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Abstract 
We present a reservoir simulation scheme that gives accurate resolution of both large-scale and fine-scale flow 
patterns. The method uses a mixed multiscale finite-element method (MMsFEM) to solve the pressure equation on a 
coarse grid and a streamline-based technique to solve the fluid transport on a fine-scale subgrid. Through this 
combination, we aim towards a numerical scheme that facilitates reservoir simulation of large heterogeneous 
geomodels without upscaling. We validate the method by applying it to a 3D upscaling benchmark case taken from 
the 10th SPE Comparative Solution Project. The numerical results demonstrate that the combination of multiscale 
methods and streamlines is a robust and viable alternative to traditional upscaling-based reservoir simulation.  

1. Introduction 

The size of geomodels used for reservoir description typically exceeds by several orders of 
magnitude the capabilities of conventional reservoir simulators. These simulators therefore 
employ upscaling techniques that construct coarsened reservoir models with a reduced set of 
geophysical parameters. This way the size of the simulation model is reduced so that simulations 
can run within an acceptable time frame. Here we propose an alternative strategy, where the key 
idea is to use a mixed multiscale finite-element method (MMsFEM) [1] to discretize pressure 
and velocities and streamlines to discretize fluid transport. The main objective of the paper is to 
present a new numerical methodology that facilitates reservoir simulation of high-resolution 
geomodels. 

The model for immiscible and incompressible two-phase flow can be derived from the phase 
continuity equations  

 

  (1) 
and Darcy’s law that relates the phase velocities  to the gradient of the phase pressures   
 

  (2) 
Here  denotes porosity;  is the saturation of phase ;  is a source term representing wells;  is 
the rock permeability tensor, assumed to be symmetric and uniformly positive definite;  
models the reduced permeability experienced by one phase due to the presence of the other;  is 
the phase viscosity;  is the phase density; and  is the gravity acceleration vector. Throughout, 
we assume that the phases are oil (o) and water (w) and that the two phases together fill the void 
space completely so that . 

Now define the phase mobility , the total mobility , and the fractional 
flow . Furthermore, denote by  the capillary pressure, and assume that 
there exists an auxiliary function  such that . We can then define the 
global pressure , and, by summing the continuity equations (1) and using that 

, we derive equations for  and the total velocity ,  
 

  (3) 

 

 Toward reservoir simulation on geological grid 
models 

 JØRG E. AARNES and KNUT–ANDREAS LIE 

  SINTEF ICT, Dept. of Applied Mathematics, P.O. Box 124 Blindern, NO-0314 Oslo, Norway

 



2 

 

To derive a mass transport equation for, say, the water phase, we need an expression for the 
water velocity. By a straightforward manipulation of  using (2) we obtain  
 

  (4) 
Finally, neglecting effects from capillary forces and inserting (4) into (1), we obtain  
 

  (5) 
For brevity we hereafter drop the subscript  from  and let  denote water saturation. 

In streamline simulation a sequential splitting is used to decouple and solve the coupled 
system (3)–(5). First, the initial saturation distribution is used to compute the mobilities in (3) 
and the equation is solved for global pressure and total velocity. Then, the total velocity is held 
constant as a parameter in (5), while the saturation is advanced in time. This completes one step 
of the method. Next, the new saturation values are used to update the mobilities in (3), the 
pressure equation is solved again, and so on. 
To run simulations on large geomodels we need an accurate and efficient scheme for solving the 
pressure equation (3). The MMsFEM introduced by Chen and Hou [5] generates solutions that 
are locally mass conserving on the coarse grid and reflect the fine-scale characteristics of the 
elliptic coefficients. Aarnes [1] extended the method further and developed a modified variant of 
MMsFEM that generates locally mass conservative velocity fields also on the subgrid scale. 
Local mass conservation is essential for a streamline method, and in the following we will 
therefore use Aarnes’ modified method. Related approaches include the multiscale finite-volume 
method by Jenny, Lee and Tchelepi [7], and the variational multiscale methods (see e.g., the 
overview by Arbogast [4] and references therein). The streamline method is outlined in Section 2 
and the MMsFEM is described in Section 3.  

  

2. A streamline method for two-phase flow simulation 

When solving the saturation equation (5) for two-phase flow with a streamline method, the first 
step is to use an operator splitting to separate gravity effects from the advective forces. Away 
from wells, the split equations corresponding to (5) are  
 
    (6) 
 
    (7) 
where . Equations (6) and (7) are then solved along one-dimensional 
streamlines and gravity lines induced by the velocity fields  and , respectively. This operator 
splitting is also implemented in the commercial streamline simulators FrontSim and 3DSL. 

To describe the concept behind the streamline methodology, assume that  is divergence free 
and irrotational, and consider the model equation  

 
  (8) 
The corresponding streamlines are the flow-paths traced out by a particle being advected by the 
flow field so that the velocity  is tangential to the streamline at every point.  

Since  is divergence free, the streamlines do not cross, and each streamline can be viewed as 
an isolated flow system. To transform (8) into a family of one-dimensional equations along 
streamlines, we introduce the time-of-flight coordinate , which measures the time it takes 
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for a passive particle to travel along the streamlines with speed . Thus, along any streamline, 
the associated time-of-flight coordinate must satisfy the differential equation  

 
  (9) 
Hence, by tracing the streamlines from cell-to-cell and computing the corresponding cell-
traversal times  by integrating the latter equation in (9) along the streamlines, we obtain an 
irregular grid in the time-of-flight coordinate  for each streamline. Finally, by invoking the 
operator identity , the multidimensional equation (8) reduces to a family of one-
dimensional equations along each streamline,  
 
  (10) 

For regular quadrilateral or hexahedral grids, the flow paths can be traced on a cell-by-cell 
basis with an analytical method developed by Pollock [9]. Prevost, Edwards and Blunt [10] 
showed that Pollock’s method could be extended to give an inexact tracing algorithm on 
structured quadrilateral or hexahedral grids with irregular grid-block geometries. However, 
further research is needed to assess what kind of impact this tracing error has on the accuracy of 
the cell-traversal times, and hence on the streamline simulation scheme. 

Summing up, the streamline method for two-phase flow consists of the following steps. First, 
the streamlines with respect to (6) are traced on a cell-by-cell basis from injector to producer 
with a suitable tracing algorithm. This results in an irregular grid  along each streamline 
where the size of each grid cell is equal to the traversal time through an underlying grid cell in 
physical space. Within each of the underlying grid cells, the initial saturation value is constant. 
By picking up these values, one obtains a piecewise initial value function for (6) on the 
streamline grid, and one can evolve the saturation along the streamlines with any suitable 
numerical scheme. The streamline saturation profile is then projected back onto the original grid 
by weighting the contributions from the individual streamlines according to the associated 
traversal time  through the grid cells. Finally, after this procedure is repeated for all 
streamlines, the same method is used to solve (7), but now the gravity lines are initiated in the 
top layer of cells and terminated in the bottom layer of cells. 

  

3. A mixed multiscale FEM 

Let  denote the reservoir domain and let  be the outward pointing unit normal on . For 
simplicity we assume that no-flow boundary conditions are imposed on . Then the mixed 
formulation of (3) reads: Find  such that  
 

                
    (11) 

                                                 
for all  and . Here  is the function space  
 
  
 
In mixed finite element methods, the approximation space for  is spanned by a finite set of base 
functions . The base functions for the proposed MMsFEM are defined as 
follows: Divide  into polyhedral (coarse grid) elements  and let  be the 
(non-degenerate) interface between two coarse grid blocks  and . Then, for each interface ,  
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Figure 1:  The x-component of two multiscale base functions associated with an interface outside the 

near-well region in a regular quadrilateral grid. The right and left plots correspond to homogeneous and 
random coefficients, respectively. 

 

we define a corresponding base function by , where  is determined (up to a 
constant) by the following “pressure equation”:  

     

     (12)
   
and no-flow boundary conditions  on . Thus, the associated MMsFEM 
approximation space for the total Darcy velocity  is . 

Figure 1 shows the x-component of two MMsFEM base functions that correspond to an 
interface outside the near well region (so that ) in a regular quadrilateral 
grid. Note that the base functions that correspond to homogeneous coefficients  
coincide with the associated base function for the Raviart-Thomas mixed FEM of lowest order. 
In contrast, we see that the base function that corresponds to random coefficients fluctuates 
rapidly to reflect the fine scale heterogeneous structures. 

Since it is important that all base functions are mass conserving, the subgrid problems must 
be solved using a mass conservative method, e.g., a suitable mixed FEM or a finite-volume 
method. The particular choice of method depends in part on the local grid structure. For instance, 
if we want to discretize the subgrid problems with a finite-volume method, a two-point flux 
approximation can be used if  is a diagonal tensor and the grid is orthogonal, whereas a multi-
point flux approximation scheme should be used on non-orthogonal grids. Also note that the base 
functions  will generally be time dependent since they depend on . This 
indicates that one has to regenerate the base functions for each time step. However, it is usually 
sufficient to regenerate a small portion of the base functions at each time step since the total 
mobility  only varies significantly in the vicinity of the propagating saturation front (cf. [1]); 
similar observations have been made for the multiscale finite-volume method developed by 
Jenny et al. [7].   

3.1 The approximation space for the pressure 

In the original version of the MMsFEM [5], Chen and Hou approximated the pressure  using the 
piecewise constant approximation space . This was a natural choice since the 
approximation spaces for the Darcy velocity  and pressure  satisfied , a relation 
that guarantees stability. However,  is changed when the base functions are altered to produce 
mass conservative velocity fields, and the relation is therefore not true. Based on this 
observation, Aarnes [1] argue that one also needs to modify the approximation space for the 
pressure. This can be illustrated by considering a simplified one-dimensional model without 
gravity forces. 
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Thus, let , neglect gravity, and let  solve the (not discretized) mixed formulation 
(11). The definition of the base functions  then implies that the velocity  belongs to the 
MMsFEM approximation space . To see this, we write , where  and  is the 
subgrid variation that has zero average over all coarse grid blocks , and assume for a 
moment that  is known a priori and move it to the right hand side. Then, since  and 

, we find that  is the unique pair in  which satisfies  
 

                
    (13) 

                                               
From (13) we see that by assuming , we disregard the contribution from the integral 
term . Numerical experience shows that neglecting this term can have strong impact on 
the accuracy of . This indicates that it is necessary to modify the approximation space for 
pressure in the MMsFEM formulation. Moreover, (13) suggests that the approximation space 
should be close to the affine space . Unfortunately, it is not necessarily straightforward 
to define such an approximation space since  is never known a priori. However, if , then 

 vanishes everywhere except where . Thus, it is sufficient to find a function  
that approximates  in the well blocks and vanishes elsewhere. 

To this end, recall that, by elliptic regularity, the "pressure solutions"  are differentiable. 
Thus, if we write  and define  in  by   

                      (14)     
then  and  
 

               
This shows that  and that . Finally, we have  
 

  
Hence, since (13) admits a unique solution (up to a constant), it follows that in one space-
dimension, the block-average pressures  is obtained by solving (13) with  replaced by . In 
other words, if  is defined correctly, then  and the  projection of  onto  can be computed by 
solving (13). We should here add that the coupling between  and  implies that we cannot move 
the integral term  to the right hand side. Instead, the integral provides a stronger coupling 
between  and  in the MMsFEM coefficient matrix. 

The splitting , where  and  is defined by (14), does not hold in higher 
dimensions, or if gravity forces are present, because we can in general not write  as a linear 
combination of the multiscale base functions . However, the fact that the base functions 
define an appropriate relationship between  and the corresponding subgrid pressure  imply 
that  should still give a good approximation to . We therefore propose to seek  
 
  
 
Henceforth we will, for brevity, refer to this method simply as MMsFEM. 
 
 



6 

 

3.2 Well-model 

In reservoir simulation, the well-rate distribution for each well is defined by specifying the 
bottom-hole pressure or the total well rate, through the use of a so-called well model. In a simple 
Peaceman-type well model the well rate in cell  of a well  is linearly related to the difference 
between the cell pressure  and the bottom-hole pressure    
 
         (15) 
Here the well transmissibility  is defined by some semi-analytical relation [8]. Hence, if the 
bottom hole pressure  is given, then  is added to the appropriate diagonal entry in the 
linear system for the pressure equation, and  enters into the corresponding right hand 
side component. 

If a well is rate-constrained, i.e., if  is specified, then the associated bottom hole 
pressure  is normally treated as an extra free variable, and the expanded linear system is 
closed by adding the extra equation  
 

  
When solving the subgrid problems (12) we use the rate-constrained Peaceman well model. That 
is, we assume that the well-rate sum is equal to one. To define a well model for the MMsFEM at 
the coarse grid scale, we recall that  approximates the subgrid pressure in a well 
block . This relation suggests that we can define a multiscale well-model based on the 
accumulated well-rates induced by  and the (Peaceman type) well-model that is used to 
compute   

   (16) 
Hence, if we assume that the well-rates are specified by the bottom-hole pressure and define 

, then the block transmissibility  enters into the linear system as 
a diagonal component in the lower right hand block of the MMsFEM coefficient matrix and the 
transmissibility weighted sum  enters into the right hand side. Finally, the 
contribution from , which is defined by (14), will enter into the lower left hand block of the 
MMsFEM coefficient matrix.  

Rate constrained wells are treated similarly by letting the bottom-hole pressure be an extra 
free parameter that is determined by adding an extra equation to the MMsFEM system. 

4. Numerical results 

In this section we demonstrate that the MMsFEM-streamline approach is a robust and viable 
alternative to upscaling-based reservoir simulation schemes by testing it on reservoir models 
taken from the second test case in the tenth SPE comparative solution project [6]. The model was 
designed to benchmark different upscaling techniques and should therefore serve as a good test 
case for our methodology. The reservoir model consists of a Tarbert formation in the top 35 
layers and an Upper Ness sequence in the bottom 50 layers. Both formations are characterized by 
large permeability variations, 8–12 orders of magnitude, but are qualitatively different, the 
Tarbert formation being smoother and hence easier to upscale. We neglect compressibility in our 
simulations, but all other parameters are as specified in [6]. A schematic of the well 
configuration is shown in Figure 2. 
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Figure 2:  Schematic of the well configuration in the reservoir model in [6]. The reservoir dimensions are 

 ft., and the model consists of  grid cells. 
 

The multiscale-streamline (Ms-SL) methodology was tested on the full 3D model in [2]. The 
results presented therein show that Ms-SL produces solutions in close correspondence with a 
reference solution obtained by solving the pressure equation on a fine grid. Here we extract two 
smaller test cases from the full 3D model consisting of the top 5 layers in the Tarbert formation 
and the bottom five layers in the Upper Ness formation and show that the methodology can also 
handle structured non-orthogonal grids obtained by perturbing the grid corner points in the 
geological model. To be precise, we move each corner point  to a random nearby 
point  with  ft.,  ft., and  ft. 

Reference solutions are obtained by solving the pressure equation (3) at the subgrid scale 
with a multi-point flux-approximation (MPFA) scheme called the O-method [3]. The same 
method is used to construct the MMsFEM base functions. For the MMsFEM, we use two coarse 
grids consisting of  and  grid blocks and an upstream weighted finite 
volume method is used to evolve the streamline saturation profiles along the streamlines. Finally, 
we simulate 2000 days of production (0.73 PVI) and update the velocity field every 100 days. 

Figure 3 shows the total water-cut curves for the Tarbert and Upper Ness subsamples. For the 
unperturbed cases, the water-cut curves for Ms-SL almost match the reference solution. The lack 
of monotonicity arises since the water cut curves represent four producing wells. For the 
perturbed grids, the difference is larger. Some of the error can be contributed to inexact tracing 
of streamlines in combination with large time steps in the initial phase. However, we believe that 
the difference between the curves is mainly due the well model for MMsFEM. In fact, if the 
source term  is specified so that the well rates for MMsFEM are the same as the well rates for 
the reference solution, then the corresponding water-cut curves are almost identical. That the 
dominating part of the error can be traced back to the well model is not surprising since the 
MMsFEM well-model is the only part of Ms-SL that involves an element of upscaling. Indeed, 
Ms-SL involves no tuning of parameters, except for choosing time steps and the coarse grid. 

5. Conclusions 

We have thus presented a novel method for accurate resolution of both global and local flow 
patterns in large heterogeneous geomodels. The approach is based on a combination of a new 
multiscale discretization method for the pressure equation and a standard streamline method for 
the fluid transport equation. In the multiscale method, the pressure is computed on a coarsened 
grid using numerically constructed approximation spaces that incorporate the local 
heterogeneities of the elliptic operator on the underlying fine grid. The fluid transport equation is 
solved with a streamline method directly on the fine grid using Darcy velocities obtained by 
utilizing the subgrid structures in the mixed multiscale FEM base functions. The results show 
that the multiscale simulation method gives comparable accuracy to a reference solution that is 
obtained by solving the pressure equation at the fine scale, and the same streamline method for 
the fluid transport equation. The results therefore supports our claim that multiscale methods 
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combined with streamlines can give high accuracy, and may become a robust and efficient 
alternative to traditional upscaling based reservoir simulation schemes.  

 

  
Figure 3:  Water cut curves after 2000 days of simulation.  

  

Acknowledgements 
The authors gratefully acknowledge financial support from the Research Council of Norway under grants no. 
158908/I30 and 152732/V30.  

References 
[1]  J. E. Aarnes, On the use of a mixed multiscale finite element method for greater flexibility and increased speed 
or improved accuracy in reservoir simulation, Multiscale Model. Simul. 2 (2004), no. 3, 421–439.  
[2]  J. E. Aarnes, V. Kippe, and K.-A. Lie, Mixed multiscale finite elements and streamline methods for reservoir 
simulation of large geomodels, Adv. Wat. Resour., submitted..  
[3]  I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth, Discretization on unstructured grids for inhomogeneous, 
anisotropic media. part i: Derivation of the methods, Siam J. Sci. Comp. 19 (1998), no. 5, 1700–1716.  
[4]  T. Arbogast, An overview of subgrid upscaling for elliptic problems in mixed form, Current trends in scientific 
computing (Z. Chen, R. Glowinski, and K. Li, eds.), Contemporary Mathematics, AMS, 2003, pp. 21–32.  
[5]  Z. Chen and T.Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating 
coefficients, Math. Comp. 72 (2003), 541–576.  
[6]  M. A. Christie and M. J. Blunt, Tenth SPE comparative solution project: A comparison of upscaling techniques, 
SPE 72469, url: www.spe.org/csp, 2001.  
[7]  P. Jenny, S. H. Lee, and H. A. Tchelepi, Multi-scale finite-volume method for elliptic problems in subsurface 
flow simulation, J. Comput. Phys. 187 (2003), 47–67 
[8]  D.W. Peaceman, Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid 
blocks and anisotropic permeability, Society of Pet. Eng. Journal (1983), 531–543. 
[9]   D.W. Pollock, Semianalytical computation of path lines for finite difference models, Ground Water 26 (1988), 
743–750 
[10]  M. Prévost, M. G. Edwards, and M. J. Blunt, Streamline tracing on curvilinear structured and unstructured 
grids, SPE Reservoir Simulation Forum, SPE 66347, Houston, Texas, February 2001.  


