, one normally assumes that porosity
is a piecewise continuous spatial function. However, ongoing research aims
to understand better the relation between flow models on pore scale and on
reservoir scale.

2.2 Permeability

The (absolute) permeability, denoted by K, is a measure of the rock’s ability
to transmit a single fluid at certain conditions. Since the orientation and in-
terconnection of the pores are essential for flow, the permeability is not neces-
sarily proportional to the porosity, but K is normally strongly correlated to φ.
Rock formations like sandstones tend to have many large or well-connected
pores and therefore transmit fluids readily. They are therefore described as



An Introduction to the Numerics of Flow in Porous Media using Matlab 5

permeable. Other formations, like shales, may have smaller, fewer or less in-
terconnected pores and are hence described as impermeable. Although the
SI-unit for permeability is m2, it is commonly represented in Darcy (D), or
milli-Darcy (mD). The precise definition of 1D (≈ 0.987 · 10−12 m2) involves
transmission of a 1cp fluid (see below) through a homogeneous rock at a speed
of 1cm/s due to a pressure gradient of 1atm/cm. Translated to reservoir con-
ditions, 1D is a relatively high permeability.

In general, K is a tensor, which means that the permeability in the different
directions depends on the permeability in the other directions. However, by a
change of basis, K may sometimes be diagonalised, and due to the reservoir
structure, horizontal and vertical permeability suffices for several models. We
say that the medium is isotropic (as opposed to anisotropic) if K can be
represented as a scalar function, e.g., if the horizontal permeability is equal
to the vertical permeability. Moreover, due to transitions between different
rock formations, the permeability may vary rapidly over several orders of
magnitude, local variations in the range 1 mD to 10 D are not unusual in a
typical field.

Production (or measurements) may also change the permeability. When
temperature and pressure is changed, microfractures may open and signifi-
cantly change the permeability. Furthermore, since the definition of perme-
ability involves a certain fluid, different fluids will experience different per-
meability in the same rock sample. Such rock-fluid interactions are discussed
below.

2.3 Fluid Properties

The void in the porous medium is assumed to be filled with the different
phases. The volume fraction occupied by each phase is the saturation (s) of
that phase. Thus, ∑

all phases

si = 1. (3)

For practical reservoir purposes, usually only three phases are considered;
aqueous (w), oleic (o), and gaseous (g) phase. Each phase contains one or
more components. A hydrocarbon component is a unique chemical species
(methan, ethane, propane, etc). Since the number of hydrocarbon compo-
nents can be quite large, it is common to group components into psuedo-
components. Henceforth we will make no distinction between components and
pseudo-components.

Due to the varying and extreme conditions in a reservoir, the hydrocar-
bon composition of the different phases may change throughout a simulation
(and may sometimes be difficult to determine uniquely). The mass fraction
of component i in phase j is denoted by cij . In each of the phases, the mass
fractions should add up to unity, so that for N different components, we have:
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N∑
i=1

cig =
N∑

i=1

cio =
N∑

i=1

ciw = 1. (4)

Next we assign a density ρ and a viscosity µ to each phase. In general,
these are functions of phase pressure pi (i = g, o, w) and the composition of
each phase. That is, for gas

ρg = ρg(pg, c1g, ..., cNg), µg = µg(pg, c1g, ..., cNg), (5)

and similarly for the other phases. These dependencies are most important
for the gas phase, and are usually ignored for the water phase.

The compressibility of the phase is defined as for rock compressibility:

ci =
1
ρi

dρi

dpi
, i = g, o, w. (6)

Compressibility effects are more important for gas than for oil and water. In
simplified models, water compressibility is therefore usually neglected.

Due to interfacial tensions, the phase pressures are different, defining the
capillary pressure,

pcij = pi − pj , (7)

for i, j = g, o, w. Although other dependencies are reported, it is usually as-
sumed that the capillary pressure is a function of the saturations only.

Other parameters of importance are the bubble-point pressures for the
various components. At given temperature, the bubble-point pressures signify
the pressures where the respective phases start to boil. Below the bubble-point
pressures, gas is released and we get transition of the components between the
phases. For most realistic models, even if we do not distinguish between all the
components, one allows gas to be dissolved in oil. For such models, an impor-
tant pressure-dependent parameter is the solution gas-oil ratio Rs for the gas
dissolved in oil at reservoir conditions. It is also common to introduce so-called
formation volume factors (Bw, Bo, Bg) that model the pressure dependent ra-
tio of bulk volumes at reservoir and surface conditions. Thermodynamical
behaviour is, however, a very complex topic that is usually significantly sim-
plified or even ignored in reservoir simulation. Thermodynamics will therefore
not be discussed any further here.

2.4 Relative Permeabilities

Even though phases do not really mix, for macroscale modelling, we assume
that all phases may be present at the same location. Thus, it turns out that
the ability of one phase to move depends on the environment at the actual
location. That is, the permeability experienced by one phase depends on the
saturation of the other phases at that specific location, as well as the phases’
interaction with the pore walls. Thus, we introduce a property called relative
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permeability, denoted by kri, i = g, o, w, which describes how one phase flows
in the presence of the two others. Thus, in general, and by the closure relation
(3), we may assume that

kri = kri(sg, so), (8)

where subscript r stands for relative and i denotes one of the phases g, o, or
w. Thus, the (effective) permeability experienced by phase i is Ki = Kkri. It
is important to note that the relative permeabilities are nonlinear functions
of the saturations, so that the sum of the relative permeabilities at a specific
location (with a specific composition) is not necessarily equal to one. In gen-
eral, relative permeabilities may depend on the pore-size distribution, the fluid
viscosity, and the interfacial forces between the fluids. These features, which
are carefully reviewed by Demond and Roberts [17], are usually ignored. Of
greater importance to oil recovery is probably the temperature dependency
[28], which may be significant, but very case-related.

Another effect is that due to the adsorption at pore walls and creation of
isolated, captured droplets, the relative permeability curves do not extend all
over the interval [0, 1]. The smallest saturation where a phase is mobile is called
the residual saturation. The adsorption effects may vary, and this may have
important effects. Particularly for simulation of polymer injection, adsorption
will occur and have significant impact on the results. The adsorption of a
component is usually a nonlinear function, assumed to depend on the rock
matrix, and the concentration of the actual component. Microscopic rock-
fluid interactions also imply that the rock absolute permeability is not a well-
defined property. Liquids obey no-slip boundary conditions, whilst gases may
not experience the same effects (Klinkenberg effect).

Obtaining measurements of the quantities discussed above, is very difficult.
Particularly the relative permeability measurements are costly and trouble-
some [23]. Recently, the laboratory techniques have made great progress by
using computer tomography and nuclear magnetic resonance (NMR) to scan
the test cores where the actual phases are being displaced. Although standard
experimental procedures exist for measuring two-phase relative permeabilities
(systems where only two phases are present), there is still usually a significant
uncertainty concerning the relevance of the experimental values found and
it is difficult to come up with reliable data to be used in a simulator. This
is mainly due to boundary effects. Particularly for three-phase systems, no
reliable experimental technique exists. Thus, three-phase relative permeabil-
ities are usually modelled using two-phase measurements, for which several
theoretical models have been proposed. Most of them are based on Stone’s
model [32], where sets of two-phase relative permeabilities are combined to
give three-phase data [16]. Recently, a mathematically more plausible model
has been proposed [25, 26] for the case with no gravity (or with gravity and
no counter-current flow). Contrary to the Stone models, the latter exhibits no
elliptic regions for the resulting conservation laws.
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The uncertainty regarding relative permeability is, however, modest com-
pared to the uncertainty imposed by the sparsity of absolute permeability
data. To measure K, core samples from the rock are used. These may be
about 10 cm in diameter, taken from vertical test wells at every 25 cm of
depth. Clearly these samples have negligible volume compared to the entire
oil reservoir extending over several kilometres. From outcrops and mines it is
known that rock permeability may vary widely, indicating that the modelling
of permeability for a reservoir based on core samples is a tremendously difficult
problem. Some additional information may be gained from seismic measure-
ments, but with the technology available today, only large scale structures
may be found by this technique. Therefore, we have very limited information
about how the subsurface reservoirs look like. To meet this problem, stochas-
tic methods have been applied extensively in the field of reservoir descrip-
tion; see Haldorsen and MacDonald [22] and the references therein. Moreover,
when comparing and adjusting parameters as real-life production starts, per-
meability models can be tuned to fit the actual production data, and thereby
hopefully improve the original models and predict future production better.
Such approaches are called history matching.

2.5 Production Processes

Initially, a hydrocarbon reservoir is at equilibrium, and contains gas, oil, and
water, separated by gravity. This equilibrium has been established over mil-
lions of years with gravitational separation and geological and geothermal
processes. When a well is drilled through the upper non-permeable layer and
penetrates the upper hydrocarbon cap, this equilibrium is immediately dis-
turbed. The reservoir is usually connected to the the well and surface produc-
tion facilities by a set of valves. If there were no production valves to stop the
flow, we would have a “blow out” since the reservoir is usually under a high
pressure. As the well is ready to produce, the valves are opened slightly, and
hydrocarbons flow out of the reservoir due to over-pressure. This in turn, sets
up a flow inside the reservoir and hydrocarbons flow towards the well, which in
turn may induce gravitational instabilities. Also the capillary pressures will
act as a (minor) driving mechanism, resulting in local perturbations of the
situation.

During the above process, perhaps 20 percent of the hydrocarbons present
are produced until a new equilibrium is achieved. We call this primary produc-
tion by natural drives. One should note that a sudden drop in pressure also
may have numerous other intrinsic effects. Particularly in complex, composite
systems this may be the case, as pressure-dependent parameters experience
such drops. This may give non-convective transport and phase transfers, as
vapour and gaseous hydrocarbons may suddenly condensate.

As pressure drops, less oil and gas is flowing, and eventually the produc-
tion is no longer economically sustainable. Then the operating company may
start secondary production, by engineered drives. These are processes based on
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injecting water or gas into the reservoir. The reason for doing this is twofold;
some of the pressure is rebuilt or even increased, and secondly one tries to push
out more profitable hydrocarbons with the injected substance. One may per-
haps produce another 20 percent of the oil by such processes, and engineered
drives are standard procedure at most locations in the North Sea today.

In order to produce even more oil, Enhanced Oil Recovery (EOR, or ter-
tiary recovery) techniques may be employed. Among these are heating the
reservoir or injection of sophisticated substances like foam, polymers or sol-
vents. Polymers are supposed to change the flow properties of water, and
thereby to more efficiently push out oil. Similarly, solvents change the flow
properties of the hydrocarbons, for instance by developing miscibility with
an injected gas. In some sense, one tries to wash the pore walls for most of
the remaining hydrocarbons. The other technique is based on injecting steam,
which will heat the rock matrix, and thereby, hopefully, change the flow prop-
erties of the hydrocarbons. At present, such EOR techniques are considered
too expensive for large scale commercial use, but several studies have been
conducted and the mathematical foundations are being carefully investigated,
and at smaller scales EOR is being performed.

One should note that the terms primary, secondary, and tertiary are am-
biguous. EOR techniques may be applied during primary production, and
secondary production may be performed from the first day of production.

3 Incompressible Single-Phase Flow

The simplest possible way to describe the displacements of fluids in a reser-
voir is by a single-phase model. This model gives an equation for the pressure
distribution in the reservoir and is used for many early-stage and simplified
flow studies. Single-phase models are used to identify flow directions; iden-
tify connections between producers and injectors; in flow-based upscaling; in
history matching; and in preliminary model studies.

3.1 Basic Model

Assume that we want to model the filtration of a fluid through a porous
medium of some kind. The basic equation describing this process is the con-
tinuity equation which states that mass is conserved

∂(φρ)
∂t

+∇ · (ρv) = q. (9)

Here the source term q models sources and sinks, that is, outflow and inflow
per volume at designated well locations.

For low flow velocities v, filtration through porous media is modelled with
an empirical relation called Darcy’s law after the French engineer Henri Darcy.
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Darcy discovered in 1856, through a series of experiments, that the filtration
velocity is proportional to a combination of the gradient of the fluid pressure
and pull-down effects due to gravity. More precisely, the volumetric flow den-
sity v (which we henceforth will refer to as flow velocity) is related to pressure
p and gravity forces through the following gradient law:

v = −K
µ

(∇p+ ρg∇z). (10)

Here K is the permeability, µ is the viscosity, g is the gravitational constant
and z is the spatial coordinate in the upward vertical direction. For brevity we
shall in the following write G = −g∇z for the gravitational pull-down force.

In most real field geological reservoir models, K is an anisotropic diagonal
tensor. Unfortunately, as mentioned in the introduction, commercial reservoir
simulators can seldom run simulations directly on these geological models.
Effects of small-scale heterogeneous structures are therefore incorporated into
simulation models by designing effective permeability tensors that represent
impact of small-scale heterogeneous structures on a coarser grid, as discussed
in more detail elsewhere in this book [1]. These effective, or upscaled, per-
meability tensors try to model principal flow directions, which may not be
aligned with the spatial coordinate directions, and can therefore be full ten-
sors. Hence, here we assume only that K is a symmetric and positive definite
tensor, whose eigenvalues are bounded uniformly below and above by positive
constants.

We note that Darcy’s law is analogous to Fourier’s law of heat conduction
(in which K is replaced with the heat conductivity tensor) and Ohm’s law of
electrical conduction (in which K is the inverse of the electrical resistance).
However, whereas there is only one driving force in thermal and electrical
conduction, there are two driving forces in porous media flow: gravity and
the pressure gradient. Since gravity forces are approximately constant inside
a reservoir domain Ω, we need only use the reservoir field pressure as our
primary unknown. To solve for the pressure, we combine Darcy’s law (10)
with the continuity equation (9).

To illustrate, we derive an equation that models flow of a fluid, say, water
(w), through a porous medium characterised by a permeability field K and a
corresponding porosity distribution. For simplicity, we assume that the poros-
ity φ is constant in time and that the flow can be adequately modelled by
assuming incompressibility, i.e., constant density. Then the temporal deriva-
tive term in (9) vanishes and we obtain the following elliptic equation for the
water pressure:

∇ · vw = ∇ ·
[
− K
µw

(∇pw − ρwG)
]

=
qw
ρw
. (11)

To close the model, we must specify boundary conditions. Unless stated oth-
erwise we shall follow common practice and use no-flow boundary conditions.
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Hence, on the reservoir boundary ∂Ω we impose vw · n = 0, where n is the
normal vector pointing out of the boundary ∂Ω. This gives us an isolated flow
system where no water can enter or exit the reservoir.

In the next subsections we restrict our attention to incompressible flows
and present several numerical methods for solving (11). To help the interested
reader with the transition from theory to implementation, we also discuss
some simple implementations in Matlab for uniform Cartesian grids. We first
present a cell-centred finite-volume method, which is sometimes referred to
as the two-point flux-approximation (TPFA) scheme. Although this scheme
is undoubtedly one of the simplest discretisation techniques for elliptic equa-
tions, it is still widely used in the oil-industry.

3.2 A Simple Finite-Volume Method

In classical finite-difference methods, partial differential equations (PDEs) are
approximated by replacing the partial derivatives with appropriate divided
differences between point-values on a discrete set of points in the domain.
Finite-volume methods, on the other hand, have a more physical motivation
and are derived from conservation of (physical) quantities over cell volumes.
Thus, in a finite-volume method the unknown functions are represented in
terms of average values over a set of finite-volumes, over which the integrated
PDE model is required to hold in an averaged sense.

Although finite-difference and finite-volume methods have fundamentally
different interpretation and derivation, the two labels are used interchangeably
in the scientific literature. We therefore choose to not make a clear distinc-
tion between the two discretisation techniques here. Instead we ask the reader
to think of a finite-volume method as a conservative finite-difference scheme
that treats the grid cells as control volumes. In fact, there exist several finite-
volume and finite-difference schemes of low order, for which the cell-centred
values obtained with the finite-difference schemes coincide with cell averages
obtained with the corresponding finite-volume schemes. The two representa-
tions of the unknown functions will therefore also be used interchangeably
henceforth.

To derive a set of finite-volume mass-balance equations for (11), denote by
Ωi a grid cell in Ω and consider the following integral over Ωi:∫

Ωi

( qw
ρw

−∇ · vw

)
dx = 0. (12)

Invoking the divergence theorem, assuming that vw is sufficiently smooth,
equation (12) transforms into the following mass-balance equation:∫

∂Ωi

vw · n dν =
∫

Ωi

qw
ρw

dx. (13)

Here n denotes the outward-pointing unit normal on ∂Ωi. Corresponding
finite-volume methods are now obtained by approximating the pressure pw
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with a cell-wise constant function pw = {pw,i} and estimating vw · n across
cell interfaces γij = ∂Ωi ∩ ∂Ωj from a set of neighbouring cell pressures.

To formulate the standard two-point flux-approximation (TPFA) finite-
volume scheme that is frequently used in reservoir simulation, it is convenient
to reformulate equation (11) slightly, so that we get an equation on the form

−∇ · λ∇u = f, (14)

where λ = K/µw. To this end, we have two options: we can either introduce
a flow potential uw = pw +ρwgz and express our model as an equation for uw

−∇ · λ∇uw =
qw
ρw
,

or we can move the gravity term ∇ · (λρwG) to the right-hand side. Hence,
we might as well assume that we want to solve equation (14) for u.

As the name suggests, the TPFA scheme uses two points, the cell-averages
ui and uj , to approximate the flux vij = −

∫
γij

(λ∇u) · n dν. To be more
specific, let us consider a regular hexahedral grid with gridlines aligned with
the principal coordinate axes. Moreover, assume that γij is an interface be-
tween adjacent cells in the x–coordinate direction so that nij = (1, 0, 0)T . The
gradient ∇u on γij in the TPFA method is now replaced with

δuij =
2(uj − ui)
∆xi +∆xj

, (15)

where ∆xi and ∆xj denote the respective cell dimensions in the x-coordinate
direction. Thus, we obtain the following expression for vij :

vij = δuij

∫
γij

λdν =
2(uj − ui)
∆xi +∆xj

∫
γij

λdν.

However, in most reservoir simulation models, the permeability K is cell-wise
constant, and hence not well-defined at the interfaces. This means that we
also have to approximate λ on γij . In the TPFA method this is done by
taking a distance-weighted harmonic average of the respective directional cell
permeabilities, λi,ij = nij · λinij and λj,ij = nij · λjnij . To be precise, the
nij–directional permeability λij on γij is computed as follows:

λij = (∆xi +∆xj)
(
∆xi

λi,ij
+
∆xj

λj,ij

)−1

,

Hence, for orthogonal grids with gridlines aligned with the coordinate axes,
one approximates the flux vij in the TPFA method in the following way:

vij = −|γij |λijδuij = 2|γij |
(
∆xi

λi,ij
+
∆xj

λj,ij

)−1

(ui − uj). (16)
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Finally, summing over all interfaces to adjacent cells, we get an approximation
to

∫
∂Ωi

vw · n dν, and the associated TPFA method is obtained by requiring
the mass balance equation (13) to be fulfilled for each grid cell Ωi ∈ Ω.

In the literature on finite-volume methods it is common to express the
flux vij in a more compact form than we have done in (16). Terms that
do not involve the cell potentials ui are usually gathered into an interface
transmissibility tij . For the current TPFA method the transmissibilities are
defined by:

tij = 2|γij |
(
∆xi

λi,ij
+
∆xj

λj,ij

)−1

.

Thus by inserting the expression for tij into (16), we see that the TPFA
scheme for equation (14), in compact form, seeks a cell-wise constant function
u = {ui} that satisfies the following system of equations:∑

j

tij(ui − uj) =
∫

Ωi

f dx, ∀Ωi ⊂ Ω, (17)

This system is clearly symmetric, and a solution is, as for the continuous
problem, defined up to an arbitrary constant. The system is made positive
definite, and symmetry is preserved, by forcing u1 = 0, for instance. That is,
by adding a positive constant to the first diagonal of the matrix A = [aik],
where:

aik =
{∑

j tij if k = i,

−tik if k 6= i,

The matrix A is sparse, consisting of a tridiagonal part corresponding to the
x-derivative, and two off-diagonal bands corresponding to the y-derivatives.

A short Matlab code for the implementation of (17) on a uniform Carte-
sian grid is given in Listing 1. In a general code, one would typically assemble
the coefficient matrix by looping over all the interfaces of each grid block and
for each interface, compute the associated transmissibilities and add them into
the correct position of the system matrix. Similarly, the interface fluxes would
be computed by looping over all grid block interfaces. Such an approach would
easily be extensible to other discretisation (e.g., the MPFA method discussed
in the next section) and to more complex grids (e.g., unstructured and faulted
grids). Our code has instead been designed to be compact and efficient, and
therefore relies entirely on the Cartesian grid structure to set up the trans-
missibilities in the coefficient matrix using Matlab’s inherent vectorization.

In the code, K is a 3×Nx×Ny×Nz matrix holding the three diagonals of the
tensor λ for each grid cell. The coefficient matrix A is sparse (use e.g., spy(A)
to visualise the sparsity pattern) and is therefore generated with Matlab’s
built-in sparse matrix functions. Understanding the Matlab code should be
rather straightforward. The only point worth noting is perhaps that the con-
stant that we use to force u1 = 0 in element A(1,1) is taken as the sum of
the diagonals in λ. This is done in order to control that this extra equation
does not have an adverse effect on the condition number of A.
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Listing 1. TPFA finite-volume discretisation of −∇(K(x)∇u) = q.

function [P,V]=TPFA(Grid,K,q)

% Compute transmissibilities by harmonic averaging.
Nx=Grid.Nx; Ny=Grid.Ny; Nz=Grid.Nz; N=Nx∗Ny∗Nz;
hx=Grid.hx; hy=Grid.hy; hz=Grid.hz;
L = K.ˆ(−1);
tx = 2∗hy∗hz/hx; TX = zeros(Nx+1,Ny,Nz);
ty = 2∗hx∗hz/hy; TY = zeros(Nx,Ny+1,Nz);
tz = 2∗hx∗hy/hz; TZ = zeros(Nx,Ny,Nz+1);
TX(2:Nx,:,:) = tx./(L(1,1:Nx−1,:,:)+L(1,2:Nx ,:,:));
TY(:,2:Ny,:) = ty./(L (2,:,1: Ny−1,:)+L(2,:,2:Ny,:));
TZ (:,:,2: Nz) = tz./(L (3,:,:,1: Nz−1)+L(3,:,:,2:Nz));

% Assemble TPFA discretization matrix.
x1 = reshape(TX(1:Nx,:,:),N,1); x2 = reshape(TX(2:Nx+1,:,:),N,1);
y1 = reshape(TY(:,1:Ny,:),N,1); y2 = reshape(TY(:,2:Ny+1,:),N,1);
z1 = reshape(TZ(:,:,1:Nz),N,1); z2 = reshape(TZ(:,:,2:Nz+1),N,1);
DiagVecs = [−z2,−y2,−x2,x1+x2+y1+y2+z1+z2,−x1,−y1,−z1];
DiagIndx = [−Nx∗Ny,−Nx,−1,0,1,Nx,Nx∗Ny];
A = spdiags(DiagVecs,DiagIndx,N,N);
A(1,1) = A(1,1)+sum(Grid.K(:,1,1,1));

% Solve linear system and extract interface fluxes.
u = A\q;
P = reshape(u,Nx,Ny,Nz);
V.x = zeros(Nx+1,Ny,Nz);
V.y = zeros(Nx,Ny+1,Nz);
V.z = zeros(Nx,Ny,Nz+1);
V.x(2:Nx ,:,:) = (P(1:Nx−1,:,:)−P(2:Nx,:,:)).∗TX(2:Nx,:,:);
V.y (:,2:Ny,:) = (P(:,1:Ny−1,:)−P(:,2:Ny,:)).∗TY(:,2:Ny,:);
V.z (:,:,2: Nz) = (P (:,:,1: Nz−1)−P(:,:,2:Nz)).∗TZ(:,:,2:Nz);

Example 1. In the first example we consider a homogeneous and isotropic
permeability K ≡ 1 for all x ∈ IR2. We place an injection well at the origin
and production wells at the points (±1,±1) and specify no-flow conditions
at the boundaries. These boundary conditions give the same flow as if we
repeated the five-spot well pattern to infinity in every direction. The flow in
the five-spot is symmetric about both the coordinate axes. We can therefore
reduce the computational domain to a quarter, and use e.g., the unit box
Ω = [0, 1]2. The corresponding problem is called a quarter-five spot problem,
and is a standard test-case for numerical methods in reservoir simulation.

Figure 1 shows pressure contours. The pressure P is computed by the
following lines for a 8× 8 grid:

>> Grid.Nx=8; Grid.hx=1/Grid.Nx;
>> Grid.Ny=8; Grid.hy=1/Grid.Ny;
>> Grid.Nz=1; Grid.hz=1/Grid.Nz;
>> Grid.K=ones(3,Grid.Nx,Grid.Ny);
>> N=Grid.Nx∗Grid.Ny∗Grid.Nz; q=zeros(N,1); q([1 N])=[1 −1];
>> P=TPFA(Grid,Grid.K,q);

Here the command P=TPFA(· · · ) assigns to P the first (the local variable U) of
the four output variables U, FX, FY, and FZ.
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Fig. 1. The left plot shows pressure contours for a homogeneous quarter-five spot.
The middle plot shows logarithm of the permeability for the heterogeneous quarter-
five spot and the right plot the corresponding pressure distribution. As particles flow
in directions of decreasing pressure gradient, the pressure decays from the injector
in the lower-left to the producer in the upper-right corner.

Next we increase the number of grid-cells in each direction from eight to
32 and consider a slightly more realistic permeability field obtained from a
log-normal distribution.

>> Grid.Nx=32; Grid.hx=1/Grid.Nx;
>> Grid.Ny=32; Grid.hy=1/Grid.Ny;
>> Grid.Nz=1; Grid.hz=1/Grid.Nz;
>> Grid.K=exp(5∗smooth3(smooth3(randn(3,Grid.Nx,Grid.Ny))));
>> N=Grid.Nx∗Grid.Ny∗Grid.Nz; q=zeros(N,1); q([1 N])=[1 −1];
>> P=TPFA(Grid,Grid.K,q);

The permeability and pressure distribution is plotted in Figure 1.

3.3 Multipoint Flux-Approximation Schemes

The TPFA finite-volume scheme presented above is convergent only if each
grid cell is a parallelepiped and

nij ·Knik = 0, ∀Ωi ⊂ Ω, nij 6= nik, (18)

where nij and nik denote normal vectors into two neighbouring grid cells. A
grid consisting of parallelepipeds satisfying (18) is said to be K-orthogonal.
Orthogonal grids are, for example, K-orthogonal with respect to diagonal per-
meability tensors, but not with respect to full tensor permeabilities. Figure 2
shows a schematic of an orthogonal grid and a K-orthogonal grid.

If the TPFA method is used to discretise equation (14) on grids that are
not K-orthogonal, the scheme will produce different results depending on the
orientation of the grid (so-called grid-orientation effects) and will converge
to a wrong solution. Despite this shortcoming of the TPFA method, it is
still the dominant (and default) method for practical reservoir simulation,
owing to its simplicity and computational speed. We present now a class of
so-called multi-point flux-approximation (MPFA) schemes that aim to amend
the shortcomings of the TPFA scheme.
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Fig. 2. The grid in the left plot is orthogonal with gridlines aligned with the principal
coordinate axes. The grid in the right plot is a K-orthogonal grid.

Consider an orthogonal grid and assume that K is a constant tensor with
nonzero off-diagonal terms. Moreover, for presentational simplicity, let γij be
an interface between two adjacent grid cells in the x–coordinate direction.
Then for a given function u, the corresponding flux across γij is given by:∫

γij

vw · nij dν = −
∫

γij

(
kxx∂xu+ kxy∂yu+ kxz∂zu

)
dν.

This expression involves derivatives in three orthogonal coordinate directions.
Evidently, two point values can only be used to estimate a derivative in one
direction. In particular, the two cell averages ui and uj can not be used to
estimate the derivative of u in the y and z-directions. Hence, the TPFA scheme
neglects the flux contribution from kxy∂yu and kxz∂zu.

To obtain consistent interfacial fluxes for grids that are not K-orthogonal,
one must also estimate partial derivatives in coordinate directions parallel to
the interfaces. For this purpose, more than two point values, or cell averages,
are needed. This leads to schemes that approximate vij using multiple cell
averages, that is, with a linear expression on the form:

vij =
∑

k

tkijg
k
ij(u).

Here {tkij}k are the transmissibilities associated with γij and {gk
ij(u)}k are the

corresponding multi-point pressure or flow potential dependencies. Thus, we
see that MPFA schemes for (14) can be written on the form:∑

j,k

tkijg
k
ij(u) =

∫
Ωi

f dx, ∀Ωi ⊂ Ω. (19)

MPFA schemes can, for instance, be designed by simply estimating each of the
partial derivatives ∂ξu from neighbouring cell averages. However, most MPFA
schemes have a more physical motivation and are derived by imposing certain
continuity requirements. We will now outline very briefly one such method,
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Fig. 3. The shaded region represents the interaction region for the O-method on a
two-dimensional quadrilateral grid associated with cells Ω1, Ω2, Ω3, and Ω4.

called the O-method [2, 3], for irregular, quadrilateral, matching grids in two
spatial dimensions.

The O-method is constructed by defining an interaction region (IR) around
each corner point in the grid. For a two-dimensional quadrilateral grid, this
IR is the area bounded by the lines that connect the cell-centres with the
midpoints on the cell interfaces, see Figure 3. Thus, the IR consists of four
sub-quadrilaterals (Ωii

1 , Ω
iv
2 , Ω

iii
3 , and Ωi

4) from four neighbouring cells (Ω1,
Ω2, Ω3, and Ω4) that share a common corner point. For each IR, define now

Uir = span{U j
i : i = 1, . . . , 4, j=i,. . . ,iv},

where {U j
i } are linear functions on the respective four sub-quadrilaterals. With

this definition, Uir has twelve degrees of freedom. Indeed, note that each U j
i

can be expressed in the following non-dimensional form

U j
i (x) = ui +∇U j

i · (x− xi),

where xi is the cell centre in Ωi. The cell-centre values ui thus account for four
degrees of freedom and the (constant) gradients ∇UJ

i for additional eight.
Next we require that functions in Uir are: (i) continuous at the midpoints of

the cell interfaces, and (ii) flux-continuous across the interface segments that
lie inside the IR. To obtain a globally coupled system, we first use (i) and (ii)
to express the gradients ∇UJ

i , and hence also the corresponding fluxes across
the IR interface segments, in terms of the unknown cell-centre potentials ui.
This requires solution of a local system of equations. Finally, the cell-centre
potentials are determined (up to an arbitrary constant for no-flow bound-
ary conditions) by summing the fluxes across all IR interface segments and
requiring that the mass balance equations (13) hold. In this process, transmis-
sibilities are assembled to obtain a globally coupled system for the unknown
pressures over the whole domain.

We note that this construction leads to an MPFA scheme where the flux
across an interface γij depends on the potentials uj in a total of six neighbour-
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ing cells (eighteen in three dimensions). Notice also that the transmissibilities
{tkij} that we obtain when eliminating the IR gradients now account for grid-
cell geometries in addition to full-tensor permeabilities.

3.4 A Mixed Finite-Element Method

As an alternative to the MPFA schemes, one can use mixed finite-element
methods (FEMs) [10]. In mixed FEMs, the fluxes over cell edges are considered
as unknowns in addition to the pressures, and are not computed using a
(numerical) differentiation as in finite-volume methods. For the mixed FEMs
there is little to gain by reformulating (11) into an equation on the form (14).
We therefore return to the original formulation and describe how to discretise
the following system of differential equations with mixed FEMs:

v = −λ(∇p− ρG), ∇ · v = q. (20)

As before we impose no-flow boundary conditions on ∂Ω. To derive the mixed
formulation, we first define the following Sobolev space

H1,div
0 (Ω) = {v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω) and v · n = 0 on ∂Ω}.

The mixed formulation of (20) (with no-flow boundary conditions) now reads:
find (p, v) ∈ L2(Ω)×H1,div

0 (Ω) such that∫
Ω

v · λ−1u dx−
∫

Ω

p ∇ · u dx =
∫

Ω

ρG · u dx, (21)∫
Ω

l ∇ · v dx =
∫

Ω

ql dx, (22)

for all u ∈ H1,div
0 (Ω) and l ∈ L2(Ω). We observe again that, since no-flow

boundary conditions are imposed, an extra constraint must be added to make
(21)–(22) well-posed. A common choice is to use

∫
Ω
p dx = 0.

In mixed FEMs, (21)–(22) are discretised by replacing L2(Ω) andH1,div
0 (Ω)

with finite-dimensional subspaces U and V , respectively. For instance, in the
Raviart–Thomas mixed FEM [30] of lowest order (for triangular, tetrahedral,
or regular parallelepiped grids), L2(Ω) is replaced by

U = {p ∈ L2(Ω) : p|Ωi
is constant ∀Ωi ∈ Ω}

and H1,div
0 (Ω) is replaced by

V = {v ∈ H1,div
0 (Ω) : v|Ωi have linear components ∀Ωi ∈ Ω,

(v · nij)|γij is constant ∀γij ∈ Ω, and v · nij is continuous across γij}.

Here nij is the unit normal to γij pointing from Ωi to Ωj . The corresponding
Raviart–Thomas mixed FEM thus seeks
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(p, v) ∈ U × V such that (21)–(22) hold for all u ∈ V and q ∈ U. (23)

To express (23) as a linear system, observe first that functions in V are, for
admissible grids, spanned by base functions {ψij} that are defined by

ψij ∈ P(Ωi)d ∪ P(Ωj)d and (ψij · nkl)|γkl
=

{
1 if γkl = γij ,

0 else,

where P(K) is the set of linear functions on K. Similarly

U = span{χm} where χm =

{
1 if x ∈ Ωm,

0 else.

Thus, writing p =
∑

Ωm
pmχm and v =

∑
γij
vijψij , allows us to write (23) as

a linear system in p = {pm} and v = {vij}. This system takes the form[
B −CT

C 0

] [
v
p

]
=

[
g
f

]
. (24)

Here f = [fm], g = [gkl], B = [bij,kl] and C = [cm,kl], where:

gkl =
[∫

Ω

ρG · ψkl dx
]
, fm =

[∫
Ωm

f dx
]
,

bij,kl =
[∫

Ω

ψij · λ−1ψkl dx
]
, cm,kl =

[∫
Ωm

∇ · ψkl dx
]
.

Note that for the current Raviart-Thomas finite elements, we have

cm,kl =


1 if m = k,

−1 if m = l,

0 otherwise.

The matrix entries bij,kl, on the other hand, depend on the geometry of the
grid cells and the form of λ. In other words, the entries depend on whether λ
is isotropic or anisotropic, whether λ is cell-wise constant or models subgrid
variations in the permeability field.

We provide now a Matlab code implementing the Raviart-Thomas mixed
FEM for the first-order system (20) on a regular hexahedral grid in three spa-
tial dimensions. The code is divided into three parts: assembly of the B block;
assembly of the C block; and a main routine that loads data (permeability and
grid), assembles the whole matrix, and solves the system. Again we emphasise
compactness and efficiency, by heavily relying on the Cartesian grid and ana-
lytical integration of the Raviart-Thomas basis functions to perform a direct
assembly of the matrix blocks. For more general grids, one would typically
perform an elementwise assembly by looping over all grid blocks and replace
the integration over basis functions by some numerical quadrature rule.
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Listing 2. Assembly of B for the lowest-order Raviart–Thomas elements.

function B=GenB(Grid,K)

Nx=Grid.Nx; Ny=Grid.Ny; Nz=Grid.Nz; N=Nx∗Ny∗Nz;
hx=Grid.hx; hy=Grid.hy; hz=Grid.hz;
L = K.ˆ(−1);
ex=N−Ny∗Nz; ey=N−Nx∗Nz; ez=N−Nx∗Ny; % Number of edges
tx=hx/(6∗hy∗hz); ty=hy/(6∗hx∗hz); tz=hz/(6∗hx∗hy); % Transmissibilities

X1=zeros(Nx−1,Ny,Nz); X2=zeros(Nx−1,Ny,Nz); % Preallocate memory
X0=L(1,1:Nx−1,:,:)+L(1,2:Nx,:,:); x0=2∗tx∗X0(:); % Main diagonal
X1(2:Nx−1,:,:)=L(1,2:Nx−1,:,:); x1=tx∗X1(:); % Upper diagonal
X2(1:Nx−2,:,:)=L(1,2:Nx−1,:,:); x2=tx∗X2(:); % Lower diagonal

Y1=zeros(Nx,Ny−1,Nz); Y2=zeros(Nx,Ny−1,Nz); % Preallocate memory
Y0=L(2,:,1:Ny−1,:)+L(2,:,2:Ny,:); y0=2∗ty∗Y0(:); % Main diagonal
Y1(:,2:Ny−1,:)=L(2,:,2:Ny−1,:); y1=ty∗Y1(:); % Upper diagonal
Y2(:,1:Ny−2,:)=L(2,:,2:Ny−1,:); y2=ty∗Y2(:); % Lower diagonal

Lz1=L(3,:,:,1:Nz−1); z1=tz∗Lz1(:); % Upper diagonal
Lz2=L(3,:,:,2:Nz); z2=tz∗Lz2(:); % Lower diagonal
z0=2∗(z1+z2); % Main diagonal

B=[spdiags([x2,x0,x1],[−1,0,1],ex,ex),sparse(ex,ey+ez);...
sparse(ey,ex),spdiags([y2,y0,y1],[−Nx,0,Nx],ey,ey),sparse(ey,ez );...
sparse(ez,ex+ey),spdiags([z2,z0,z1],[−Nx∗Ny,0,Nx∗Ny],ez,ez)];

In Listing 2 we show a Matlab function that assembles the B matrix. Here
λ is assumed to be a diagonal tensor and is represented as a 3×Nx×Ny×Nz
matrix K with Nx, Ny, and Nz denoting the number of grid cells in the x, y, and
z direction, respectively. The degrees of freedom at the interfaces (the fluxes)
have been numbered in the same way as the grid-blocks; i.e., first in the x-
direction, then in the y-direction, and finally in the z-direction. This gives B a
hepta-diagonal structure as shown in Figure 4, where the three nonzero blocks
correspond to the three components of v. Notice, however, that since the grid
is K-orthogonal, we can make B tridiagonal by starting the numbering of each
component of v = (vx, vy, vz) in the corresponding direction; i.e., number vx

as xyz, vy as yxz, and vz as zxy. Similar observations can be made for the
assembly of C, which is given in Listing 3.

Let us now make a few brief remarks with respect to the implementation of
the assembly of the matrix blocks B and C. First, since only a few components
of B and C are nonzero, we store them using a sparse matrix format. The
matrices are created in a block-wise manner using Matlab’s built in sparse
matrix functions. The function sparse(m,n) creates an m × n zero matrix
and spdiags(M,d,m,n) creates an m × n sparse matrix with the columns of
M on the diagonals specified by d. Finally, statements of the form M(:) turn
the matrix M into a column vector.

A drawback with the mixed FEM is that it produces an indefinite linear
system. These systems are in general harder to solve than the positive definite
systems that arise, e.g., from the TPFA and MPFA schemes described in
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Fig. 4. Sparsity patterns for A, B, and C for a case with 4× 3× 3 grid-blocks.

Listing 3. Assembly of C for the lowest-order Raviart–Thomas elements.

function C=GenC(Grid)

Nx=Grid.Nx; Ny=Grid.Ny; Nz=Grid.Nz;
C=sparse(0,0); % Empty sparse matrix
Nxy=Nx∗Ny; N=Nxy∗Nz; % Number of grid−points
vx=ones(Nx,1); vy=ones(Nxy,1); vz=ones(N,1); % Diagonals

for i=1:Ny∗Nz % vx−block of C
Cx=spdiags([vx,−vx],[−1,0]−(i−1)∗Nx,N,Nx−1); % create bidiagonal block
C=[C,Cx]; % append to C

end

for i=1:Nz % vy−block of C
Cy=spdiags([vy,−vy],[−Nx,0]−(i−1)∗Nxy,N,Nxy−Nx); % create bidiagonal block
C=[C,Cy]; % append to C

end

C = [C, spdiags([vz,−vz],[−Nxy,0],N,N−Nxy)]; % vz−block of C

Sections 3.2 and 3.3. In fact, for second-order elliptic equations of the form
(11) it is common to use a so-called hybrid formulation. This method leads to
a positive definite system where the unknowns correspond to pressures at grid-
cell interfaces. The solution to the linear system arising from the mixed FEM
can now be obtained from the solution to the hybrid system by performing
only local algebraic calculations. This property, which is sometimes referred
to as explicit flux representation, allows the inter-cell fluxes that appear in the
saturation equation to be expressed as a linear combination of neighbouring
values for the pressure.



22 Aarnes, Gimse, and Lie

Explicit flux representation is a feature that also the finite-volume methods
enjoy. One of the main advantages is that it allows us to compute fully implicit
solutions without computing the fluxes explicitly. Indeed, in the mixed FEM,
which does not have an explicit flux representation, one has to solve the full
indefinite linear system for the pressure equation alongside the linear system
for the saturation equation in order to produce a fully implicit solution. We
would like to comment, however, that whether or not a discretisation method
for the pressure equation allows an explicit flux representation may mostly
be regarded as a minor issue. Indeed, one is always free to use a sequential
implicit solution strategy which is often faster and in most cases results in the
same, or at least an equally accurate solution.

It is not within our scope here to discuss issues related to solving linear
systems that arise from mixed FEM discretisations further. Indeed, for mod-
erately sized problems we can rely on Matlab, and the possibly complex linear
algebra involved in solving the sparse system (24) can be hidden in a simple
statement of the form x = A\b. Readers interested in learning more about
mixed FEMs, and how to solve the corresponding linear systems are advised
to consult some of the excellent books on the subject, for instance [8, 9, 10].

Example 2. It is now time to consider our first reservoir having more than
only a touch of realism. To this end we will simulate two horizontal slices
of Model 2 from the 10th SPE Comparative Solution Project [13], which
is publicly available on the net. The model dimensions are 1200 × 2200 ×
170 (ft) and the reservoir is described by a heterogeneous distribution over a
regular Cartesian grid with 60×220×85 grid-blocks. We pick the top layer, in
which the permeability is smooth, and the bottom layer, which is fluvial and
characterised by a spaghetti of narrow high-flow channels (see Figure 5). For
both layers, the permeabilities range over at least six orders of magnitude. To
drive a flow in the two layers, we impose an injection and a production well
in the lower-left and upper-right corners, respectively.

Listing 4 contains a simulation routine that loads data, assembles the whole
matrix, and solves the system (24) to compute pressure and fluxes (neglecting,
for brevity, gravity forces so that G = 0) . For the flux, only the interior edges
are computed, since the flux normal to the exterior edges is assumed to be
zero through the no-flow boundary condition.

In Figure 5 we visualise the flow field using 20 streamlines imposed upon
a colour plot of the logarithm of the permeability. For completeness, we have
included the Matlab code used to generate each of the plots. Some of the
streamlines in the plots seem to appear and disappear at the boundaries.
This is a pure plotting artifact obtained when we collocate the staggered edge
fluxes at the cell centres in order to use Matlab’s streamline visualisation
routine.

In the next sections we will demonstrate how the models and numerical
methods introduced above for single-phase flow can be extended to more gen-
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Listing 4. Mixed finite-element discretisation of v = −K∇p, ∇ · v = q with lowest-
order Raviart–Thomas elements applied to the top layer of the SPE-10 test case [13].

Grid.Nx=60; Grid.hx=20∗.3048; % Dimension in x−direction
Grid.Ny=220; Grid.hy=10∗.3048; % Dimension in y−direction
Grid.Nz=1; Grid.hz= 2∗.3048; % Dimension in z−direction
Nx=Grid.Nx; Ny=Grid.Ny; Nz=Grid.Nz; % Local variables
N=Nx∗Ny∗Nz; % Total number of grid points

Ex=(Nx−1)∗Ny∗Nz; % Number of edges in x−direction
Ey=Nx∗(Ny−1)∗Nz; % Number of edges in y−direction
Ez=Nx∗Ny∗(Nz−1); % Number of edges in z−direction
E=Ex+Ey+Ez; % Total number of edges in grid

q=zeros(E+N,1); % Right−hand side
q(E+1)=1; % Injection in block (1,1,1)
q(E+N)=−1; % Production in block (Nx,Ny,Nz)
load Udata; Grid.K=KU(:,1:Nx,1:Ny,1:Nz); % Load and extract permeability

B=GenB(Grid,Grid.K); % Compute B−block of matrix
C=GenC(Grid); % Compute C−block of matrix
A=[B,C’;−C,sparse(N,N)]; % Assemble matrix
A(E+1,E+1)=A(E+1,E+1)+1;
x=A\q; % Solve linear system

v=x(1:E); % Extract velocities
vx=reshape(v(1:Ex),Nx−1,Ny,Nz); % x−component
vy=reshape(v(Ex+1:E−Ez),Nx,Ny−1,Nz); % y−component
vz=reshape(v(E−Ez+1:E),Nx,Ny,Nz−1); % z−component
p=reshape(x(E+1:E+N),Nx,Ny,Nz); % Extract pressure

eral flows involving more than one fluid phase, where each phase possibly
contains more than one component.

4 Multiphase and Multicomponent Flows

As for single-phase flow, the fundamental model describing the flow of a mul-
tiphase, multicomponent fluid is the conservation (or continuity) equations
for each component `:

∂

∂t

(
φ

∑
α

c`αραsα

)
+∇ ·

(∑
α

c`αραvα

)
=

∑
α

c`αqα, α = w, o, g. (25)

Here we recall that c`α is mass fraction of component ` in phase α, ρα is
the density of phase α, vα is phase velocity, and qα is phase source. As for
single-phase flow, the phase velocities must be modelled. This is usually done
by extending Darcy’s law to relate the phase velocities to the phase pressures
pα

vα = −K
krα

µα

(
∇pα − ραG). (26)

In the multiphase version of Darcy’s law (as opposed to the single-phase ver-
sion (10)) we have used the relative permeabilities krα (see Section 2) to
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% Collocate velocities at cell centre
U = [zeros(1,Ny); vx; zeros(1,Ny)]; U=0.5∗(U(1:end−1,:)+U(2:end,:));
V = [zeros(Nx,1), vy, zeros(Nx,1)]; V=0.5∗(V(:,1:end−1)+V(:,2:end));

% Make grid and sampling points along diagonal
[Y,X]=meshgrid([1:Ny]∗hy−0.5∗hy,[1:Nx]∗hx−0.5∗hx);
sy = linspace(0.5∗hy, (Ny−0.5)∗hy, 20);
sx = (Nx−0.5)∗hx/((Ny−0.5)∗hy)∗( (Ny−0.5)∗hy − sy );
pcolor(Y,X,log10(squeeze(K(1,:,:)))); shading flat;

% Trace forward to producer and backward to injector
hp=streamline(Y,X,V,U,sy,sx); hn=streamline(Y,X,−V,−U,sy,sx);
set([hp, hn], ’Color’ , ’k’ , ’LineWidth’,1.5);
axis equal ; axis tight ; axis off ;

Fig. 5. Streamlines and logarithm of permeability for two-dimensional simulation
of the top and bottom layer of the SPE-10 test case. The source code for making
the plots is included.

account for the reduced permeability of each phase due to the presence of the
other phases.

4.1 Black-Oil Models

A large class of models that are widely used in porous media flow simulations
are the black-oil models. The name refers to the assumption that the hydrocar-
bons may be described as two components: a heavy hydrocarbon component
called “oil” and a light hydrocarbon component called “gas”. The two compo-
nents can be partially or completely dissolved in each other depending on the
pressure and the temperature, forming either one or two phases (liquid and
gaseous). In general black-oil models, the hydrocarbon components are also
allowed to be dissolved in the water phase and the water component may be
dissolved in the two hydrocarbon phases. The hydrocarbon fluid composition,
however, remains constant for all times. The alternative, where the hydro-
carbons are modelled using more than two components and hydrocarbon are
allowed to change composition, is called a compositional model.

We will henceforth assume three phases and three components (gas, oil,
water). By looking at our model (25)–(26), we see that we therefore so far
have introduced 27 unknown physical quantities: nine mass fractions c`α and
three of each of the following quantities ρα, sα, vα, pα, µα, and krα. The
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corresponding numbers of equations are: three continuity equations (25), an
algebraic relation for the saturations (3), three algebraic relations for the mass
fractions (4), and Darcy’s law (26) for each phase. This gives us only ten
equations. Thus, to make a complete model of multiphase, multicomponent
flow one must add extra closure relations.

In Section 2, we saw that the relative permeabilities are usually assumed
to be known functions of the phase saturations. These functions are normally
obtained from physical experiments, small-scale numerical simulations, or sim-
ply from known rock-type properties. The capillary pressure curves are also
assumed to depend solely on the phase saturations, and can be obtained in a
similar fashion. One usually employs oil-water and gas-oil capillary pressures:

pcow = po − pw, pcgo = pg − po.

The densities and viscosities are obtained from lab experiments and are related
to the phase pressures. Summing up, this gives us a total of eleven closure
relations. Finally, one can introduce six algebraic relations for c`g/c`o and
c`g/c`w in the form of PVT models.

In the next section we consider the special case of immiscible flow. For
more advanced models, we refer the reader to one of the general textbooks
for reservoir simulation [6, 11, 15, 20, 27, 29, 33].

5 Immiscible Two-Phase Flow

In this section we will consider the flow of two phases, one water phase w and
one hydrocarbon phase. The water phase will consist of pure water, whereas
the hydrocarbon phase generally is a two-component fluid consisting of dis-
solved gas and a residual (or black) oil. These assumptions translate to the
following definitions for the mass fractions

cww = 1, cow = 0, cgw = 0,

cwo = 0, coo =
mo

mo +mg
, cgo =

mg

mo +mg
,

cwg = 0, cog = 0, cgg = 0.

Here mo and mg are the masses of oil and gas, respectively. By adding the
continuity equations for the oil and gas components, we obtain a continuity
equation for the water-phase (w) and one for the hydrocarbon phase (o). Since
coo + cgo = 1, both of these continuity equations have the following form:

∂(φραsα)
∂t

+∇ · (ραvα) = qα, (27)

Expanding space and time derivatives, and dividing by the phase densities,
we obtain an alternative formulation of the continuity equations (27):
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∂φ

∂t
sα + φ

∂sα

∂t
+ φ

sα

ρα

∂ρα

∂t
+∇ · vα +

vα · ∇ρα

ρα
=
qα
ρα
, (28)

In the following we will rewrite the two continuity equations into a more
tractable system of equations consisting of a pressure equation (as introduced
for the single-phase model) and a saturation or fluid-transport equation.

5.1 The Pressure Equation

To derive the pressure equation, we introduce first, for brevity, the mobility
of phase α: λα = krα/µα. Summing continuity equations (28) for the oil and
water phases, letting q = qw/ρw + qo/ρo, and using the fact that sw + so = 1,
we deduce

∇ · (vw + vo) +
∂φ

∂t
+ φ

sw

ρw

∂ρw

∂t
+ φ

so

ρo

∂ρo

∂t
+
vw · ∇ρw

ρw
+
vo · ∇ρo

ρo
= q. (29)

Introducing the rock compressibility defined by (1) and the phase compress-
ibilities defined by (6), and inserting the expression for the Darcy velocities,
we obtain

−∇ ·
[
Kλw(∇pw − ρwG) + Kλo(∇po − ρoG)

]
+ crφ

∂p

∂t

− cw
[
∇pw ·Kλw(∇pw − ρwG)− φsw

∂pw

∂t

]
− co

[
∇po ·Kλo(∇po − ρoG)− φso

∂po

∂t

]
= q. (30)

In this equation we have three pressures: oil pressure po, water pressure pw,
and total pressure p. If we now treat, say, po as the primary variable, replace
pw with po−pcow (assuming the compressibilities are known) and express the
total pressure as a function of po, equation (30) becomes a parabolic equation
that can be solved for the oil-phase pressure po.

5.2 A Pressure Equation for Incompressible Immiscible Flow

Designing numerical methods for the pressure equation (30) that correctly
account for flow dynamics and properly balance the spatial and temporal
derivatives can be a very difficult task due to the many prominent scales that
occur in porous media permeability. Since the temporal derivative terms are
relatively small, equation (30) is nearly elliptic and can usually be discretised
with numerical methods that are well suited for elliptic differential equations
such as the ones described in Sections 3.2–3.4. The purpose of the current
presentation is to help the reader become familiar with the basic flow equa-
tions, and to explain in detail some possible numerical methods for discretising
the corresponding differential equations. We therefore make some simplifying
assumptions before we consider numerical discretisation techniques.
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To enhance readability, we henceforth assume that the rock and the two
fluid phases are incompressible, i.e., cr = cw = co = 0. Equation (30) then
reduces to

v = −
[
Kλw(∇pw − ρwG) + Kλo(∇po − ρoG)

]
, ∇ · v = q.

In this equation, there are two unknown phase pressures, po and pw. To
eliminate one of them, it is common to introduce the capillary pressure
pcow = po − pw, which is assumed to be a function of water saturation sw.
Unfortunately, this leads to a rather strong coupling between the pressure
equation and the saturation equation. We will therefore follow another ap-
proach; see [11] for more details. Instead of using the phase pressures pw and
po, we introduce a new global pressure p. The global pressure is defined to con-
tain saturation-dependent pressure terms, thereby giving a better decoupling
of the pressure and saturation equations . To this end, we first assume that the
capillary pressure pcow is a monotone function of the water saturation sw and
then define the global pressure as p = po−pc, where the saturation-dependent
complementary pressure pc is defined by

pc(sw) =
∫ sw

1

fw(ξ)
∂pcow

∂sw
(ξ)dξ. (31)

Here the fractional-flow function fw = λw/(λw + λo) measures the water
fraction of the total flow. Since ∇pc = fw∇pcow, we are able to express the
total velocity v = vw + vo as a function of the global pressure p:

v = −K(λw + λo)∇p+ K(λwρw + λoρo)G. (32)

Finally, introducing the total mobility λ = λw + λo we obtain the following
elliptic equation for the global pressure p:

−∇ ·
[
Kλ∇p−K(λwρw + λoρo)G

]
= q (33)

To make the pressure equation complete we need to prescribe some boundary
conditions. The default is to impose no-flow boundary conditions, but if the
reservoir is connected to e.g., an aquifer, it might be possible to determine an
approximate pressure distribution on the reservoir boundary.

5.3 The Saturation Equation

The pressure equation gives an equation for our first primary unknown p. To
derive a complete model, we must also derive equations for the phase satura-
tions sw and so using the continuity equations of each phase. However, since
sw + so = 1, we need only one saturation equation and it is common practice
to pick sw as the second primary unknown. To connect the continuity equa-
tion for water to the pressure equation (33), we need to derive an expression
for the phase velocity vw in terms of the global and complementary pressures
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p and pc. To this end, we will use what is called the total velocity formulation
and express vw in terms of the total velocity v and some additional terms that
only depend on the saturation sw. From Darcy’s law (26) it follows that

Kλoλw∇pcow = λovw − λwvo + Kλoλw(ρo − ρw)G. (34)

Inserting vo = v − vw into this equation and dividing by λ, we obtain

vw= fw

[
v + Kλo∇pcow + Kλo(ρw − ρo)G

]
,

where we have used the fractional flow function introduced above. Finally,
expanding∇pcow = ∂pcow

∂sw
∇sw and invoking the incompressibility assumption,

we arrive at an equation for the fluid transport having the following form:

φ
∂sw

∂t
+∇ ·

(
fw(sw)

[
v + d(sw,∇sw) + g(sw)

])
=
qw
ρw
. (35)

To make a complete description of the flow, the continuity equation must
be equipped with boundary conditions, e.g., no-flow conditions, and initial
conditions sw(x, 0) = s0w(x). Henceforth we will drop the subscript w.

Equation (35) is called the saturation equation and is generally a parabolic
equation. However, on a reservoir scale, the terms f(s)v and f(s)g(s) repre-
senting viscous and gravity forces, respectively, usually dominate the term
f(s)d(s,∇s) representing capillary forces. The saturation equation will there-
fore usually have a strong hyperbolic nature and will require other discretisa-
tion techniques than those introduced for the almost-elliptic pressure equation
(33). Examples of appropriate discretisation techniques will be presented be-
low, but first we discuss how to solve the coupled system consisting of (35)
and (33) or (30).

5.4 Solution Strategies for the Coupled System

The equations (33) and (35) derived in the previous section are called the
fractional-flow model for immiscible two-phase flow. The model consists of
an elliptic pressure equation (33) (or the more general parabolic equation
(30), which has a similar elliptic nature) and a saturation or fluid transport
equation (35) that has a certain hyperbolic nature. The equations are non-
linearly coupled. The coupling is primarily through the saturation-dependent
mobilities λα in the pressure equation and through the pressure-dependent ve-
locities vα in the saturation equation. However, the equations are also coupled
through other terms that depend on pressure or saturation, e.g., viscosities
and capillary and complementary pressures.

A natural strategy for solving the coupled system is to make an implicit
discretisation for each equation and simultaneously solve for the two primary
unknowns p and sw. This strategy is usually referred to as fully implicit so-
lution and is a common solution method in industry due to its robustness.
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However, fully implicit solution is computationally expensive, since we need
to solve a large nonlinear system of equations through some iterative proce-
dure like e.g., the Newton–Raphson method. On the other hand, more effi-
cient methods can be developed by using operator splitting to decouple the
two equations. In this sequential approach, each equation is solved separately
and one can therefore use very different methods to discretise the two funda-
mentally different equations. As an example, we mention the IMPES (implicit
pressure, explicit saturation) method, which used to be quite popular in the in-
dustry. Currently, a more popular choice is to use a method called the adaptive
implicit method (AIM), in which some grid blocks are solved fully implicitly
while the others are treated with a sequential splitting method (IMPES). The
method therefore gives robustness in problematic areas with large changes in
pressure and saturations (like near a well bore), while at the same time giving
high computational efficiency away from problem regions.

In the current paper, we will only present sequential splitting methods.
For the global pressure and total velocity formulation (33) and (35) of incom-
pressible and immiscible two-phase flow, a sequential splitting method can
be designed as follows: First, the saturation distribution from the previous
time step (or initial data) is used to compute the saturation-dependent co-
efficients in (33), before the equation is solved for global pressure and total
velocity. Then, the total velocity v is kept constant as a parameter in (35),
while the saturation is advanced in time. Next, the new saturation values are
used to update the saturation-dependent coefficients in (33), and the pressure
equation is solved again, and so on. Consequently, we can develop numeri-
cal schemes for (33) and (35) without being concerned about the nonlinear
coupling between the two.

Whereas the advantage of a sequential method is its efficiency (and poten-
tial spatial accuracy), the disadvantage is the splitting errors introduced by
decoupling the equations. In certain (gas-dominated) cases, splitting errors
may lead to unphysical flow predictions unless inordinately small splitting
steps are used. To remedy this potential pitfall, one can introduce an extra
loop for each time step and iterate a few times (until convergence) between
solving the pressure and saturation, before moving on the next time step.
The corresponding method is sometimes called sequential implicit, indicating
its intermediary nature. We will now use the sequential splitting method to
develop and present a full simulator for our simple two-phase model. For pre-
sentational simplicity, the sequential implicit technique will not be employed,
but can easily be included whenever necessary.

5.5 Discretising the Pressure Equation

To discretise the pressure equation (33) with a finite-volume method, terms
corresponding to gravity must be moved over to the right-hand side. The
single-phase formulation (13) is hence replaced with
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−
∫

∂Ωi

Kλ(sk
w)∇pk+1 dν =∫

Ωi

q dx−
∫

∂Ωi

K
(
λw(sk

w)ρw + λo(sk
w)ρo

)
G · n dν, (36)

where the superscript k denotes the time step. The integrals over the cell
boundaries are computed with a TPFA scheme or an MPFA scheme, as pre-
sented for the single-phase flow in Sections 3.2 and 3.3.

For the mixed FEM, we need only to replace equations (21)–(22) with∫
Ω

(
Kλ(sk

w)
)−1

vk+1 · u dx−
∫

Ω

pk+1 ∇ · u dx

=
∫

Ω

(
ρwfw(sk

w) + ρofo(sk
w)

)
G · u dx, (37)∫

Ω

q ∇ · vk+1 dx =
∫

Ω

fq dx. (38)

Thus, the pressure equation modelling two-phase flow may be discretised with
the same methods that were used to discretise the single-phase pressure equa-
tion in Section 3. The main difference is that for two-phase flow the pressure
is a dynamic function of saturation, and must therefore be solved repeatedly
throughout a simulation.

5.6 Discretising the Saturation Equation

Traditionally, algorithms for solving the pressure equation (33) has accounted
for the majority of the computational time in reservoir simulations. However,
pressure solvers have improved a lot during the last years as a result of im-
proved numerical linear algebra (e.g., multigrid and other iterative methods).
It is therefore likely that the design of robust numerical schemes that balance
viscous, gravity, and capillary forces in the saturation equations correctly, may
be an equally challenging part of reservoir simulation in the future. The satu-
ration equations are, for example, typically advection dominated on a reservoir
scale, in particular in high-flow regions. This implies that propagating inter-
faces between oil and water, commonly referred to as saturation fronts, can be
very sharp. Numerical diffusion may therefore dominate the capillary forces if
one does not use a scheme with high resolution that allows accurate tracing
of the saturation fronts.

Most commercial reservoir simulators use an implicit or semi-implicit time
discretisation to evolve saturation profiles in time, while a conservative finite-
volume method is used to resolve the spatial derivatives. Consider a cell Ωi

with edges γij and associated normal vectors nij pointing out of Ωi. Using the
θ-rule for temporal discretisation, a finite-volume scheme takes the following
general form
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φi

∆t

(
sk+1

i − sk
i

)
+

1
|Ωi|

∑
j 6=i

[
θFij(sk+1) + (1− θ)Fij(sk)

]
=
qi(sk

i )
ρ

. (39)

Here φi is the porosity in Ωi, qi denotes the source term, ∆t is the time step,
and sk

i is the cell-average of the water saturation at time t = tk,

sk
i =

1
|Ωi|

∫
Ωi

s(x, tk) dx.

Finally, Fij is a numerical approximation of the flux over edge γij ,

Fij(s) ≈
∫

γij

fw(s)ij

[
vij + dij(s) + gij(s)

]
· nij dν. (40)

Here fw(s)ij denotes the fractional-flow function associated with γij , vij is the
Darcy flux, dij the diffusive flux, and gij the gravitational flux across the edge.
Different finite-volume schemes are now defined by the quadrature rule used
for the edge integrals in (40) and by the way the integrand is evaluated. For a
first-order scheme, it is common to use upstream weighting for the fractional
flow, e.g.,

fw(s)ij =

{
fw(si) if v · nij ≥ 0,
fw(sj) if v · nij < 0,

(41)

and so on. If we now choose θ = 0 in the temporal discretisation, we end
up with a first-order, explicit scheme. Such a scheme is quite accurate but
imposes stability restrictions on the time step in the form of a CFL condition.
The time-step restrictions may be quite severe due to the near-singular nature
of the forcing velocity field near wells and the possible presence of cells with
arbitrarily small porosity. We will come back to this discussion in Section 6.1.
To get rid of the time-step restriction, it is customary to use implicit schemes
for which θ > 0; for instance, θ = 1.0 gives a fully implicit scheme. Unfortu-
nately, this introduces other difficulties like excessive numerical diffusion for
large time steps and the need for a fast solver for the corresponding nonlinear
system of equations; see Section 6.2.

If, for instance, the impact of capillary forces is important, methods with
high-order spatial resolution may be more appropriate to prevent the numer-
ical diffusion from dominating the capillary diffusion. However, since most
reservoir simulation studies are conducted on quite coarse grids, the use of
high-resolution schemes, e.g., as discussed elsewhere in this book [21], has yet
to become widespread in the reservoir engineering community. The primary
benefits with the low-order finite-volume schemes are that they are quite ro-
bust and easy to implement.

6 A Simulator for Incompressible Two-Phase Flow

In this section we present a full simulator for a sequential IMPES formulation
of an incompressible and immiscible two-phase flow system. We provide a
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Matlab code designed for simulating water injection into a reservoir filled
with oil. However, to keep the presentation simple, and the implementation
code short, we disregard gravity and neglect capillary forces (i.e., ∇pcow = 0).
Under these assumptions, equations (33) and (35) reduce to the following
system of equations:

−∇ ·Kλ(s)∇p = q, (42)

φ
∂s

∂t
+∇ ·

(
f(s)v

)
=
qw
ρw
. (43)

Since we only inject water and produce whatever reaches our producers, the
source term for the saturation equation becomes

qw
ρw

= max(q, 0) + f(s) min(q, 0).

To close the model, we must also supply expressions for the saturation-
dependent quantities. Here we use simple analytical expressions:

λw(s) =
(s∗)2

µw
, λo(s) =

(1− s∗)2

µo
, s∗ =

s− swc

1− sor − swc
.

Here sor is the irreducible oil saturation, i.e., the lowest oil saturation that can
be achieved by displacing oil by water, and swc is the connate water saturation,
i.e., the saturation of water trapped in the pores of the rock during formation
of the rock; see Section 2.

Listing 5 shows a Matlab code for solving (42) with the TPFA scheme.
Observe that the only difference between this code and the single-phase code
in Listing 1 is that the input K, which corresponds to Kλ, now depends on
saturation. This dependence involves the viscosities µw and µo, the irreducible
oil saturation sor, and the connate water saturation swc. In a similar man-
ner, the mixed finite-element method introduced in Section 3.4 can easily be
extended to two-phase flows. In fact, the only point we need to change is the
assembly of B in (24). In other words, the code in Listing 2 can be extended
to two-phase flows similarly by letting K represent Kλ as in Listing 5. The
corresponding relative permeability module is given in Listing 6.

For the saturation equation, we use a finite-volume scheme on the form

sn+1
i = sn

i + (δt
x)i

(
max(qi, 0)−

∑
j

f(sm)ijvij + f(sm
i ) min(qi, 0)

)
,

where (δt
x)i = ∆t/(φi|Ωi|). By specifying for time level m in the evaluation of

the fractional flow functions, we obtain either an explicit (m = n) or a fully
implicit (m = n+1) scheme. Here vij is the total flux (for oil and water) over
the edge γij between two adjacent cells Ωi and Ωj , and fij is the fractional
flow function at γij , which we evaluate using the upwind discretisation in (41).
Written in compact form, the two schemes read
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Listing 5. TPFA finite-volume discretisation of −∇(Kλ(s)∇u) = q.

function [P,V]=Pres(Grid,S,Fluid,q)

% Compute K∗lambda(S)
[Mw,Mo]=RelPerm(S,Fluid);
Mt=Mw+Mo;
KM = reshape([Mt,Mt,Mt]’,3,Grid.Nx,Grid.Ny,Grid.Nz).∗Grid.K;

% Compute pressure and extract fluxes
[P,V]=TPFA(Grid,KM,q);

Listing 6. Relative permeabilities of oil and water.

function [Mw,Mo,dMw,dMo]=RelPerm(s,Fluid)

S = (s−Fluid.swc)/(1−Fluid.swc−Fluid.sor); % Rescale saturations
Mw = S.ˆ2/Fluid.vw; % Water mobility
Mo =(1−S).ˆ2/Fluid.vo; % Oil mobility

if (nargout==4)
dMw = 2∗S/Fluid.vw/(1−Fluid.swc−Fluid.sor);
dMo = −2∗(1−S)/Fluid.vo/(1−Fluid.swc−Fluid.sor);

end

Listing 7. Matrix assembly in upwind finite-volume discretisation of (43).

function A=GenA(Grid,V,q)

Nx=Grid.Nx; Ny=Grid.Ny; Nz=Grid.Nz; N=Nx∗Ny∗Nz;
N=Nx∗Ny∗Nz; % number of unknowns
fp=min(q,0); % production

XN=min(V.x,0); x1=reshape(XN(1:Nx,:,:),N,1); % separate flux into
YN=min(V.y,0); y1=reshape(YN(:,1:Ny,:),N,1); % − flow in positive coordinate
ZN=min(V.z,0); z1=reshape(ZN(:,:,1:Nz),N,1); % direction (XP,YP,ZP)
XP=max(V.x,0); x2=reshape(XP(2:Nx+1,:,:),N,1); % − flow in negative coordinate
YP=max(V.y,0); y2=reshape(YP(:,2:Ny+1,:),N,1); % direction (XN,YN,ZN)
ZP=max(V.z,0); z2=reshape(ZP(:,:,2:Nz+1),N,1); %

DiagVecs=[z2,y2,x2,fp+x1−x2+y1−y2+z1−z2,−x1,−y1,−z1]; % diagonal vectors
DiagIndx=[−Nx∗Ny,−Nx,−1,0,1,Nx,Nx∗Ny]; % diagonal index
A=spdiags(DiagVecs,DiagIndx,N,N); % matrix with upwind FV stencil

Sn+1 = Sn + (δt
x)T

(
Af(Sm) +Q+

)
, m = n, n+ 1, (44)

where Sn is the vector of cell-saturations sn
i and f(Sm) is the vector of frac-

tional flow values f(sm
i ). Furthermore, Q+ and Q− denote the positive an

negative parts, respectively, of the vector representing q and A is a matrix
implementing [f(s)Q−−∇· (f(s)v)] on a cell-by-cell basis. A Matlab code for
the assembly of A, given a vector of saturations S, is presented in Listing 7.
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6.1 An Explicit Solver

The explicit solver is obtained by using m = n in (44). Explicit schemes are
only stable provided that the time step ∆t satisfies a stability condition (a so-
called CFL condition). For the homogeneous transport equation (with q ≡ 0),
the standard CFL condition for the first-order upwind scheme reads

max
s∈(0,1)

|f ′(s)|max
i

(δt
x)i

∑
j

|vij | ≤ 2(1− swc − sor), (45)

where (δt
x)i = ∆t/(φi|Ωi|). For the inhomogeneous equation, we can derive

a stability condition on ∆t using a more heuristic argument. Physically, we
require that swc ≤ sn+1

i ≤ 1−sor. This implies that the discretisation param-
eters |Ωi| and ∆t must satisfy the following dynamic conditions:

swc ≤ sn
i + (δt

x)i

(
max(qi, 0)−

∑
j

f(sn)ijvij + f(sn
i ) min(qi, 0)

)
≤ 1− sor.

This condition is saturation dependent and must therefore be enforced on
every saturation timestep, and will generally give a time-varying time-step
∆tn. However, it is possible to derive an alternative stability condition that
gives a new bound on the timestep only when the velocity field has been
recomputed. To this end, note that since we have assumed incompressible
flow, and employed a mass conservative scheme to solve the pressure equation,
the interface fluxes vij satisfy the following mass balance property:

vin
i = max(qi, 0)−

∑
j

min(vij , 0) = −min(qi, 0) +
∑

j

max(vij , 0) = vout
i .

Thus, since 0 ≤ f(s) ≤ 1 it follows that

−f(sn
i )vin

i ≤ max(qi, 0)−
∑

j

f(sn)ijvij + f(sn
i ) min(qi, 0) ≤ (1− f(sn

i ))vin
i .

This implies that the general saturation dependent stability condition holds
in Ωi if the following inequality is satisfied:

max
(
f(sn

i )− 0
sn

i − swc
,

1− f(sn
i )

1− sor − sn
i

)
(δt

x)iv
in
i ≤ 1. (46)

Finally, to remove the saturation dependence from (46), we invoke the mean
value theorem and deduce that (46) holds whenever

∆t ≤ φ|Ωi|
vin

i max{f ′(s)}0≤s≤1
. (47)

This condition is saturation dependent only through the velocities vij and the
timestep ∆t need therefore only be modified each time we compute a new
solution to the pressure equation.
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Listing 8. Explicit upwind finite-volume discretisation of (43).

function S=Upstream(Grid,S,Fluid,V,q,T)

Nx=Grid.Nx; Ny=Grid.Ny; Nz=Grid.Nz; % number of grid points
N=Nx∗Ny∗Nz; % number of unknowns
pv = Grid.V(:).∗Grid.por(:); % pore volume=cell volume∗porosity

fi=max(q,0); % inflow from wells
XP=max(V.x,0); XN=min(V.x,0); % influx and outflux, x−faces
YP=max(V.y,0); YN=min(V.y,0); % influx and outflux, y−faces
ZP=max(V.z,0); ZN=min(V.z,0); % influx and outflux, z−faces

Vi = XP(1:Nx,:,:)+YP(:,1:Ny,:)+ZP(:,:,1:Nz)−... % total flux into
XN(2:Nx+1,:,:)−YN(:,2:Ny+1,:)−ZN(:,:,2:Nz+1); % each gridblock

pm = min(pv./(Vi(:)+fi)); % estimate of influx
cfl = ((1−Fluid.swc−Fluid.sor)/3)∗pm; % CFL restriction
Nts = ceil(T/cfl); % number of local time steps
dtx = (T/Nts)./pv; % local time steps

A=GenA(Grid,V,q); % system matrix
A=spdiags(dtx,0,N,N)∗A; % A ∗ dt/|Omega i|
fi=max(q,0).∗dtx; % injection

for t=1:Nts
[mw,mo]=RelPerm(S,Fluid); % compute mobilities
fw = mw./(mw+mo); % compute fractional flow
S = S+(A∗fw+fi); % update saturation

end

The fully explicit upwind method incorporating the stability condition (47)
is given in Listing 8. A few points in the implementation are worth noting.
First of all, instead of coding the finite-volume stencil explicitly, we represent it
as a matrix-vector product to make full use of Matlab’s inherent efficiency for
matrix-vector operations and vectorisation of loops. Second, in the derivation
of the saturation solver we have tacitly assumed that the porosities are all
nonzero. This means that porosity fields generally must be preprocessed and
values below a certain threshold replaced by a small nonzero value. Finally, to
get an exact value for max{f ′(s)}0≤s≤1 is a bit cumbersome, but numerical
approximations are readily available. Here we have expanded f ′(s) as follows:

∂f

∂s
=

∂f

∂s∗
∂s∗

∂s
=

1
1− swc − sor

∂f

∂s∗
,

and computed a rough approximation to the upper bound for ∂f/∂s∗ that
corresponds to the current choice of viscosities.

Example 3. Let us revisit the quarter-five spot from Example 1, but now as-
sume that the reservoir is initially filled with pure oil. To produce the oil in the
upper-right corner, we inject water in the lower left. We assume unit porosity,
unit viscosities for both phases, and set sor = swc = 0. In this nondimensional
model, it takes one time unit to inject one pore-volume water, i.e., the time
unit corresponds to the number of injected pore volumes of water.
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Fig. 6. Pressure and saturation profiles for the homogeneous quarter-five spot.

Listing 9. Two-phase, immiscible, incompressible simulator for a homogeneous
quarter-five spot.

Grid.Nx=64; Dx=1; Grid.hx = Dx/Grid.Nx; % Dimension in x−direction
Grid.Ny=64; Dy=1; Grid.hy = Dy/Grid.Ny; % Dimension in y−direction
Grid.Nz=1; Dz=1; Grid.hz = Dz/Grid.Nz; % Dimension in z−direction
N=Grid.Nx∗Grid.Ny; % Total number of grid blocks
Grid.V=Grid.hx∗Grid.hy∗Grid.hz; % Cell volumes
Grid.K=ones(3,Grid.Nx,Grid.Ny,Grid.Nz); % Unit permeability
Grid.por =ones(Grid.Nx,Grid.Ny,Grid.Nz); % Unit porosity
Q=zeros(N,1); Q([1 N])=[1 −1]; % Production/injection

Fluid.vw=1.0; Fluid.vo=1.0; % Viscosities
Fluid.swc=0.0; Fluid.sor=0.0; % Irreducible saturations

S=zeros(N,1); % Initial saturation
nt = 28; dt = 0.7/nt; % Time steps
for t=1:nt

[P,V]=Pres(Grid,S,Fluid,Q); % pressure solver
S=Upstream(Grid,S,Fluid,V,Q,dt); % saturation solver

% plot filled contours at the midpoints of the grid cells
contourf(linspace(Grid.hx/2,Dx−Grid.hx/2,Grid.Nx),...

linspace(Grid.hy/2,Dy−Grid.hy/2,Grid.Ny),...
reshape(S,Grid.Nx,Grid.Ny),11,’k’);

axis square; caxis ([0 1]); % equal axes and color
drawnow; % force update of plot

end
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Listing 9 contains a sequential splitting code for simulating the water in-
jection problem up to water-breakthrough in the production well with the
explicit upwind scheme. (For the homogeneous quarter-five spot it is known
that breakthrough occurs when approximately 0.7 pore-volumes of water have
been injected). The algorithm is quite simple. First, we set up the grid, the
fluid properties and generate the initial saturation distribution. Then, the
solution is advanced in time by repeating the following two steps: (i) solve
the pressure equation and compute edge velocities; (ii) using the fixed edge
velocities, solve the fluid transport equation a time step ∆t.

In Figure 6 we have plotted the initial pressure profile and the saturation
profiles at five equally-spaced time levels as computed on a uniform 64 ×
64 grid. The saturation profile consists of a leading shock-wave, in which
water immediately displaces a fraction of the in situ oil. For a unit viscosity
ratio, the post-shock saturation value equals

√
2/2. Behind the front, the

water saturation is increasing monotonically towards the injector, meaning
that more oil is gradually displaced as more water is injected. Close to the
injector, the level curves are almost circular, corresponding to the circular
symmetry in pressure at the injector. As more water is injected, the leading
water front develops a finger extending toward and finally breaking through
to the producer.

6.2 An Implicit Solver

Implicit schemes are unconditionally stable in the sense that there is no CFL
condition on the size of the time step. On the other hand, implicit discreti-
sation of (43) gives rise to nonlinear systems of equations. Such systems are
normally solved with a Newton or a Newton–Raphson iterative method. These
methods typically give second-order convergence, but it is well known that
they can be very sensitive to the initial guess. It is therefore common to use
an alternative technique to compute an initial approximation for each time
step, and then continue with a Newton or Newton–Raphson method.

We shall employ a Newton–Raphson method to solve the implicit system.
However, since we do not want to mix too many different methods, we assume
that the initial approximation for each Newton–Raphson iteration (which will
be the saturation field from the previous time step) is sufficiently close to the
solution Sn+1. In practice, this means that one often has to start with small
time steps after each update of the velocity field. In the code that we present
in Listing 11 the timesteps are selected in a dynamic fashion in order to ensure
convergence. That is, if the Newton–Raphson iteration has not converged in
ten iterations, then the time step is simply decreased by a factor two so that
the original timestep is split into two sub-timesteps. If the Newton–Raphson
still does not converge in less than ten iterations, the original time step is split
into four sub-timesteps, and so on. In commercial software, the maximum
timestep is controlled by using an estimate of the time discretisation error.
Here we have chosen the maximum timestep by convenience to be five days.
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Listing 10. Implicit upwind finite-volume discretisation of (43).

function S=NewtRaph(Grid,S,Fluid,V,q,T);

N = Grid.Nx∗Grid.Ny∗Grid.Nz; % number of unknowns
A = GenA(Grid,V,q); % system matrix

conv=0; IT=0; S00=S;
while conv==0;
dt = T/2ˆIT; % timestep
dtx = dt./(Grid.V(:)∗Grid.por (:)); % timestep / pore volume
fi = max(q,0).∗dtx; % injection
B=spdiags(dtx,0,N,N)∗A;

I=0;
while I<2ˆIT; % loop over sub−timesteps
S0=S; dsn=1; it=0; I=I+1;

while dsn>1e−3 & it<10; % Newton−Raphson iteration
[Mw,Mo,dMw,dMo]=RelPerm(S,Fluid); % mobilities and derivatives
df=dMw./(Mw + Mo)−Mw./(Mw+Mo).ˆ2.∗(dMw+dMo); % df w/ds
dG=speye(N)−B∗spdiags(df,0,N,N); % G’(S)

fw = Mw./(Mw+Mo); % fractional flow
G = S−S0−(B∗fw+fi); % G(s)
ds = −dG\G; % increment ds
S = S+ds; % update S
dsn = norm(ds); % norm of increment
it = it+1; % number of N−R iterations

end

if dsn>1e−3; I=2ˆIT; S=S00; end % check for convergence
end

if dsn<1e−3; conv=1; % check for convergence
else IT=IT+1; end % if not converged, decrease

end % timestep by factor 2

To derive the Newton–Raphson method for the implicit upwind discreti-
sation, consider the following homogeneous equation (see (44)):

0 ≡ G(Sn+1) = Sn+1 − Sn − (δt
x)T

[
Af(Sn+1) +Q+

]
. (48)

Assume now that we have obtained an approximation S̃ to the true fix-point
Sn+1. Then, by a Taylor expansion, we have

0 = G(Sn+1) ≈ G(S̃) +G′(S̃)
(
Sn+1 − S̃

)
,

and a new, and hopefully better, approximation to Sn+1 is obtained by S̃+dS̃,
where dS̃ satisfies −G′(S̃)dS̃ = G(S̃). For the implicit scheme (48) we have

G′(S) = I − (δt
x)T Af ′(S),

where f ′(S) = [f ′(si)]i. The code for the fully implicit upwind discretisation
is given in Listing 10.

Example 4. In Example 3 we have seen the typical behaviour of a two-phase
oil-water system. Let us now consider a reservoir with a much higher degree
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Listing 11. Two-phase, immiscible, incompressible simulator for the top layer of
the SPE-10 model.

Grid.Nx=60; Grid.hx=20∗.3048; % Dimension in x−direction
Grid.Ny=220; Grid.hy=10∗.3048; % Dimension in y−direction
Grid.Nz=1; Grid.hz=2∗.3048; % Dimension in z−direction
N=Grid.Nx∗Grid.Ny∗Grid.Nz; % Number of grid celles
Grid.V=Grid.hx∗Grid.hy∗Grid.hz; % Volume of each cells
Fluid.vw=3e−4; Fluid.vo=3e−3; % Viscosities
Fluid.swc=0.2; Fluid.sor=0.2; % Irreducible saturations
St = 5; % Maximum saturation time step
Pt = 100; % Pressure time step
ND = 2000; % Number of days in simulation

Q=zeros(Grid.Nx,Grid.Ny,1); % Source term for injection
IR=795∗(Grid.Nx∗Grid.Ny/ (60∗220∗85)); % and production. Total
Q(1,1,:)=IR; Q(Grid.Nx,Grid.Ny,:)=−IR; Q=Q(:); % rate scaled to one layer

load Udata; Grid.K=KU(:,1:Grid.Nx,1:Grid.Ny,1); % Permeability in layer 1
Por=pU(1:Grid.Nx,1:Grid.Ny,1); % Preprocessed porosity in layer 1
Grid.por=max(Por(:),1e−3);

S=Fluid.swc∗ones(N,1); % Initial saturation
Pc=[0; 1]; Tt=0; % For production curves
for tp=1:ND/Pt;

[P,V]=Pres(Grid,S,Fluid,Q); % Pressure solver
for ts=1:Pt/St;

S=NewtRaph(Grid,S,Fluid,V,Q,St); % Implicit saturation solver
subplot(’position’ ,[0.05 .1 .4 .8]); % Make left subplot
pcolor(reshape(S,Grid.Nx,Grid.Ny,Grid.Nz)’); % Plot saturation
shading flat; caxis([Fluid.swc 1−Fluid.sor]); %

[Mw,Mo]=RelPerm(S(N),Fluid); Mt=Mw+Mo; % Mobilities in well−block
Tt=[Tt,(tp−1)∗Pt+ts∗St]; % Compute simulation time
Pc=[Pc,[Mw/Mt; Mo/Mt]]; % Append production data
subplot(’position’ ,[0.55 .1 .4 .8]); % Make right subplot
plot(Tt,Pc(1,:),Tt,Pc (2,:)); % Plot production data
axis([0,ND,−0.05,1.05]); % Set correct axis
legend(’Water cut’,’Oil cut’ ); % Set legend
drawnow; % Force update of plot

end
end

of realism by revisiting the two-dimensional SPE-10 models from Example 2.
We consider an incompressible oil-water system, for which swc = sor = 0.2,
µw = 0.3 cp, and µo = 3.0 cp. The reservoir is initially filled with oil, meaning
that the initial water saturation is equal the connate water saturation s(x, 0) ≡
swc. The porosity is strongly correlated with the horizontal permeability and
contains about 2.5% zero values. To avoid division by zero in these cells, we
simply replace the zero values by a certain minimal nonzero value.

Listing 11 contains a simulation routine that loads data and computes the
flow using sequential splitting. Since both the porosity and permeability has
a strongly heterogeneous structure spanning several orders of magnitude it is
not practical to use the explicit scheme due to the inordinately large number
of time steps enforced by the stability condition. Instead we use an implicit
scheme—the Newton–Raphson method presented in Listing 10.
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Fig. 7. Saturation and production profiles after 400, 800, 1200, and 2000 days of
production for the Tarbert formation in the top layer of the SPE-10 model.
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Fig. 8. Saturation and production profiles after 400, 800, 1200, and 2000 days of
production for the Upper Ness formation in the bottom layer of the SPE-10 model.
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Figures 7 and 8 show saturation and production profiles during the simu-
lation for the top and bottom layers in the SPE-10 model. In the figures, oil
and water cuts refer to the fractional flows of oil and water, respectively, into
the production well. Here we clearly see that the spaghetti of channelling sys-
tems that we have in the Upper Ness formation leads to a very different flow
scenario from what we observed in the top layer, which has a quite smooth
permeability distribution compared to the bottom layer.
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