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Abstract

A novel multiscale method for multiphase flow in heterogeneous fractured porous
media is devised. The discrete fine-scale system is described using an embedded
fracture modeling approach, in which the heterogeneous rock (matrix) and highly-
conductive fractures are represented on independent grids. Given this fine-scale dis-
crete system, the method first partitions the fine-scale volumetric grid representing
the matrix and the lower-dimensional grids representing fractures into indepen-
dent coarse grids. Then, basis functions for matrix and fractures are constructed
by restricted smoothing, which gives a flexible and robust treatment of complex
geometrical features and heterogeneous coefficients. From the basis functions one
constructs a prolongation operator that maps between the coarse- and fine-scale
systems. The resulting method allows for general coupling of matrix and fracture
basis functions, giving efficient treatment of a large variety of fracture conductivi-
ties, and basis functions can be adaptively updated using efficient global smoothing
strategies to account for multiphase flow effects. The method is conservative and
because it is described and implemented in algebraic form, it is straightforward to
employ it to both rectilinear and unstructured grids. Through a series of challenging
test cases for single and multiphase flow, in which synthetic and realistic fracture
maps are combined with heterogeneous petrophysical matrix properties, we validate
the method and conclude that it is an efficient and accurate approach for simulating
flow in complex, large-scale, fractured media.
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1 Introduction

Accurate simulation of multiphase flow in natural porous media represented
on high-resolution numerical grids is computationally demanding. Fine-scale
petrophysical properties like permeability are often highly heterogeneous, change
over several orders of magnitudes, and, in general, do not entail scale separa-
tion [1]. This computational challenge has motivated the development of sev-
eral multiscale methods, which solve accurate coarse-scale systems constructed
by the use of locally-computed basis functions [2–13]. Once the coarse-scale
system is solved, its solution is interpolated into the original fine-scale res-
olution using the sub-resolution of the basis functions. Among the proposed
multiscale methods, multiscale finite-volume (MSFV) methods not only pro-
vide mass-conservative solutions at fine-scale, which is a crucial property for
convergent solution of transport equations, but also enable relatively simple
inclusion of the type of multiphase flow equations seen in contemporary reser-
voir models [3,14–19].

Multiscale methods compute approximate solution having the original fine-
scale resolution so that their error (or residual) can be calculated with respect
to the fine-scale discrete system. As such, one can achieve systematic strategies
for reducing the error through iterative procedures that combine the multi-
scale solver with a fine-scale smoother [20–23]. Iterative multiscale methods
are scalable and deliver mass-conservative solutions after any MSFV stage.
The latter property makes them unique compared with alternative advanced
solvers, such as multigrid methods [24]. Recent developments of the MSFV
method include extensions to compressible and compositional nonlinear dis-
placements [25,26], unstructured grids [11,27] and fully-implicit simulations
[28]. While these important developments, combined, cast a promising frame-
work for next-generation simulators, they have been focused mainly on ad-
dressing challenges due to complex fluid physics, highly heterogeneous rock
properties, and complex computational mesh geometries.

Many geological formations—including hydrocarbon reservoirs, underground
water resources, and geothermal energy production fields—are naturally frac-
tured. Fractures are highly conductive channels which, for most practical pur-
poses, exist in a lower-dimensional space compared to the porous matrix.
Physical properties inside fractures and their length scales can be very dif-
ferent from those of the surrounding rock, adding significantly to the compu-
tational challenges, specially once realistic length scales and complex fracture
network maps are considered. As a result, a variety of modeling approaches

∗ Corresponding author.
Email addresses: S.Y.Shah@tudelft.nl (Swej Shah), Olav.Moyner@sintef.no

(Olav Møyner), M.Tene@tudelft.nl (Matei Tene), Knut-Andreas.Lie@sintef.no
(Knut-Andreas Lie), H.Hajibeygi@tudelft.nl (Hadi Hajibeygi).

2



and numerical methods for different types of fractured reservoirs have been
proposed [29–42,40,43,44]. Among them, the embedded fracture modeling ap-
proach [35,36,45,46,34,47] benefits from independent grids for fracture and
matrix, a promising approach for naturally fractured reservoirs and also for
cases with dynamic fracture creations and closure of, e.g., geothermal systems.
Note that small-scale fractures (smaller than fine-scale grid cells) are homog-
enized within the matrix porous rock, forming effective matrix conductivities
[34]. This approach, similar to other discrete-fracture-modeling (DFM) ap-
proaches, lead to detailed fine-scale discrete systems (for matrix and fracture
unknowns) with high contrasts within the entries, which are clearly much more
challenging to be solved efficiently than non-fractured heterogeneous cases.
Therefore, it is highly important to develop efficient multiscale methods for
fractured formations.

Early attempts at developing multiscale methods for fractured media were
based on a mixed finite-element formulation in which high-conductive fractures
were either represented explicitly as volumetric objects [37] or the fracture-
matrix interaction was modelled by the Stokes–Brinkmann equations [38,48].
Within the MSFV framework, Hajibeygi et al. [47] developed the first mul-
tiscale method for fractured porous media, in which additional fracture basis
functions were introduced to map each fracture network into one coarse-scale
degree-of-freedom (DOF). Later, Sandve et al. [49] used the MSFV method
to develop effective coarse-scale MINC-type model for fracture networks. Very
recently, Tene et al. [50,51] developed a general formulation for fractured me-
dia by proposing an algebraic multiscale solver for fractured media (F-AMS).
In the F-AMS, fracture basis functions were introduced on the basis of a
coarsening ratio inside fracture domain, similar as in the matrix rock. Results
of F-AMS when only a few fracture DOFs were used illustrated that such a
multiscale map for fractured domains is quite efficient. Similar to all MSFV
and AMS methods, F-AMS relies on coarse and dual-coarse grids imposed
on the provided fine-scale grid cells. While the former is used to construct
mass-conservative, coarse-scale systems, the latter is employed to compute lo-
cal basis functions. However, geological complexities and the use of complex
grid geometries make the construction of these two coarse grids quite challeng-
ing. Recently, the multiscale restriction smoothed basis (MsRSB) method was
devised to overcome this complexity [52]. The MsRSB is unique in the way
the basis functions are computed, yet leads to a stable and robust treatment
of complex heterogeneous coefficients [53], as well as realistic flow physics for
improved and enhanced oil recovery [54,55]. It is therefore favorable to use this
method as a basis when seeking to extend multiscale simulation approaches
for more complex fractured media.

In this work, a multiscale restricted smoothed basis method for fractured me-
dia (F-MsRSB) is developed. Following F-AMS [50,51], F-MsRSB constructs
basis functions for fractures and matrix in a general way, allowing for differ-
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ent level of coupling between them. In addition to F-AMS, though, F-MsRSB
constructs its multiscale formulation on the basis of the MsRSB approach.
This would facilitate its extensions towards complex geometries while main-
taining its efficiency for highly heterogeneous challenging scenarios such as the
SPE10 comparative test case [56]. Unlike previous works, the performance of
F-MsRSB is investigated for realistic fracture models with complex fracture
networks. Transmissibility-weighted connectivity graphs of independent frac-
tures are decomposed using the METIS software [57], leading to an automatic
coarsening strategy for fractures. Following the traditional algebraic multi-
scale formulations, F-MsRSB can easily be adapted to account for complex
physics such as compressibility [23] and gravity [58] as discussed in [54] for the
MsRSB method. To facilitate implementation, specially for complex fracture
networks, here, fracture cells are introduced into the discrete systems through
non-neighboring connections (NNC).

Through several two- and three-dimensional cases with highly heterogeneous
coefficients, F-MsRSB is found to efficiently compute approximate solutions
of good quality. Furthermore, in order to allow for error control and reduction
strategies, especially for multiphase flow scenarios, the method is combined
with a fine-scale smoother, ILU(0) [59,22,23]. While low-frequency errors are
resolved by the coarse-scale system in F-MsRSB, the fine-scale smoother re-
solves high-frequency errors, the combination of which leads to an efficient
iterative multiscale solver for fractured media. These iterations are applied
adaptively and infrequently just to maintain user-prescribed accuracy. Several
multiphase flow cases are considered in which the adaptive iterative F-MsRSB
is employed to efficiently compute high-quality solutions for the flow equations.
All of these systematic single- and multiphase flow cases reveal that F-MsRSB
is an efficient and versatile multiscale method for naturally fractured reservoirs
with highly heterogeneous coefficients.

The paper is structured as follows. The fine-scale discrete system for flow in
fractured porous media is described in Section 2. Then, in Section 3.1 and
Section 3 AMS and MsRSB are revisited, respectively. The development of F-
MsRSB is presented in Section 4. Numerical results for single- and multiphase
flow for both 2D and 3D heterogeneous reservoirs are presented in Section 5.
Finally, the paper is concluded in Section 6.

2 Governing equations and fine-scale system

Mass conservation for nph incompressible phases flowing in a porous medium
reads

∂

∂t
(φSα)−∇ · (λα · ∇p) = qα ∀ α ∈ {1, . . . , nph}, (1)
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where Darcy’s law is employed to replace phase velocity uα with pressure gra-
dient ∇p. Here, gravitational and capillary effects are both neglected. More-
over, Sα and λα are phase saturation and mobility, respectively. Note that
λα = kkrα/µα holds, where the positive-definite permeability tensor k is typ-
ically highly heterogeneous at multiple scales. Also, relative permeability, krα
and phase viscosity, µα, are given functions of primary unknowns p and S.
These balance equations, along with the constraint that all phases fill the
pore volume, i.e.,

nph∑
α=1

Sα = 1, (2)

form a well-posed system of equations for (nph + 1) unknowns. Sequential
approaches derive a pressure equation, which is solved first, then phase veloc-
ities are obtained to subsequently solve nph − 1 transport equations (1). The
nph-th saturation is obtained using the constraint (2). To obtain the pressure
equation, i.e.,

−∇ · (λt · ∇p) = qt, (3)

the mass-balance equations (1) are summed up and the time-dependent term
(accumulation) cancels out owing to the constraint (2). Total mobility, λt and
total source terms qt are obtained by summing their phase-wise counterparts.

For fractured porous media, following the hierarchical fracture model ap-
proach, small-scale fractures are homogenized and represented by an effective
matrix permeability km ∈ Rn, whereas fractures with larger length scales are
explicitly represented with an embedded fracture modeling approach (EFM).
Important is that the fracture elements can cross over matrix cells, or be
confined at their interfaces. In the latter case, EFM reduces to alternative dis-
crete fracture modeling approaches. Note that fractures are lower-dimensional
manifolds owing to their small apertures, so that kf ∈ Rn−1. In this case, the
pressure equation can be expressed as

−∇ · (λt · ∇p)m + ψmf = qmt on Ωm ⊂ Rn, (4)

−∇ · (λt · ∇p)f + ψfm = qft on Ωf ⊂ Rn−1, (5)

where superscripts m and f represent matrix and fracture quantities, respec-
tively. Mass exchange between fracture and matrix cells, ψmf and ψfm, is
modeled as

ψfm = CI λ
∗
t (p

f − pm) = −ψmf , (6)

where CI is the fracture-matrix conductivity index [47,36]. Interaction of a
matrix element i and a fracture element j is defined as

CI = Ai−j/〈d〉i−j, (7)

where Ai−j is the fracture plate area and 〈d〉i−j is the average normal distance
between i and j. More information about embedded fracture models and the
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calculation of their parameters can be found in [47]. An advantage of EFM is
that the fracture and matrix grids are independent and, thus, suited for many
realistic scenarios such as naturally fractured reservoirs and dynamic fracture
generation and closures.

Finite-volume discretization of (4) and (5) leads to a fine-scale system of
equations, Ap = q, for matrix and fracture pressure unknowns, i.e.,

Amm Amf Amw

Afm Aff Afw

Awm Awf Aww




pm

pf

pw

 =


qm

qf

qw

 , (8)

where w super-index denotes external well (source) terms [1]. Obviously, Afw
and Awf will be zero if no well is drilled into fracture domain.

The formulation of this paper is developed into the open-source Matlab simu-
lator MRST [60,61], in which fractures are introduced using non-neighboring
connections (NNC) [42,62,41] and a sequentially-implicit strategy is used to
simulate multiphase flow [53,54].

3 Multiscale Restriction Smoothed Basis Method (MsRSB)

Large-scale heterogeneous formations with complex fracture network maps,
along with high contrasts between fracture and matrix properties make (8)
quite challenging to solve using any classical numerical method. To resolve
this computational challenge, a multiscale restriction smoothed basis method
for fractured media (F-MsRSB) is developed. The F-MsRSB benefits from the
previously developed multiscale methods for fractured media [47,50] and the
MsRSB formulation for unfractured systems [52–54]. To describe the method,
we start by discussing a general algebraic multiscale formulation [22,23] before
we continue to describe the specific prolongation and restriction operators of
the MsRSB method. This section will cast the foundation of the next section
in which the novel development of this paper, i.e., F-MsRSB, is presented.

3.1 Algebraic multiscale formulation

To avoid solving (8) directly on the fine scale, multiscale methods introduce
a prolongation operator P that maps between the degrees-of-freedom on the
underlying fine-scale grid, that describes the (fractured) porous medium and
its petrophysical parameters, and degrees-of-freedom associated with a coarse
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grid partition on which we will solve the global flow problem. In other words,
if pc and p′ denote approximations on the coarse and fine grids, we have

p′ = Ppc. (9)

Note that here p′ contains multiscale pressure approximations for both fracture
and matrix at fine-grid resolution, i.e., p′ = [p′m p′f ]

T , while pc contains coarse
pressures for both matrix and fracture, i.e., pc = [pc,m pc,f ]T . These two vectors
contain nf = nmf + nff and nc = ncm + ncf entries, where nf and nc are the
number of fine cells and coarse blocks, respectively, including both matrix and
fractures. To determine pc, we introduce a restriction operator R that maps
the fine-scale system (8) into a coarse-scale system

(RAP)︸ ︷︷ ︸
Ac

pc = Rq︸︷︷︸
qc

, (10)

that has much smaller size (i.e., nc × nc) than the original fine-scale system
(i.e., nf×nf ), see [15]. Combining (10) and (9), the algebraic multiscale (AMS)
procedure can be summarized as

p ≈ p′ = P(RAP)−1R︸ ︷︷ ︸
M−1

ms

q. (11)

In the same way, MsRSB imposes a coarse grid on top of the provided fine-
scale grid. Inside each coarse grid block (coarse control volumes), a fine-scale
grid cell is also selected as coarse node. Coarse blocks Ωc

K∀K ∈ {1, . . . , nc}
define a non-overlapping partition of the domain, where nc is the total number
of coarse blocks in the system including ncm matrix and ncf fracture blocks.

For the restriction operator, there are two different choices, either to use R =
PT , which will lead to a Galerkin-type formulation, or to use a finite-volume
restriction procedure [3], which can be stated as discrete integration operator
over coarse control volumes Ωc

K , i.e.,

Ri,K =

 1, if xi ⊂ Ωc
K ,

0, otherwise.
(12)

Here xi represents the i-th control volume at fine-scale. As shown in [52,53], the
MsRSB method is not very sensitive to the choice of restriction and herein we
use the finite-volume operator to ensure that we can reconstruct conservative
fine-scale velocities.

The prolongation operator is constructed by solving localized flow problems,
and the way these flow problems are set up varies from one method to another.
However, in all multiscale methods, the prolongation operator P is defined so
that it stores basis function ΦK associated with coarse block Ωc

K in its K-th
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column, i.e.,

Pi,K = ΦK(xi) ∀ i ∈ {1, . . . , nf}, ∀K ∈ {1, . . . , nc}. (13)

Here, ΦK(xi) is the value of basis function ΦK in the i-th fine-grid cell, xi.
Both the original MSFV method [3] and its state-of-the-art extension (AMS)
[22,23] rely on a secondary coarse partition, defined as the dual to the primal
coarse grid, over which the basis functions ΦK are locally computed. While it
is possible to extend conservative multiscale methods based on a dual-grid for-
mulation to stratigraphic and other types of unstructured grids [27,18,49,63],
it has proved to be difficult, when possible, to develop satisfactory dual-primal
partitions for grids with complex geometry. Moreover, localization errors in-
duced by strong permeability contrasts across block boundaries introduce in-
stabilities in the corresponding multipoint coarse-scale stencil. This motivated
the development of a multiscale two-point flux-approximation formulation [11],
in which an implicitly defined dual grid is used to compose elementary flow
solutions into localized basis functions. In the MsRSB method, however, lo-
cal supports for basis functions are defined based on support regions, which
are relatively simple to define even for very complex grids. Once these sup-
port regions are obtained, restriction-smoothed basis functions are computed
by employing a modified form of the damped-Jacobi smoothing approach,
similar as in smoothed-aggregation-based multigrid methods [64–66]. In the
following sections, the MsRSB support regions and basis functions are briefly
explained. Detailed explanations can be found in [52,53].

3.2 Coarse grid and support regions

Basis function ΦK can have nonzero values only in the support region IK . For
the specific case of MSFV, e.g., IK reduces to dual-coarse grid blocks. Thus,
by construction, the basis function ΦK and consequently the K-th column of
P are set to zero outside IK .

The support region of a coarse block Ωc
K (see Fig. 1) is constructed by creating

a local triangulation, using cell and shared-face centroids of all immediate ge-
ometrical neighbors of Ωc

K [52]. This ensures that for a Cartesian grid without
fractures, the coarse system has the same multipoint flux stencil as in the orig-
inal MSFV method. Support regions for fractured coarse blocks are, because
of their (potentially severe) geometrical complexities, computed by a different
procedure, which will be described in the next section (see Algorithm 1).

The support boundary BK is defined as the set of all fine cells that are topo-
logical neighbors of the outermost cells in the support region IK . Note that
IK ∩ BK = ∅. This leads to the definition of a global boundary G which is a
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union of all BK for all K ∈ {1, . . . , nc}, i.e.,

G = B1 ∪B2 ∪ · · · ∪Bnc . (14)

Fig. 1 illustrates I, B and G for a 2D rectangular Cartesian and an unstruc-
tured hexagonal grid. For a Cartesian grid geometry, G becomes equivalent
to the set of all dual-coarse boundary cells, i.e., similar to the classical MSFV
method. Finally, indices of all support regions overlapping with each fine cell
xi stored inside G are stored in the set Hi, i.e.,

Hi = {K|xi ∈ IK ,xi ∈ G}. (15)

Hi can be visualised using the last row of images in Fig. 1. Note that they
follow the same indexing as depicted in Fig. 1a. A randomly picked fine cell
belonging to the global boundary G, indexed as i, and denoted by the control
volume xi is depicted in blue in Fig. 1g. The next two images (Fig. 1h and
Fig. 1i) show the support regions that encompass this control volume. Hence,
the set Hi for this particular cell can be written as Hi = {6, 9}. This can be
repeated for each fine cell stored inside G to generate the complete set H.

3.3 MsRSB prolongation operator

As mentioned earlier, basis function are calculated iteratively, having nonzero
values only inside their support regions. The basis functions are initialized by
setting each to be equal to a constant value of one inside the corresponding
coarse block, i.e.,

P0
i,K =

 1, if xi ∈ Ωc
K ,

0, otherwise.
(16)

Then, we compute the iterative increments

d̂K = −ωD−1APηK (17)

where A is the fine-scale system, D = diag(A) is the diagonal entries of A,
and ω is a relaxation (or damping) parameter, which is set to 2/3 for all
simulations reported in this paper.

To ensure that basis functions have local support, the increments d̂K must be
restricted to have nonzero values only inside IK . This is done by setting PηK
outside the support region to zero and normalizing all other basis functions
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(a) Coarse cell indexing (b) I5 and B5 (c) Global boundary G
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8
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13

1415

16

(d) Coarse cell indexing (e) I15 and B15 (f) Global boundary G

i

(g) A fine cell xi ∈ G (h) xi ∈ I6 (i) xi ∈ I9

Fig. 1. The top row shows a rectangular grid with a uniform coarse partition, while
the second row presents a hexagonal grid with an unstructured coarse partition. The
left images (a and d) show the indexing scheme for the coarse blocks. In the middle
images (b and e), cells inside the support regions for a coarse node are highlighted
in turquoise, whereas yellow color signifies the support boundary. The right images
(c and f) show the global boundary cells G highlighted in yellow. The last row uses
the same grid as in the first row to depict the set Hi for a particular cell xi ∈ G
marked in blue (g). The next two images (h and i) show the support regions that
make up the set Hi and contain that particular cell.

whose support region includes the boundary cells BK , i.e.,

diK =


d̂iK − PηiK

∑
J∈Hi

d̂iJ

1 +
∑
J∈Hi

d̂iJ
, if xi ∈ IK ∩G,

d̂iK , if xi ∈ IK \G,
0, if xi /∈ IK .

(18)

This modified increment is now used to update the prolongation operator, i.e.,

Pη+1
K = PηK + dK . (19)

To measure convergence of the basis functions, a local error eK is defined
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Fig. 2. Restriction smoothed basis function computed iteratively over a 100 m
long 1D homogeneous domain with 20 m coarse blocks. The vertical axis gives the
basis-function value for the 3rd coarse block. Tolerance for convergence = 10−3.

outside G,
eK = max

i
(|d̂iK |), xi /∈ G, (20)

and basis functions are assumed to be converged if, ||e||∞ ≤ tolerance after
any increment. If not, we set PηK = Pη+1

K and repeat the steps (17) – (19).

Note that the basis functions can be constructed using parallel processing.
By virtue of the fine-scale discretization scheme used to construct the system
matrix A, every successive increment computed using (17) will only spread the
corresponding basis functions further by a topological distance of 1. Hence,
once the basis function PK covers its support region IK , the next increment
will spread into its support boundary BK . Using the third expression in (18),
these nonzero values outside the support region would be set to zero. This
could lead to the prolongation operator not having a partition of unity. To
reimpose partition of unity in the prolongation matrix, the discarded values
are redistributed within other basis functions with support in these fine cells.
Indices of such support regions are stored in the set H. In essence, the first
and the last expression in (18) explicitly impose a partition of unity in all cells
belonging to the global boundary G.

Fig. 2 shows how this iterative procedure gradually converges to the standard
FEM hat function for a homogeneous 1D medium, while Fig. 3 shows basis
functions for three different 2D permeability fields.
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(d) (e) (f)

Fig. 3. Illustration of the restriction smoothed basis functions (d-f) for three dif-
ferent permeability fields: homogeneous (a), heterogeneous patchy-field (b), and
heterogeneous channelized field (c).

4 MsRSB for Fractured Media (F-MsRSB)

The F-MsRSB method is devised on the basis of introducing basis functions
for both matrix and fracture domains, similar to F-AMS [50], i.e., p ≈ p′ =
[p′m p′f ]

T , where

p′m =
ncm∑
j=1

Φm,m
j pc,mj +

ncf∑
j=1

Φf,m
j pc,fj , (21)

p′f =
ncm∑
j=1

Φm,f
j pc,mj +

ncf∑
j=1

Φf,f
j pc,fj . (22)

Here, p′m and p′f are approximate matrix and fracture pressures, respectively,
computed by MsRSB at the fine scale. In addition, coarse-scale solutions in
matrix and fracture are denoted as pc,m and pc,f , respectively. There exist
ncm coarse matrix blocks and ncf coarse fracture blocks in total. It is impor-
tant to realise that there may be several disconnected fracture networks in a
reservoir model. Each independent fracture network can contain one or more
fracture coarse cells, so that ncf comprises all fracture coarse blocks across

12



all fracture networks. Moreover, Φm,m and Φm,f are basis functions for matrix
coarse blocks with superscripts m,m and m, f denoting values in the ma-
trix and fracture domains, respectively. Both Φf,f and Φf,m are fracture basis
functions with superscript f, f representing the values inside the correspond-
ing fracture network and superscript f,m denoting contributions inside the
matrix domain. Hence, the prolongation operator can be written as

P =



...
...

...
...

Φm,m
1 · · · Φm,m

ncm
Φf,m

1 · · · Φf,m
ncf

...
...

...
...

...
...

...
...

Φm,f
1 · · · Φm,f

ncm
Φf,f

1 · · · Φf,f
ncf

...
...

...
...


nf×nc

, (23)

where nf = (nmf + nff ) and nc = (ncm + ncf ) are total degrees-of-freedom
(matrix and fractures) at fine and coarse scales, respectively.

Generally, fractures are much more conductive than the matrix rock. Full
consideration of both fracture and matrix coarse solutions, pc,m and pc,f , for
interpolated fracture pressure, p′f , can lead to improved convergence proper-
ties. However, such an approach results in much denser prolongation operators.
Therefore, the improvement in convergence rate may not necessarily offset the
additional computational cost. Numerical studies of F-AMS for 3D problems
(considering CPU time), support the idea of eliminating the effect of matrix
coarse pressure in the fracture pressure interpolation, i.e., setting Φm,f = 0.
In this paper, the same sparse operator is considered.

Next, the support region and the procedure for calculating basis functions for
fractured media are explained.

4.1 Support regions and basis functions

The support region for each fracture block is generated based on a topological
distance. More precisely, the support region for a fracture block includes all
fine cells located inside the sphere (circle in 2D) with radius d in index space.
Note that d is an integer input to the simulator but there is no algorithmic
restriction on using expressions to automatically compute d. Optimization of
the choice of fracture support regions would require a more detailed study,
considering both accuracy and efficiency, and also taking into account the
effective coarsening ratio used to compute the multiscale solution. Such a
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Algorithm 1 Generating fracture support regions

Initialize: A = Adjacency matrix for the fine-scale system, d ∈ Z and
m = 1

1: for J ∈ {1, ..., ncf} do
2: Ii,J = 1 if xi ∈ Ωc

J , Ii,J = 0 otherwise
3: while m < d do
4: IJ = A× IJ
5: m = m+ 1
6: end while
7: end for

study is beyond the scope of this paper and subject of a future study. It is
clear that the support region will include no fine-cell except those overlapping
with the fractures, if d = 0 is considered. For the numerical examples studies
in this paper the value of d = 7 is used. This is of the same order as the
matrix coarsening ratio used in our examples (i.e. 10 in each direction). An
overview of the procedure to generate the fracture support region is presented
in Algorithm 1.

Fig. 4 illustrates coarse grids and support regions inside which basis func-
tions are compactly supported for a test case with 30 × 30 matrix and 20
fracture cells. Furthermore, Fig. 5 shows basis functions inside the matrix
rock (belonging to both fracture and matrix coarse nodes).

(a) (b) (c)

Fig. 4. Illustration of multiscale grids for matrix and fracture (a) with support
regions for matrix (b) and fracture (c) for a case with 30 × 30 matrix and 20
fracture fine-scale cells. Multiscale coarse grid contains 3 × 3 matrix blocks and 2
blocks inside the fracture. Here, d = 7.

5 Numerical Results

The developed F-MsRSB method is implemented and integrated with the free,
open-source Matlab Reservoir Simulation Toolbox (MRST) [61,67,68,60]. In
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Fig. 5. Matrix and fracture basis functions for the system described in Fig. 4

this section, we investigate the performance of F-MsRSB for many challenging
cases. The numerical examples involve both 2D and 3D heterogeneous media.
Next, the sensitivity of the method to coarse-grid resolution for fracture do-
main is studied. Then, its performance for heterogeneous rock formations is
studied through a realistic fracture map obtained from an outcrop and for
a statistically generated fracture map. Using an outcrop map is unique in
the literature of multiscale methods for fractured media. For the statistical
map, we use METIS [57] to generate an unstructured partition of a fine-scale
hexagonal grid representing the matrix rock. Finally, three test cases with 3D
heterogeneous matrix properties along with 2D fracture plates are considered
to provide the scientific community with a reliable assessment of the devised
F-MsRSB method.

5.1 Sensitivity to coarse DOFs in fracture

In this test case, we consider single-phase flow in a 100×100 m2 homogeneous
domain to study the effect of the coarsening ratio in the fracture domain on
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P
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P
 =

 0

Fig. 6. First test case which contains 100× 100 matrix and 200 fracture cells at the
fine scale, with homogeneous 2D rock formation. The left and right boundaries are
subject to Dirichlet values of 1 and 0, respectively.

 

(a) 1 DOF in fracture

 

(b) 5 DOF in fracture

 

(c) 10 DOF in fracture

Fig. 7. F-MsRSB coarse grids for matrix and fractures. Each coarse matrix block
consists of 10 × 10 fine cells, while the fracture blocks are varied from 1 (200 fine
cells in 1 block) to 5 (40 cells in each block) and 10 (20 cells in each block).

the accuracy of the multiscale method as well as its preconditioning properties.
The matrix permeability is set to 1 Darcy and kf/km = 104. Fluid viscosity
is 1 cP. The matrix contains 100 × 100 grid cells. As shown in Fig. 6, the
matrix contains one fracture network described using 200 cells. A coarsening
ratio of 10 × 10 is fixed for the matrix domain, while the coarsening ratio
for the fracture is varied from 1 to 50 (some cases are shown in Fig. 7).
By increasing the number of coarse degrees-of-freedom in the fracture, the
F-MsRSB pressure solution improves (Fig. 8). This finding is consistent with
that of F-AMS [50].

Fig. 8 shows pressure solutions after one multiscale cycle for different fracture
coarsening ratios. As a quantitative error measurement, the F-MsRSB pressure
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error is calculated using a scaled discrete L2 norm

εp =

√√√√√∑i∈nf
(pfsi − pmsi )2|Ωi|∑
i∈nf

(pfsi )2|Ωi|
. (24)

Errors for different grid sizes inside the fracture are also provided in Fig. 8.
In Fig. 9, we have used Pollock’s method [70] to trace streamlines for the
fine-scale reference solution and the multiscale solution computed using dif-
ferent degrees of freedom in the fracture. This provides an excellent way to
visualize the flow field and study the accuracy of the multiscale velocity pro-
file. Additionally, to quantify the accuracy of the velocity field we consider a
vertical slice in the middle of the matrix domain, as shown in Fig. 10a. The
total flow rates obtained by F-MsRSB (qms) and the fine-scale discretization
(qfs) are compared across this section. Fig. 10b reports the discrepancy

εq = 100× |q
fs − qms|
|qfs|

, (25)

at this cross section as a function of fracture coarsening ratio. Similarly to
F-AMS [50], we observe that the condition number of the F-MsRSB coarse
system improves by increasing the coarse resolution inside the fracture. This
leads to higher iterative convergence rates, as shown in Fig. 11, if F-MsRSB is
combined with ILU(0) in an iterative multiscale procedure [50]. Convergence
is determined on the basis of setting a threshold value for the scaled residual
norm, i.e., ‖rb‖2 = ‖Ap− q‖2/‖q‖2.

5.2 F-MsRSB for heterogeneous fractured media

To study F-MsRSB for heterogeneous fractured media, two fracture maps are
considered: (i) the fracture map is extracted from an outcrop of dimensions
246.3×283.1 m2; (ii) a statistical fracture model is generated over an unstruc-
tured PEBI grid. The heterogeneous rock property is assumed to represent
heterogeneity variations in the matrix rock along with homogenized small-
scale fractures.

5.2.1 Outcrop fracture map

The fracture coordinates are scaled from an outcrop photo [69] to fit a domain
size of 1000 × 1000 m2, as shown in Fig. 12a. The fine-scale grid contains
100 × 100 matrix and 2074 fracture cells (over 94 disconnected fracture net-
works), while the F-MsRSB grid contains 15 × 15 matrix and 155 fracture
blocks. Fig. 12b shows the permeability of the matrix formation. Fracture
permeability is set to 1000 Darcy.
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Fig. 8. Reference and F-MsRSB pressure for the first test case as shown in Fig. 6.
F-MsRSB solutions are presented for different fracture coarsening ratios.

We consider two-phase flow, with quadratic relative permeability curves and
unit viscosity ratio between the phases. Fluid is injected at a constant rate
in cell (1,100), while fluids are produced in the opposite corner (100,1) at
constant pressure. Fig. 13 shows the saturation maps obtained after one F-
MsRSB cycle (no iterations) compared with reference fine-scale solutions, both
obtained using a sequentially-implicit strategy. Clearly, the higher the resolu-
tion of fracture coarse grid, the more accurate the F-MsRSB results.

Saturation error is calculated as

εS =
maxi∈nf

(
|Sfsi − Smsi ||Ωi|φi

)
maxi∈nf

(
|Sfsi ||Ωi|φi

) , (26)

which, because it is scaled with pore volume, gives a very strict measure of
the error in the spatial mass distribution for incompressible fluids.
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(a) Reference streamlines (b) F-MsRSB - 1 DOF in fracture

(c) F-MsRSB - 5 DOF in fracture (d) F-MsRSB - 10 DOF in fracture

Fig. 9. Reference and F-MsRSB velocity field represented by streamlines for the
first test case as shown in Fig. 6. F-MsRSB solutions are presented for different
fracture coarsening ratios.

Clearly, multiscale solutions can be improved by increasing the number of
degrees-of-freedom per fracture network or by applying iterations (in combi-
nation with ILU(0), similar to [50,58,47,53]). Fig. 14 shows overall saturation
errors. After only a few iterations of the two stage (F-MsRSB + ILU(0)) cycle,
the multiscale fluid distribution is virtually identical to the reference solution.
Convergence to a tolerance of 0.1 takes 8 iterations for this outcrop model,
whereas a tolerance of 0.01 is reached after 20 iterations. One can also employ
a local block solver around the fractures and wells [9].
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Fig. 10. Vertical cross section through the center of the matrix domain (a). Per-
centage error in total flow rate through this vertical cross section in the matrix (b).
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Fig. 11. Convergence of F-MsRSB+ILU(0) for different DOF in fracture.

5.2.2 Statistical fracture model

A 1000× 500 m2 heterogeneous domain with permeability and porosity sam-
pled from the 10-th layer of the SPE10 dataset [56] is considered and shown
in Fig. 15. Similar as in previous test case, fracture permeability and poros-
ity are 1000 Darcy and 0.50, respectively. PEBI grids are employed for the
matrix at fine scale, which is a Voronoi map over a uniform triangulation in
the region. The fine-scale grid contains 4726 cells for matrix and 2207 cells for
fractures. There exist 55 disconnected fracture networks in the domain. Both
matrix and fracture are coarsened using METIS [57] to give 100 blocks for
each domain (fracture and matrix) as shown in Fig. 15a.

Two incompressible fluid phases with quadratic relative permeabilities are
considered. The reservoir is initially filled with oil having a viscosity of 5 cP.
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Fig. 12. Coarse grid in matrix showing well locations and fracture map extracted
from an outcrop (a). Logarithm of the corresponding permeability field in the matrix
(b).

Water with a lower viscosity of 1 cP is injected at a constant rate from a
well near the bottom-left corner, while a the producing well near the top right
corner of the domain is kept at constant pressure. Fig. 16 shows the saturation
maps after one multiscale cycle (F-MsRSB + ILU(0)) for injection amounts
of 0.2, 1.0, and 1.8 pore volumes (PVI). The initial multiscale solution is
already quite accurate, and after one smoothing-iteration step, the multiscale
and reference solutions are virtually identical. Fig. 17 compares bottom-hole
pressure in the injector oil rate in the producer as computed by the fine-scale
reference solver and F-MsRSB with different iterative tolerances.

5.3 3D models

In this section, we study the performance of F-MsRSB for three examples
in which the matrix domain is described in 3D and fractures are planar 2D
surfaces.

5.3.1 Two intersecting fracture planes

The fine-scale grid for the first 3D example consists of 50 × 50 × 50 matrix
cells and two fracture planes, each with 100× 30 fracture grid cells. The frac-
ture planes cross in the middle of the domain, as shown in Fig. 18a. Fluid is
injected at a constant rate at the bottom-left corner, while production takes
place from the top-right corner. Matrix permeability is shown in Fig. 18b.
The F-MsRSB grid contains 20×20×20 matrix blocks, whereas each fracture
plan is partitioned into 12× 4 fracture blocks. Fracture permeability is set to
104 Darcy. The matrix coarsening ratio is chosen such that the effect of fracture
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(a) Fine scale: 0.25 PVI (b) Fine scale: 0.50 PVI (c) Fine scale: 0.75 PVI

(d) F-MsRSB: 0.25 PVI (e) F-MsRSB: 0.50 PVI (f) F-MsRSB: 0.75 PVI

(g) |SF−MsRSB − Sfs| (h) |SF−MsRSB − Sfs| (i) |SF−MsRSB − Sfs|

Fig. 13. Reference saturation profile compared with saturation maps obtained after
one F-MsRSB cycle at different PV injected. Absolute errors in saturation are also
shown in (g)-(i).

coarsening ratios will be more pronounced in the F-MsRSB results. Fig. 19
shows the pressure solution obtained after one F-MsRSB step. In addition,
Fig. 20 presents the convergence behavior for different coarse resolutions for
the fracture planes. We observe that a modest increase in the fracture resolu-
tion, from having a single DOF for each plane, leads to significantly improved
convergence rates.
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Fig. 14. Saturation error for the outcrop model as a function of simulation time
measured in pore-volume-injection. Shown are the non-iterative and the iterative
F-MsRSB method with tolerances of 0.1 and 0.01 on the pressure solves.

(a) Coarse grid with well locations
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.perm

(b) log10(k
m) [m2]

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
.poro

(c) φ

Fig. 15. Matrix coarse grid with 100 DOF, fracture map, and well locations (a).
Petrophysical rock properties sampled from the 10th layer of the Tarbert formation
in the SPE10 dataset (b and c).

5.3.2 Depositional bed

As another 3D example, we consider a corner-point grid modeling a core-scale
depositional bed. A similar model has been used in the literature [8] as an
example of a model with a large number of thin, low-permeable shale layers
pinched between layers of good sands. Pinch-outs, owing mainly to erosion, are
a common reason behind unstructured cell connections in stratigraphic corner-
point grids. They lead to degenerate cells with faces of zero area resulting in a

23



(a) Fine scale: 0.2 PVI (b) F-MsRSB: 0.2 PVI

(c) Fine scale: 1.0 PVI (d) F-MsRSB: 1.0 PVI

(e) Fine scale: 1.8 PVI (f) F-MsRSB: 1.8 PVI

Fig. 16. Saturation maps at different times computed by the fine-scale reference
solver and F-MsRSB with one iteration cycle (F-MsRSB + ILU(0)) .
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Fig. 17. Production and injection quantities at well locations for the statistical 2D
fracture map.

complex grid geometry. With the addition of heterogeneity, it becomes quite a
challenging test case for multiscale finite-volume methods [11,18]. We make the
model even more complicated by adding inclined fracture planes in the interior
of the model. To improve the efficiency of the F-MsRSB preprocessing steps
for this challenging grid geometry, we first calculate the CI factors globally
for each fracture plane and then for each fracture-matrix overlapping discrete

24



(a) Fracture planes and wells. (b) log10(k
m) [m2] and coarse partition.

Fig. 18. Illustration of the first 3D test case, with a fine-scale grid that contains
50 × 50 × 50 matrix cells and two intersecting fracture planes that each contain
100×30 fracture cells. Also shown on the right is heterogeneous matrix permeability
map, along with the imposed 20× 20× 20 coarse grid used by F-MsRSB.

(a) Reference solution (b) Multiscale solution

Fig. 19. Reference and multiscale pressure solution after one F-MsRSB cycle for
single-phase flow in the simple 3D model. Each fracture plane is logically partitioned
into 12× 4 blocks.

grid cell.

The fine-scale grid contains 30× 30× 100 matrix with 222 hexagonal fracture
cells per fracture plane. As shown in Fig. 21a, there exist 6 fracture planes,
and the domain is subject to Dirichlet boundary conditions on the left and
right faces, while all other faces are subject to no-flow condition. As shown in
Fig. 21, F-MsRSB employs 10× 10× 9 blocks for the matrix rock, and only
2 blocks for each fracture plane. In addition, fracture aperture is 0.04m. The
matrix permeability distribution is shown in Fig. 21b, and we set kf = 104
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Fig. 20. Convergence property of the F-MsRSB + ILU (0) solver for various coarse
resolutions of the two intersecting fracture planes, which each have 100 × 30 cells
at the fine scale.

D, resulting in large contrasts in the permeability values throughout the entire
model.

Fig. 22 shows pressure solutions obtained after one F-MsRSB step. It is clear
that F-MsRSB and the fine-scale reference solutions are in good agreement,
even with such a large coarsening ratio for the fractures. The absolute dif-
ference between the two solutions is depicted in Fig. 22c, with the pressure
error (εp) being 8.79× 10−4.

5.3.3 Model 2 of SPE10 with fracture networks

As the final test case in this section, we extract a 30 × 110 × 40 subsample
from the full 3D model of the challenging SPE10 data set [56]. As shown in
Fig. 23, complex fracture planes (located between Layers 11 through 30) are
obtained by extruding statistical maps, similar to the ones used for one of the
2D test cases. The model contains 31 disconnected fracture networks, which
are discretized using 13, 880 fine-scale grid cells.

Fig. 24 shows the matrix rock properties (permeability and porosity). All
fractures have permeability value of 1000 Darcy.The coarse partitions used by
F-MsRSB contain 6 × 22 × 8 matrix and 181 fracture blocks in total. Each
fracture block contains 80 fine-scale fracture cells. A waterflood experiment
has been considered for the duration of 5 PVI, using quadratic relative perme-
ability values. Water with viscosity 1 cP is injected into the reservoir, which is
initially filled with 100% oil. Oil viscosity is 10 cP. As shown in Fig. 23a, five
wells are placed in a five-spot pattern with a fixed rate injector in the middle
and four fixed-pressure producers at the corners.
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(a) Model outline, fractures, and boundary conditions

(b) log10(k
m) [m2] (c) φ

Fig. 21. Matrix grid with fracture planes and boundary conditions (a). Logarithm
of permeability map (b) and matrix porosity (c)

(a) Reference (b) F-MsRSB (c) |pms − pfs|

Fig. 22. Reference and multiscale pressure solution for single-phase flow in the bed
model with two degrees-of-freedom per fracture plane.

Well responses computed by F-MsRSB are presented in Fig. 25 and com-
pared with a fine-scale reference solution. As shown, one iteration of (F-
MsRSB+ILU(0)) leads to significantly improved solutions. The initial mul-
tiscale solution residual is approximately 0.1, which reduces to approximately
0.01 after only one smoothing iteration. Convergence to a tolerance of 10−3

and subsequently to 10−4 takes approximately 5 and 15 iterations on average,
respectively, per time step.
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(a) 3D Test Case 3 (b) Scaled top view.

Fig. 23. Five-spot well locations in a subsample of the 3D SPE10 model with 31
disconnected fracture networks added. Shown on the right is the top view of the
model.

(a) log10(k
m) [m2] (b) φ

Fig. 24. Petrophysical properties for the 30 × 110 × 40 domain sampled from the
full SPE10 dataset

6 Conclusion

In this paper, a novel multiscale framework for fractured porous media (F-
MsRSB) was introduced. The method benefited from the most recent devel-
opments within the multiscale community, namely F-AMS and MsRSB, and
yet, devised a novel approach for robust and efficient treatments of fractured
media. Efficiency and accuracy of the devised multiscale method was ana-
lyzed for many challenging test cases, including a realistic fracture map from
an outcrop. These extensive studies are quite unique in the multiscale com-
munity. F-MsRSB is formulated and implemented in an algebraic form using
the open-source MATLAB Reservoir Simulation Toolbox (MRST). The codes
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Fig. 25. Well responses for all wells of the 3D SPE10 test case.. F-MsRSB solutions
are shown for different tolerances of pressure solution, compared with a fine-scale
reference solution.
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necessary to run the type of experiments reported herein are thus open to the
scientific community; another important contribution of this work.

Through a set of single- and multiphase test cases it was found that MsRSB
can accurately simulate models of fractured porous media with highly hetero-
geneous coefficients and produce approximate solutions with a prescribed fine-
scale residual accuracy. The numerical test cases also included complex wells.
By using an adaptive iterative strategy, one can trade accuracy for compu-
tational efficiency, and still produce mass-conservative, approximate solutions
on the fine scale.

The basis functions used in this method can be adaptively updated using
efficient global smoothing strategies to account for compressibility and gravity
among other physical effects. Ongoing research includes consideration of more
challenging fluid and rock physics, along with integration of F-MsRSB into an
in-house C++ simulator for comparisons of CPU efficiency.
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