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Abstract

In this work we discuss the application of modern high-resolution schemes to a hyperbolic sys-
tem that models polymer flooding. Polymer flooding is a difficult process to model, especially since
the dynamics of the flow lead to concentration fronts that are not self-sharpening. Because the water
viscosity is strongly affected by the polymer concentration, it is crucial to capture polymer fronts
accurately to resolve the nonlinear displacement mechanism correctly and its efficiency for oil en-
hanced recovery.

The main objective of this work is to compare different first- and higher-order methods in terms
of how the discontinuities are treated. Especially, different initial conditions and the inclusion of
adsorption and permeability reduction can change not only the solution, but also the behavior of the
different numerical methods. We find some numerical artifacts and we investigate of how suitable
different numerical methods are for different polymer flooding situations.



Introduction

A widely used Enhanced Oil Recovery (EOR) strategy is polymer flooding. Polymer is a water solute
added to the water to increase its viscosity. This increase in viscosity enhances the water ability to push
oil through the rock because of a more favorable mobility ratio between the injected and displaced fluids,
Lake (1989).

During polymer flooding through a reservoir there is usually adsorption of polymer molecules onto the
reservoir rock surface. Adsorption decreases the polymer concentration and consequently the viscosity
in the water flood. Thus, adsorption represents a net reduction in the polymer slug. One effect of
polymer adsorption is that there can be a pure water bank at the leading edge of the slug. The adsorption
process is complex and depends on many factors: polymer concentration, polymer type, pH, salinity,
ionic strength, and reservoir heterogeneity. This and consequences of the adsorption for the polymer
flooding has been studied in the literature, see e.g., Dang et al. (2011). Adsorption onto the pore walls
shrinks the pore volumes. Thus, the permeability of the rock can be reduced. Studies as e.g., Ogunberu
and Asghari (2005) indicate a selective action of the polymer with a significant reduction in the relative
permeability to water with respect to relative permeability to oil. Another effect of polymer flooding is
that smaller portions of the pore space will not allow polymer molecules to enter because of their size.
Thus, a portion of the total pore space is inaccessible to the polymer and the polymer flow is accelerated.

The two-phase flow of oil and water with polymer can be modeled using a pair of non-linear hyperbolic
conservation laws. In this system, the polymer bank is described by linear waves that, unlike water
fronts, are not self-sharpening. Resolving these waves is essential to accurately predict the enhanced oil
recovery effect of a polymer flood. This can be a challenge using standard low-order methods, whose
large numerical diffusion will tend to smooth the polymer bank and hence fail to accurately resolve
the EOR effect. To overcome this challenge, one can use a very fine grid or apply high-resolution
schemes. In this work, we will discuss the latter. High-resolution schemes are in general at least second-
order accurate on smooth solutions and yet give well resolved, non-oscillatory discontinuities for scalar-
equations.

In this work, we discuss the performance of first- and higher- order schemes for different flow situations.
In particular, we include the effect of adsorption and permeability reduction in the polymer flood model
and study the flow of this system through numerical examples in one dimension. Through numerous nu-
merical experiments we discuss different phenomena that occur for different flow situations for different
numerical schemes. Also, we discuss the applicability of different Riemann solvers for this system.

This paper is structured as follows; first, the hyperbolic conservation laws used to represent the polymer
flooding is given. Next, the numerical framework is presented before we give the concrete model setup
and parameters used in the numerical experiments performed. These experiments are presented, and
different findings are discussed before we conclude and summarize the paper.

Mathematical Model

When polymer is added to the water the reservoir fluid consists of three components: oil, water and
polymer. We assume that the oil forms its own liquid phase and that water and polymer coexist in
the aqueous phase. Polymer flooding is thus a two-phase immiscible system and can be modeled by an
extension of the classical Buckley-Leverett model for two-phase flow. This extension was first presented
in Pope (1980).

Let ρα , sα , and uα denote the density, saturation, and velocity of phase α . Phase α = n represents
the non-wetting oil phase and phase α = w represents the aqueous phase. Furthermore, φ represents
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porosity. The mass-conservation equations for the three components oil, water, and polymer reed

(φρnsn)t +∇ · (ρnun) = 0, (1a)

(φρwsw)t +∇ · (ρwuw) = 0, (1b)

(φρwswc+(1−φr)ρrā(c))t +∇ · (ρwcuwp) = 0, (1c)

where c is the polymer concentration, ρr the reference rock density, and φr the reference porosity. In (1c),
the term ā(c) represents the amount of polymer adsorbed by the rock, only dependent of the polymer
concentration c. Also, uwp is the velocity of water containing polymer. We assume that the reservoir
rock is homogeneous, thus the porosity and the total permeability of the rock are constant. Also, we
assume that the phases are incompressible, that is ρα is constant. Thus, Equations (1a-1c) reduce to

φ (sn)t +∇ ·un = 0, (2a)

φ (sw)t +∇ ·uw = 0, (2b)

φ

(
swc+

1−φr

φ

ρr

ρw
ā(c)

)
t
+∇ · (cuwp) = 0. (2c)

The phase velocities are given by Darcy’s law

uα =−λα (∇pα −ραg) , (3)

where the mobilities are

λn = k
krn(sw)

µn
, and λw = k

krw(sw)

µw(c)R(c)
. (4)

In (4) k is the absolute permeability, krα(sw) the relative permeability of phase α , µα the phase viscosity
and R(c) models the reduction in permeability of the rock to the water phase due to adsorption. Here we
have assumed that the viscosity of oil is constant, and that the viscosity of the aqueous phase increases
as the concentration of polymer increases. We assume that polymer does not affect the pressure and
density and that the relative permeability does not depend on mixing. Thus the velocity uwp is given by

uwp =−λwp (∇pw−ρwg) ,

where λwp = k
krw(sw)

µp(c)R(c)
.

Hence, we have that

uwp = m(c)uw,

where m(c) =
µw(c)
µp(c)

,

and m(c) is called the polymer mobility factor. In this work, we assume that m(c) = 1. That is, we
assume that the polymer is fully mixed in water. More on a formulation including the degree of mixing
can be found in Todd and Longstaff (1972).

To simplify notation, let s = sw and let the total velocity be given by u = uw +un. We subtract the phase
velocities given by (3) and get an isolated expression for uw,

uw =
λw

λw +λn
(u+(∇pc +(ρw−ρn)g)λn) ,
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where pc = pn− pw is the capillary pressure. For simplicity we neglect the capillary pressure pc and set
the porosity φ = 1. Then, the mass-conservation equation for the aqueous phase (2b) can be written as

st +∇ · f(s,c) = 0, (5)

where f(s,c) =
λw

λw +λn
[u+λn (ρw−ρn)g] , (6)

and f(s,c) is called the flux function of the system. Similarly, if we let a(c) = ρr
ρw

ā(c), the mass-
conservation equation for the polymer component (2c) can be written as

(sc+a(c))t +∇ · (cf(s,c)) = 0. (7)

From now on we consider the hyperbolic system consisting of (5) and (7) in one dimension,

st + f (s,c)x = 0, (8a)

(sc+a(c))t +(c f (s,c))x = 0, (8b)

where the flux function f (s,c) is given by

f (s,c) =
λw

λw +λn
[u±λn(ρw−ρn)g] , (9)

and the sign in front of λn(ρw− ρn)g depends on what type of flow we are considering (e.g., up and
down dip flow).

The pair of equations (8a-8b) is the conservation form of the polymer flood model. This can be written
in the nonconservative form as

st + fs(s,c)sx + fc(s,c)cx = 0,

(s+a′(c))ct + f (s,c)cx = 0,

which on matrix form is

Ut +AUx = 0,

where U =

[
s
c

]
and A =

 fs(s,c) fc(s,c)

0 f (s,c)
s+a′(c)

 .
The eigenvalues λ p of the Jacobian matrix A are

λ
s(s,c) = fs(s,c), and λ

c(s,c) =
f (s,c)

s+a′(c)
.

The system (8a-8b) can have equal eigenvalues (λ s = λ c), and hence this is a system of non-strictly
hyperbolic conservation laws.

Polymer is often injected in slugs, and we need to consider discontinuous initial data. The system (8a-8b)
with the initial conditions

s(x,0) =
{

sL, if x < 0,
sR, if x≥ 0,

c(x,0) =
{

cL, if x < 0,
cR, if x≥ 0,

(10)

is a Riemann problem. This problem (with the adsorption a(c) = 0) was first analyzed by Isaacson
(1989); Temple (1982), who neglected gravity and obtained a system in which the flux function f (s,c)
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is monotone. The extension of this model with a(c) 6= 0 was analyzed and a unique global solution of this
Riemann problem was derived by Johansen and Winther (1988). When gravity effects are included, the
flux function can be non-monotone and thus the eigenvalues λ p can change sign and the exact solution
of the Riemann problem is more difficult to construct. For details on the different wave-compositions
and solution of the Riemann problem in the general case where gravity effects are included and the flux
function can be non-monotone, see e.g., Sudarshan Kumar et al. (2013).

The solution of the general Riemann problem consist of what in the literature is referred to as s-waves
and c-waves. An s-wave is any composition of simple rarefaction or shock (or contact discontinuity)
waves across which s changes continuously and discontinuously, respectively. A c-wave is a simple c-
rarefaction wave or a c-shock (or contact discontinuity) wave such that s and c changes for which f (s,c)

s+a′(c)
remain constant and

f (sL,cL)

sL +a′(cL)
=

f (sR,cR)

sR +a′(cR)
.

The detailed theory on the solution of the Riemann problem will not be discussed further in this work.

Numerical Model

In this section, we present the numerical approach we have used to model the polymer flooding (8a-8b).
For simplicity we let (xi, tn) := (i∆x,n∆t) be a uniform grid. The approach is presented for a general
system of conservation laws,

Qt +H(Q)x = 0, (11)

and follows classical theory presented in e.g., LeVeque (1992). The system (8a-8b) on the general form
(11) corresponds to

Q =

[
s
sc+a(c)

]
, H(Q) =

[
f (s,c)
c f (s,c)

]
.

To simplify our transition from the classical first-order to a higher-order numerical scheme we use the
semi-discrete finite volume framework presented in e.g., Hagen et al. (2007). That is, we reduce the
system of partial differential equations to a system of ordinary differential equations, to which we then
apply an ODE solver. This is done to be able to decouple the issues of spatial and temporal accuracy
and is called the method of lines. First, we start with the cell-average Qi(t) over each grid-cell,

Qi(t) =
1

∆x

xi+1/2∫
xi−1/2

Q(ξ , t) dξ , (12)

and impose the integral form of (11) on the
cell (xi−1/2,xi+1/2)

d
dt

xi+1/2∫
xi−1/2

Q(ξ , t) dξ = H(Q(xi−1/2, t))−H(Q(xi+1/2, t)). (13)

By combining (12) and (13) we arrive at a system of ODEs

d
dt

Qi(t) =−
1

∆x

(
Hi+1/2(t)−Hi−1/2(t)

)
, (14)

and the fluxes across the cell-boundaries are given by

Hi+1/2 = H(QL
i+1/2,Q

R
i+1/2),
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where QL
i+1/2 and QR

i+1/2 are the reconstructed point values of Q to the left and to the right of the
corresponding cell face. For now, we assumed that

QL
i+1/2 = Qi, QR

i+1/2 = Qi+1, (15)

which is referred to as the constant reconstruction. How to approximate the fluxes Hi±1/2 has been
discussed in the literature for decades and the flux-approximations used in this work will be presented
shortly. The time integration of the ODE (14) is for a first-order method discretized with forward Euler.

Returning to the ODE (14) for the polymer system (8a-8b), this would read

d
dt

[
si

sici +a(ci)

]
=− 1

∆x

[
Fi+1/2(t)−Fi−1/2(t)
Gi+1/2(t)−Gi−1/2(t)

]
, (16)

where the flux Fi±1/2 is associated with f (s,c) and Gi±1/2 is associated with g(s,c) = c f (s,c). The up-
dated value for the saturation sn+1

i is found from the first row and used in the second row to approximate
the updated value for the polymer concentration cn+1

i using a Newton-Raphson iteration.

Flux approximation

The numerical fluxes Fi±1/2 in (16) can be approximated in a number of ways, and from this we can
easily find Gi±1/2. For now, we let Gi+1/2 in (16) be given by

Gi+1/2 =

{
cn

i Fi+1/2 if Fi+1/2 > 0,
cn

i+1Fi+1/2 else.

Popular approximations are centered approximations and approximations based on the solution of the
associated Riemann problem.

Let the saturation in the cell to the left of the edge xi+1/2, sn
i be denoted sL and the value in the cell to

the right sn
i+1 be denoted sR. Similarly for the polymer concentration, cL = cn

i and cR = cn
i+1.

The Godunov flux approximation is based on solving the local Riemann problem for the system (8a-8b)
in the domain (xi−1/2,xi+1/2)× (tn, tn+1) with the initial condition

(s(x, tn),c(x, tn)) =

{
(sn

i ,c
n
i ), if x < xi+1/2,

(sn
i+1,c

n
i+1), if x≥ xi+1/2.

The Riemann solution is a similarity solution, i.e., a function of ξ = x/t only. The Godunov flux is
found by evaluating F = f (s,c) in x/t = 0 and denoted by

Fi+1/2 = FG(sL,cL,sR,cR),

for details see e.g., Johansen and Winther (1988); Sudarshan Kumar et al. (2013).

The DFLU flux is an extension of the Godunov scheme for scalar conservation laws that was proposed in
Adimurthi et al. (2004) and applied to the polymer system by Sudarshan Kumar et al. (2013). Looking
at the flux approximation related to Equation (8a), we take c(x, t) in f (s,c) as a known function that
may be discontinuous at the space discretization points. Thus, in (16), the flux Fi+1/2 for concave flux
functions f (s,c) is taken to be

Fi+1/2 = FDFLU(sL,cL,sR,cR)

= min
[

f (min{sL,θ L},cL), f (max{sR,θ R},cR)
]
,
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where θ L and θ R are the maximum values of f (sL,cL) and f (sR,cR) respectively. Similarly, for convex
flux functions f (s,c), the flux Fi+1/2 is

Fi+1/2 = FDFLU(sL,cL,sR,cR)

= max
[

f (max{sL,θ L},cL), f (min{sR,θ R},cR)
]
,

where θ L and θ R are the minimum values of f (sL,cL) and f (sR,cR) respectively. Note that the Godunov
flux approximation requires the solution of the Riemann problem for the system (8a-8b), while the DFLU
flux only requires the solution of the Riemann problem of a scalar equation. In Adimurthi et al. (2013);
Sudarshan Kumar et al. (2013) it is shown that the DFLU flux is as good as the Godunov flux, and
converges faster than other classical schemes that do not exploit the solution of the Riemann problem.

To avoid the difficulty of solving Riemann problems, it is common to use centered flux approximations.
Classical schemes of this kind are the Lax-Friedrichs scheme and the FORCE scheme, for details on
these see e.g., LeVeque (1992). In Kurganov et al. (2001) a flux approximation called central-upwind
was introduced. This is a centered approach in which information about the smallest and largest eigen-
value of the Jacobian matrix of the system is used in the flux evaluation. Let

a+ = max
s∈{sL,sR}

(λM,0) a− = min
s∈{sL,sR}

(λm,0),

where λM and λm denote the largest and smallest, respectively, eigenvalues of the Jacobian matrix of the
system. The values a+ and a− are estimates of how far the Riemann fan from the discontinuity (sL,sR)
extends in the positive and negative direction. The central-upwind flux approximation is given by

Fi+1/2 = FCU(sL,cL,sR,cR)

=
a+ f (sL,cL)−a− f (sR,cR)

a+−a−

+
a+a−

a+−a−
(sR− sL).

Note that for monotone flux functions this scheme reduces to the standard upwind scheme.

Numerical schemes based on centered flux approximations are in general more diffusive than schemes
based on an exact or an approximate Riemann solver. However, for problems for which the Riemann
solution is not known, or is too computationally expensive to find, flux approximations like FCU can be
the only option available.

Reconstruction

Returning to the general system of ODE (14) the question now is how to reconstruct the point-values
of Q from the cell averages. That is, how to interpolate from cell averages to point values Q. To
obtain higher-order accuracy, the constant reconstruction (15) must be improved and a high-order piece-
wise polynomial interpolant Q̃ from the cell-averages is used. The interpolant must be conservative,
non-oscillatory and sufficiently accurate. Note that at a discontinuity, we cannot expect to maintain
high-order accuracy, but rather minimize the creation of spurious oscillations. Different high-order re-
constructions used in this work will be presented below.

From the cell averages Qn
i , we construct a piecewice linear function of the form

QL
i+1/2 = Qi +

1
2

δi,QR
i+1/2 = Qi+1−

1
2

δi,

where δi is the slope on the i-th cell. The linear function in the i-th cell is designed in such a way that
the value at the cell-center is exactly Qi. To obtain a second-order accurate method we chose a nonzero
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slope in such a way that δi approximates Qx over the i-th grid cell. Which slope to choose depends on
how the solution is behaving near the i-th cell using a given slope δi. Near a discontinuity it can be
favorable to limit the slope, using a value that is smaller in magnitude to avoid oscillations. Methods
based on this approach are called slope-limiter methods and was first introduced in a series of papers by
Van Leer (1974, 1977, 1979).

In this work, we have used two classical slope-limiters from the literature. This includes the minmod
limiter

δ
n
i = minmod

(
θ

Un
i −Un

i−1

∆x
,
1
2

Qn
i+1−Qn

i−1

∆x
,

θ
Qn

i+1−Qn
i

∆x

)
, θ ∈ [1,2], (17)

where

minmod(a,b,c) =
min(a,b,c), if a > 0, b > 0, and c > 0,
max(a,b,c), if a < 0, b < 0, and c < 0,
0, otherwise,

and the superbee limiter introduced by Roe (1985).

δ
n
i = maxmod

(
δ

1,n
i ,δ 2,n

i

)
, (18)

where

δ
1,n
i = minmod

(
Qn

i+1−Qn
i

∆x
,2

Qn
i −Qn

i−1

∆x

)
,

δ
2,n
i = minmod

(
2

Qn
i+1−Qn

i

∆x
,
Qn

i −Qn
i−1

∆x

)
,

and

maxmod(a,b) =


a, if |a|> |b| and ab > 0,
b, if |a|< |b| and ab > 0,
0, else.

The superbee limiter does not reduce the slope as much as the minmod limiter near a discontinuity, and
can achieve sharper resolution of discontinuities.

Both limiters mentioned fulfill the total variation diminishing (TVD) property. In Harten (1983) it is
showed that this property ensures that oscillations are not introduced when the limiter is applied to a
scalar equation. When TVD limiters are applied to a system of equations, like the polymer system, this
property only ensures that oscillations are not introduced in the reconstruction step. However, this does
not guarantee an oscillation-free solution overall.

ODE solver

The system of time-dependent ODEs (14) is solved by an ODE solver. For higher-order reconstructions,
one can e.g., use the Runge-Kutta methods described in Shu (1988) to preserve high-order accuracy in
time without creating oscillations. A second-order TVD Runge-Kutta solver is given by

V (1) = Qn +∆tR(Qn),

Qn+1 =
1
2

V (0)+
1
2

[
V (1)+∆tR(V (1))

]
,

where R(Q) = 1
∆x

[
H(Qi+1/2, t)−H(Qi−1/2, t)

]
.
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Table 1: The different flux function shapes dependent on which flow that are being considered, see
Figure 1.

Flow type u f (s,c) Illustration Case

Horizontal 0.2 λw
λw+λn

u Figure 1a A

Down dip 0.2 λw
λw+λn

[u+λn(ρw−ρn)g] Figure 1b B
Down dip 0 λw

λw+λn
[λn(ρw−ρn)g] Figure 1c C

Up dip 0.2 λw
λw+λn

[u−λn(ρw−ρn)g] Figure 1d D
Up dip 0 λw

λw+λn
[−λn(ρw−ρn)g] Figure 1e E

Numerical Experiments

In this section we first introduce the model setup used for the polymer flood model. Next, we show
different results from the numerical simulations to emphasize different aspects of the polymer flood
modeling.

Model setup

In the flux function f (s,c) in (9) we let

λw(s,c) =
s2

(0.5+ c)
1

R(c)
,

and λn(s) = (1− s)2.

Furthermore, we consider different situations in which both the gravity term and the total velocity u
are included or neglected. When these are included, we let u = 0.2 and (ρw−ρn)g = 1. When grav-
ity is neglected, we are considering horizontal flow and the resulting flux functions f L = f (s,cL) and
f R = f (s,cR) for a constant value of cL and cR such that cL > cR have the shape shown in Figure 1a.
Similarly, if we are considering down dip flow, the gravity term in (9) has positive sign and the possible
shapes of the flux functions f L and f R are shown in Figure 1b and 1c with u= 0.2 and u= 0 respectively.
If we consider up dip flow, the gravity term in (9) has negative sign and the possible shapes of the flux
functions f L and f R are shown in Figure 1d and 1e with u = 0.2 and u = 0 respectively. These five
situations are summarized and given a case letter (A-E) in Table 1 below. At constant temperature, an
adsorption isotherm gives a relation between the amount of adsorbed polymer and the polymer concen-
tration c. The Langmuir isotherm theory is a favorable tool for modeling the polymer adsorption process
Lake (1989). In this work we have used several representations of the adsorption and these are listed in
Table 2 and shown in Figure 2.

The permeability reduction can be modeled by applying a residual resistance factor R(c) to the wa-
ter relative permeability, see e.g., Schlumberger and Geoquest (2005). Note that this factor must be a
constant or increasing function. The permeability reductions used in this work are listed in Table 3.
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Figure 1: The flux functions associated with the left (red) and right (blue) polymer concentration across
a cell edge are considered with the following shapes (here shown for cL > cR).

Table 2: Different adoption functions a(c) used in this work, numbered with Case 1-5.

a(c) Case

No adsorption 0 1
Linear adsorption 0.25c 2
Linear adsorption c 3
Langmuir adsorption 80c

1+80c 4
Linear adsorption 1+0.5c 5

Table 3: Different permeability reduction factors used in this work, numbered with Case a-c.

R(c) Case

No permeability reduction 1 a
Constant 1.3 b
Increasing 1+0.5c2 c
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Figure 2: Different choices of the adsorption function a(c).
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Figure 3: Different λw(s,c) with c = 0.5 for different choices of the permeability reduction R(c).
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The different initial conditions used in the numerical examples in this work are

(s(x,0),c(x,0)) =
{

(0.9,0.9) if x < 0.5,
(0.1,0.3) if x≥ 0.5,

(19a)

(s(x,0),c(x,0)) =
{

(0.9,0.7) if x < 0.5,
(0.7,0.3) if x≥ 0.5,

(19b)

(s(x,0),c(x,0)) =
{

(0.1,0.9) if x < 0.5,
(0.9,0.1) if x≥ 0.5.

(19c)

For situations with flux functions of shape A, B, and C, the initial conditions (19a) and (19b) have been
used, and for the flux functions of shape D and E, the initial conditions (19b) and (19c) have been used.
Boundary conditions are such that

(s(0, t),c(0, t)) = (sL,cL)

and (s(1, t),c(1, t)) = (sR,cR).

As our a reference solution, we use a converged solution on a fine grid with ∆t = ∆x = 1
100000 found

using the constant reconstruction and the Godunov flux approximation.

To illustrate the influence of adding polymer and including adsorption and permeability reduction we
show an example of the saturation and concentration front at time t = 0.5 for a situation with flux of
Case B and initial condition (19a). In the example in Figure 4 we have included a simulation in which
no polymer is added (green), one in which polymer is added but adsorption and permeability reduction
is neglected (blue), one in which adsorption is of Case 3 and permeability reduction is neglected (red),
and one in which adsorption of Case 3 and permeability reduction of Case c is included (black). This
simulation illustrates the wanted effect of a slower saturation front when polymer is added. However,
when adsorption is included the polymer front itself moves slower and has less effect on the saturation
front. When permeability reduction also is included we see that this has little effect on the polymer front,
but increases the wanted effect of a slower saturation front. This simulation is shown to give the reader
a better understanding of how the flow is affected by the different quantities.

Validity, convergence, and robustness of the numerical schemes

Using the numerical model presented earlier, together with the given model setup, we now show some
numerical aspects of the simulation of the polymer flood. First, we study the convergence of the satura-
tion s and the concentration c through the L1-norm using different reconstructions both for the Godunov,
the DFLU, and the central-upwind flux approximation. Let Ū = (s̄, c̄) denote the reference solution,
while U = (s,c) are the numerical approximations found by the specified scheme. The flux shape is
taken to be flux B, the initial condition is (19a), the adsorption is the langmuir type in Case 4 and the
permeability reduction is neglected. The error development shown in Figure 5 confirms that the DFLU
flux performs similar to the Godunov flux. This is good news since the DFLU flux approximation only
requires the solution of the Riemann problem for the scalar equation, as we discussed when we intro-
duced these flux approximations. Furthermore, we see that the central-upwind scheme also performs
well and similar to the two Riemann solvers.

To emphasize this further, we now show comparisons of simulations with the DFLU and the central-
upwind flux approximation. The simulations in Figure 6 are done on a coarse-scale grid, with constant
reconstruction. From this figure we see that the simulations done with the two flux-approximations are
almost identical. Originally, our hypothesis was that we could find situations where the Riemann solvers
would fail because of the complexity of the problem. However, for the model setup we have used in this
work, the Riemann solvers performs well. Also, the central-upwind scheme computes almost identical
approximations compared to the Riemann solvers, thus we find this scheme applicable to this problem.
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(a) Saturation front at time t = 0.5.
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(b) Polymer front at time t = 0.5.

Figure 4: Saturation and polymer front for an example with flux B and initial condition (19a). Green: no
polymer added, blue: with polymer but no adsorption and permeability reduction, red: adsorption but
no permeability reduction, black: adsorption and permeability reduction.
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Figure 5: Development of the error ||U − Ū ||L1 for different flux approximations and reconstructions.
These include the Godunov (red), the DFLU (black), and the central-upwind (blue) flux approximations
and constant, minmod and superbee reconstructions. Note the development for the DFLU and Godunov
flux approximations are almost identical, thus the red curve is hidden under the black.
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Figure 6: Saturation (left) and polymer (right) front at time t = 0.5 computed with the DFLU (black)
and the central-upwind (magenta) flux-approximation, using the constant reconstruction. In the top row
we have used a flux of shape B and initial condition (19a), and in the bottom row the flux is of shape
D and we have used initial condition (19c). The adsorption in both examples is taken to be of Case 4,
while permeability reduction is neglected.

From Figure 5 we see that both the minmod and the superbee limiter performs better than the constant
reconstruction. Of the two, the superbee slope limiter gives the lowest error. To investigate this trend
further, we now study the validity of this slope limiter. First, we compare the saturation and polymer
front at time t = 0.5 for two examples with flux function of shape B and initial condition (19a) with no
permeability reduction and adsorption a(c)= c, see Figure 7. The coarse-scale simulations are done with
∆x = ∆t = 1/100 using constant reconstruction and the higher-order reconstruction with the superbee
limiter. For the coarse-scale simulations shown throughout the paper, we have used the central-upwind
scheme. The different aspects and phenomenon discussed, are similar for the coarse-scale solutions
computed with the Riemann solvers.

Looking on the polymer front in the right column of Figure 7 alone, we see that the superbee limiter
does a better job than the constant reconstruction. However, for the case where the adsorption is included
(bottom row) we see that the superbee limiter has oscillations in the saturation front. Through numerous
of simulations for different flux function shapes, different adsorptions, different permeability reductions,
and different initial conditions we have looked for a pattern in when these oscillations occur. Our
findings for this phenomenon are summarized in the upper part of Table4.

Another phenomenon of the superbee limiter found through these numerous simulations is the one shown
for the saturation front in Figure 8. Here, the propagation speed of the saturation front simulated by the
superbee limiter is overestimated. This phenomenon is only found when the flux has the shape C and
the initial condition is (19b). Adsorption and permeability reduction does not affect this phenomenon.

When the initial condition (19b) is used with flux function of shape A and B, the saturation front can
develop a polymer oil bank. This means that the flooding problems develops an oil bank just ahead of
a contact discontinuity, moving at the same speed as the leading edge of a rarefaction. This bank is
especially hard to capture for coarse-scale simulations. In Figure 9 we show three situations where the
polymer oil bank is simulated with the different reconstructions mentioned earlier. Especially, we see
from Figure 9b that a narrow oil bank is particularly hard to capture for the coarse-scale simulations. Not

ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery
Catania, Sicily, Italy, 8-11 September 2014



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

reference

constant

superbee

x

s

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

reference

constant

superbee

x

c

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

reference

constant

superbee

x

s

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

reference

constant

superbee

x

c

Figure 7: Saturation and polymer front for an example with flux B and initial condition (19a) at time
t = 0.5. In the top row adsorption is neglected, and in the bottom row adsorption is taken to be a(c) = c.
Results shown for a reference solution (black) and coarse-scale solutions (∆x = 1/100) with constant
reconstruction (blue) and reconstruction with superbee slope limiter (red).
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Figure 8: The saturation front at time t = 0.2, t = 0.5 and t = 1, from left to right, for flux shape C
and initial condition (19b). Simulations from the constant reconstruction (blue) and the superbee limiter
(red) compared to the reference solution (black).
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Figure 9: Approximations of the polymer bank in the saturation profile. Simulations from the constant
reconstruction (blue), the minmod limiter (magenta), and the superbee limiter (red) compared to the
reference solution (black). For the simulations in (a) the flux function is of shape A, the adsorption is
taken to be of Case 2 the permeability reduction is neglected. The simulations in (b) and (c) have flux
function of shape B, adsorption of Case 2 and 3, and permeability reduction of Case b and c, respectively.
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Figure 10: The saturation front at time t = 0.2, t = 0.5 and t = 1, from left to right, for flux shape E
and initial condition (19c) with adsorption and permeability reduction neglected. Simulations from the
constant reconstruction (blue), minmod limiter (magenta), and the superbee limiter (red) compared to
the reference solution (black).

Table 4: Occurrence of different phenomena discussed in the text for different flux function shapes,
initial conditions, adsorptions, and permeability reductions: (-) indicates no special phenomenon, (o)
indicates that the oscillation in the suberbee approximation occurs, (x) indicates that the difficult oil
polymer bank phenomenon are present and difficult to model, (*) indicates the false oil bank for the
coarse-scale of flux D and E with initial condition (19c) - with increasing bank with increasing number
of *.

Adsorption Case 1 2 3 4 5
Perm. red Case a a b c a b c a b c a b c

Flux A - - - - - - - - - - - - -
Initial cond. (19a) Flux B - o o o o o o - - - o o o

Flux C - o o o o o o o o o o o o

Flux A x x x x - - - x x x x x x
Initial cond. (19b) Flux B - - x x x x x - - x - x x

Flux C + + + + + + + + + + + + +

Initial cond. (19c) Flux D * ** ** ** * * * *** *** *** * ** *
Flux E *** *** *** *** *** * * *** *** *** ** ** **

unexpected, the superbee limiter does the best job at approximating these polymer oil banks. However,
also this limiter struggles, especially when the bank is narrow. In Table 4 we have summarized in which
situations this oil bank occurs.

When simulating the saturation profile for flux function of shape D and E with initial condition (19c), the
coarse-scale approximations introduces a false oil bank. This is shown in Figure 10 for three different
times for simulations done with flux E where both adsorption and permeability reduction are neglected.
In Table 4, the occurrence of this phenomenon at time t = 0.5 is quantified with (*), where increasing
number of stars means larger oil bank for the coarse-scale simulations. One property of classical first-
order, coarse-scale approximations of the contact discontinuity in polymer concentration is that it should
be mass-conservative. Thus, the difference between the coarse-scale solution and a reference solution
should be symmetric on both sides of the discontinuity. Since we have imposed Dirichlet boundary
conditions, this is not necessarily the case. However, we should expect that solutions approximated
with the same numerical scheme on different refinements of the grid should attain the same symmetry
behavior.

In our numerical experiments it turns out that the error of the coarse-scale approximation of the con-
tact discontinuity varies with how the shape of the flux function f (s,c) is. Also, how the adsorption
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Figure 11: Approximated polymer concentration c at time t = 0.5 with a coarse-scale constant recon-
struction (blue) compared to a reference solution (black). Different shapes of the flux function f (s,c)
and adsorption term a(c) create different values of E.
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Figure 12: The bars correspond to the values ĒL and ĒR in dark grey and light grey respectively, for the
same situations as in (a), (b) and (c) in Figure 11.

a(c) and the permeability reduction R(c) is modeled influences this. This means that the coarse-scale
approximation can have less numerical diffusion for some examples, than for others.

We consider how the approximated polymer front from a constant reconstruction is moving compared
to the reference solution. Let k be the cell index closest to the discontinuity, and define

ĒL =
k

∑
i=1
|c̄i− ci|, ĒR =

N

∑
i=k+1

|c̄i− ci|.

Thus, ĒL is a measure for the error to the left of the discontinuity, and ĒR as a measure of the error to
the right of the discontinuity. If E = ĒR− ĒL ≈ 0 the approximation is smeared out equally on both
sides of the contact discontinuity. Also, if the propagation speed of the polymer front is overestimated,
E > 0 and similarly E < 0 if the polymer front is underestimated, see Figure 11. In this figure we have
compared the coarse-scale polymer front with the reference solution at time t = 0.5 for three different
situations. The situation shown in Figure 11a is for a flux function with shape B, initial condition (19a),
and adsorption Case 3. The error of the approximation is symmetrical on both sides of the discontinuity
and E ≈ 0. In Figure 11b, the only difference is that the adsorption is neglected, and here we see that
the approximate polymer front moves too fast and we have E > 0. Finally, for the example in Figure
11c the flux function has the shape D, the initial condition (19c), and the adsorption is again Case 3. In
this situation, we see that the computed polymer front moves too slow and we have E < 0. For the three
concrete situations in Figure 11 this would correspond to the bar chart of ĒL and ĒR in Figure 12.

In Figure 13 and Figure 14, similar bar charts for the five different flux function shapes A-E are given for
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Figure 13: Six examples with ĒL and ĒR at time t = 0.5 given in dark grey and light grey, respectively,
with flux functions with shapes A, B, and C, from left to right. The initial condition at the top row is
(19a) and at the bottom row (19b). In each example, ĒL and ĒR are shown for five different adsorption
situations, (1) corresponds to no adsorption, (2) is Case 3, (3) is Case 2, (4) is Case 4, and (5) is Case 5.

a variety of adsorption cases. The permeability reduction has little or no influence on this phenomeon.
However, we see that depending on which adsorption function we are considering for the same flux
function shape the distribution of ĒL and ĒR varies. For the two initial conditions (19a) and (19b) used
in the examples in Figure 13, on the top and bottom row, respectively, we see that the trend is almost
opposite in the two situations.

For the examples with the flux function shapes E and D in Figure 14 we see that ĒL > ĒR in all cases,
with varying difference.

Summary

In this work we have applied high-resolution schemes and different flux approximates to the one di-
mensional polymer flooding problem. Effects like adsorption and permeability reduction and different
flow situations (horizontal, down and up dip) are included in the discussion. Through numerous numer-
ical experiments we have uncovered some special numerical phenomenon of the polymer system. The
central-upwind flux-approximation is compared to the two Riemann solvers based on the DFLU and the
Godunov flux approximation, and found to preform similar to the Riemann solvers.

We have justified and illustrated the need of high-resolution methods and the importance of their appli-
cability for this problem. We saw that the the superbee limiter can introduce oscillations in the saturation
front, and that it can overestimate the propagation speed of the saturation front. Furthermore, we saw
that polymer oil banks can be present either naturally or as a numerical byproduct for different flooding
situations. These banks are especially hard to capture, and the use of accurate and valid high-resolution
methods becomes important.

The coarse-scale approximations of the polymer front has varying numerical diffusion, depending on
what flow we are considering and how the adsorption is modeled. This means that the propagation
speed of the polymer front can be over- or underestimated, depending on what flow we are considering.
Especially in two-dimensions, this can have a larger effect on the overall flow if for example the flow is
horizontal in some parts and up dip in others. Therefore, this trend needs to be further investigated for
the two-dimensional case.
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Figure 14: Four examples with ĒL and ĒR at time t = 0.5 given in dark grey and light grey, respectively,
for flux functions with shapes D (left) and E (right) and initial conditions (19b) (top) and (19c) (bottom).
In each example, ĒL and ĒR are shown for five different adsorption situations, (1) corresponds to no
adsorption, (2) is Case 3, (3) is Case 2, (4) is Case 4, and (5) is Case 5.
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