Introduction to the MATLAB Reservoir Simulation

Toolbox (MRST)

Knut—Andreas Lie

Department of Mathematics and Cybernetics, SINTEF Digital/
Department of Mathematical Sciences, NTNU, Norway

Multiscale Methods Summer School
June 26-29, 2017, Hasselt, Belgium

© Introduction

© Getting started with MRST
© Grids and petrophysical data
© Incompressible flow

© Multiphase flow

© Compressible flow

e The AD-OO framework in MRST

1/117

The MATLAB Reservoir Simulation Toolbox

Open-source toolbox for reservoir modelling,
developed by SINTEF Digital and used in most
of our research

Wide international user base:

academic institutions, oil and service
companies

USA, Norway, China, Brazil, United
Kingdom, Iran, Germany, Netherlands,
France, Canada, ...

100004 unique downloads since 2013

http://www.sintef.no/MRST

Used in publications:
24 PhD theses and 63 master theses

110+ journal/proceedings papers by authors outside our group

Toolbox for experimental programming

Flexible simulators, easy to extend with new functionality, scaling with
accuracy requirement and computational budget

seconds minutes hours

N
>

Diagnostics/proxies Model reduction Full simulation

= Flow diagnostics/volumetrics ® Grid coarsening u Black-oil, EOR, thermal,
u Physics-based proxies = Flow-based upscaling compositional, geomechanics
= Fast optimization ® Multiscale methods u Grids and discretizations
u Spill-point analysis ® Model-reduction techniques ® Nonlinear/linear solvers

= Vertical-equilibrium models * Rapid prototyping

Adjoint formulations and
(closed-loop) optimization

3/117

Why in MATLAB?

Prototyping in a scripting language is much less time-consuming than in
traditional compiled languages (C, C++, Fortran, ...)

Explore alternative algorithms/implementations close to mathematics

Gradually replace individual (or bottleneck) operations with
accelerated editions callable from MATLAB

Direct access to MATLAB environment and prototype whilst
developing replacement components

MATLAB/Octave is widely used in academic institutions

If we were to start all over, we might as well have chosen Python

4 /117

How the software is organized ...

...core and add-on modules

The core module provides basic data structures and utility functions.
Add-on modules offer:

discretizations and solvers

simulators for incompressible and compressible flow

workflow tools such as coarsening, upscaling, flow diagnostics,
visualization, etc

special models like geomechanics and fractured reservoirs

analysis of large-scale CO5 storage in saline aquifers

6/117

Two different programming paradigms

incomp — sequential solvers for incompressible flow
Have been part of MRST since the start

Uses imperative programming: functions that operate mainly on
vectors, (sparse) matrices, structures, and a few cell arrays

Explicit assembly and linearization of flow equations

AD-OO - (fully) implicit solvers for compressible flow
More recent addition to MRST

Object-oriented framework for building simulators

Assembly and linearization performed implicitly by the use of
automatic differentiation

Both families rely on functionality from mrst-core

7/117

Quick overview of functionality

Basic functionality in MRST:
grid structure and grid factory routines
petrophysical data and incompressible fluid models

physical units and conversion routines between Sl
and common field units

routines for setting and manipulating boundary
conditions, sources/sinks, and well models

reservoir state (pressure, fluxes, saturations,...)

visualization routines for cell and face data

8/117

Quick overview of functionality

Grid generation and coarsening:

MRST core

-

MRST offers a wide variety of grid factory routines and input from Eclipse, upr
generates 2D and 3D Voronoi grids with cell and face constraints

coarsegrid: data structures and simple coarsening, adapted partitions in agglom

C-accelerated: processing in libgeometry and opm_processing.

8/117

Quick overview of functionality

Discretization and solvers for incompressible flow:

(o)

-

incomp implements TPFA-based flow solver and explicit/implicit transport solvers;
mimetic, mpfa, ntpfa, and vem implement consistent discretizations.

8/117

Quick overview of functionality

Discretization and solvers for compressible flow:

ad-blackoil ad -eor blackoil-sequential

) assignDENSTTY.m
) assignPLMXPAR.m
) assignPLYADS.m
) assignPLYMAX.m
) assignPLYROCK.m

The AD-OO framework offers fully implicit simulators from industry-standard input
decks, including computations of adjoints

Quick overview of functionality

Upscaling and multiscale methods:

¢ o

whil

msrsb is state-of-the art multiscale solver, hfm implements this for fracture models,
msmfem and msfvm are earlier developments

upscaling: flow-based single-phase upscaling, steady-state: multiphase upscaling

Quick overview of functionality

Fractured media:

dual-porosity

dfm — discrete fracture models, hfm — hierarchical /embedded fracture models

Geomechanics:

ad-mechanics® — coupled flow and mechanics (R2017b), vemmech — virtual element
methods, fvbiot — multipoint stress-approximation methods

8/117

Quick overview of functionality

Workflow tools:

n of PV (51

co2lab: comprehensive tools for large-scale CO2 storage saline aquifers
diagnostics: flow diagnostics, mrst-gui: interactive visualization
optimization: solution of optimal control problems based on AD-OO

enkf and remso: third-party modules for EnKF and multiple-shooting optimization

8/117

© Introduction

© Getting started with MRST
© Grids and petrophysical data
© Incompressible flow

© Multiphase flow

© Compressible flow

e The AD-OO framework in MRST

9/117

Downloading the software

MRST - MATLAB Reservoir Simulation Toolbox

Download

You are here: MRST / Download
Download

SINTEF publishes several sets of resources as part of the Matlab Reservoir Simulation Toolbox. This is a list of packages and datasets
currently available for download.

The MATLAB Reservoir Simulation Toolbox

MRST is a set of core features intended to assist the student, researcher and practitioner who analyses reservoir-type flows or develops
numerical methods for solving flow or transport problems in reservoir applications. ltis the intention of the MRST developers that the package
be a solid foundation for grid handling, visalisation, and advanced i

Sources to the current as well as a few, selected previous releases of the core MRST package set are available on a separate download page.
Please fill out the accompanying form to download the package

Public Data Sets

= The SAIGUP data setis a single realisation from the Sensitivity Analysis of the Impact of Geological Uncertainties on Production project
The data is used in a number of examples accompanying the 2011a and later releases of MRST. You may download a copy of the data
from the following web page.

The Johansen formation is a candidate site for large-scale CO, storage offshore the south-west coast of Norway. The MatMoRA project
has developed a set of geological models based on available seismic and well data. You may download a copy of the data from the
following web page.

Published February 23,2011

From http://www.sintef .no/MRST

10

117

Installing MRST

MRST is provided as self-contained archive file. The following command

‘ untar mrst—2016b.tar.gz ‘

will create a directory mrst-2016b in your current working directory.

Once MRST has been extracted to some directory, you must navigate MATLAB there.
On Linux/Mac OS,

‘ cd /home/username/mrst—2016b/ ‘

or on Windows,

‘ cd C:\Users\username\mrst—2016b\ ‘

assuming that the files were extracted to the home directory. The startup.m file must
then be run to activate MRST,

‘ startup; ‘

or you can call the startup script directly

‘ run /home/username/mrst—2016b/startup ‘

11/117

Getting started: welcome message

If you start MATLAB in the directory containing MRST, or run the
startup.mn file, you will see the following message

Command Window

® B

o

(T) New to MATLAB? Watch this Video, see Examples, or read Getting Started. x|=
7]

== startup g
wWelcome to the Matlab Reservoir Simulation Toolbox (MRST)! o

You are using the release version 2016b. To download ether versions of MRST
and view examples and relevant publications, please visit www.sintef.no/mrst.

Useful commands for getting started:
- List all introductory examples: mrstExamplas()

- List all modules: mrstPath({'list')

- Load modules using GUI: mrstModule (' gui')

- Explore all available data sets mrstDatasetGUI(]

- List examples of a module: mrstExamples (' ad-blackeil')

- Show all examples in all modules: mrstExamples('all')
- Explore modules and publications: mrstExploreModules()
- Display this message: mrstStartupMessage ()

For assistance and discussions about MRST, please visit our mailing list at
wwwi.sintef .nosprojectweb/mrst/forums (sintef-mrst@googqlegroups.com)
For some common queries, ses our FAQ: www.sintef.no/projectweb/mrst/fag

S |

12 /117

Getting started: sources for information

the MRST book and key publications — the book gives a
comprehensive introduction to basic flow simulation as implemented
in MRST; three papers give more condensed overviews

example scripts

Jolts (just-in-time online learning tools)
module examples

manual pages for individual routines

the source code itself

FAQ webpage and MRST-users mailing list

public data sets

13 /117

Knut-Andreas Lie

An Introduction to Reservoir
Simulation Using MATLAB

User Guide for the Matlab Reservoir Simulation
Toolbox (MRST)

June 12, 2017

SINTEF ICT, Departement of Applied Mathematics
Oslo, Norway

Page: 1 job: mrst-book date/time: 12-Jun-2017/20:34

330 10 Solvers for Incompressible Immiscible Flow

Fig. 10.13. Tllustration of the sloping sandbox used for the buoyancy example and
how it is simulated by rotating the gravity vector. (Color: Gaussian porosity field).

R = makehgtforn('yrotate' ,-pirtheta/180);
gravity reset on
gravity(R(1:3,1:3)sgravity() .

MRST defines the gravity vector as a persistent, global variable which by
default equals 0. The second line ensures that § is set to the standard value
(pointing downward in the vertical direction) before we perform the rotation.

o initialize the problem, we assume that COs, which is lighter than the
resident brine, fills up the model from the bottom and to a prescribed height,

xr = initResSol(G, ixbarsa, 1);
d = gravity() ./ norm(gravity);
de = G.cells.centroids * d
xr.s(domax(de)-height)

For accuracy and stability, the time step is ramped up gradually as follows,

ar =[5, .5, 1,1, 1, 2, 2, 2,5, 5, 10, 10, 15, 20,
repmat(25, [1,97])] . *day;

to reach a final simulation time of 2500 days. The remaining code is similar
to what was discussed above; details can be found in buoyancyExample.n.
Let us consider the homogencous case first. Initially, the buoyant COp
plume will form a cone shape as it migrates upward and gradually drains the
sident brine. After approximately 175 days, the migrating plume starts to
accumulate as a thin layer of pure CO, under the sloping east face of the box.
This layer will migrate quickly up towards the topmost northeast corner of
the box, which is reached after approximately 400 days, This corner forms a
structural trap that will gradually be filled as more CO, migrates upward.
The trapped CO, forms a diffused and curved interface (sce the plots at
500 and 1000 days), but as time passes, the interface becomes sharper and
Hatter. During the same period, brine will imbibe into the trailing edge of
the CO, plume and gradually formed a layer of pure brine at the bottom

Page: 330 Job: mrst-book macro: svmono. cls date/tine: 12-Jun-2017/22:33

Example scripts and tutorials . ..

The core module of MRST offers a number of examples that introduce
you to data structures and data sets, how to set up basic solvers, how to
visualize input data and simulation results, etc

>> mrstExamples

Module "core" has 18 examples:
flowSolverTutoriall.m
flowSolverTutorialAD.m
tutorialAD.m
tutorialBasicObjects.m
tutorialPlotting.m
datasets/showCaseB4.m
datasets/showJohansen.m
datasets/showNorne.m
datasets/showSAIGUP.m
datasets/showSPE10.m
grids/gridTutorialCornerPoint.m
grids/gridTutoriallntro.m
grids/gridTutorialStruct.m
grids/gridTutorialUnstruct.m

15 /117

presented in workbook format

Editor - iej t-20 1physi CEE) Basic Flow-Solver Tutorial
File Edit Text Go Cell Tools Debug Deskiop Window Help |2 x| Ele Edt View Go Debug Desktop Window Help
NE\| & e[e b -BRRARRBA| [f [0 -|es ||| ocion [nomekaie/ormrsi-20140 /exampie e
FEIR eI . .
| BasicFl Iver Tutorial
3 5 process geonetry =
3% % Having set up the basic structure, e o conpute centroids and The purpose of this example is to give an overview of how to set up and use a standard
B X \olines o7 the Co112 and concratas, moreal 2, and areac For the faces. for to—point pressura solver to solve the single-phase pressure equation
E % a Carcesian grid, this infornation can trivially be computed, but i3 ©
E % given explicitly 5o that the Tlow solver 15 comparible with Tully K_
@ % unstructured grids. Vv L
4 - G = computaGeonetry ()
2 for a flow driven by Dirichler and Neumann boundary conditions. Our geological model will be
s simple a Cartesian grid with anisotropic, homogeneous permeability.
I % Set rock and Fluid data
15 % The only paraneters in the single-phase pressure equation are I this tutorial example, you will learn about
4 % permeability $K§ and the fluid viscosity μ. We set the Vhrmaamhm
“ % %o be homogencous and anisotroptc 1 the grid structure,
b - o SN(WEM 2. how to specify rock and fluid data,
50 % 1000 & 0 \ 0 & 100 & 0 \\ 0 & 0 & 10 \end{arrayP\right) §% = 3. the structure of the data-cbjects used to hold solution,
51 % 4. how to assemble and solve linear systems,
2 % The viscosit. 2d by saying that the reservoir is filled with a 5. useful routines for visualizing and interacting with the grids and simulation results.
53 % <matlab:help('initSinglefluid’) single fluid-,
s % viscosity value equals unity. Our flow Solver is written for a general
55 % incompressible flow and ymm\raf the evaluation of Contents
56 % which is provided by the <matlab:help('fluid') fluid object:
57 - gravity ot « Defing geometry
S5 - rock.perm = repnac([1000, 100, 101.% willi*darcy(), [G.cells.num, 113 « Process geometr
Bo g = dnicsinglenlidCRe L denciteise L et rock and fluid data
@ e « Initialize reservoir simulator
o ST ST eE T STeaTe - Impose Dirichlet boundary conditions
63 % To simplify communication among different flow and transport solvers, all » Construct linear system
64 % unknowns are cellected in a structure. Here this structure is initialized = lnspect results.
65 % with uniform initial reservoir pr=ssure equal 0 and (single-phase)
& % saturation equal 0.0 (using the default behavior of Define geometry
67 % <matlab:help('initResSol') initResSols)
- resSol = initResSol (G, 0.0); Construct a Cartesian grid of size 10-by-10-by—4 cells, where each cell has dimension
- dismayCresson; = 1-by-1-by-1. Because our flow solvers are applicable for general unstructured grids, the
- - Cartesian grid is here represented using an unstructured format, in which cells, faces, nodes,
7 % Inpose Dirichlet boundary conditions
7 % Our flow solvers automatically assume no-Flow conditions on all outer etc. are given explicitly.
] % (and inner) boundaries; other type of boundary conditions nead to
i % speciTied explicitly. = 103 ny = 10; nz = 43
7 % : B 8
7 % Here, we impose Neumann conditions (Flux of 1 mA3/day) on the glabal € = cerEtriekiie:, @y, GE)3
b et e fluxes nust be given in units of Al display(G);
7 n of seconds 1n a day
7 =t boundary c
& %g G
81 % Rt spectty the saturation at inflow boundartes. SHatjarly,
& % Fluid composition over outflow faces (here, right) 15 ignored by pside
R R i e It g Fatee! 1 Srnen

16 /117

Just-in-time online learning tools

Short learning modules consisting of 3-10 minute videos covering a specific topic.

Joltl: explains what MRST is, how to download it, and how to make your first flow

solvers. Jolt2: introduction to grid and grid generation.
17 /117

Finding more information ...

the MRST book and key publications
example scripts
Jolts (just-in-time online learning tools)

module examples — many of the modules contain example scripts
located in the subdirectory 'examples’ of the module that outline
functionality provided in the module. Some of these examples are
available on the module overview pages

manual pages for individual routines

the source code itself

FAQ webpage and MRST-users mailing list
public data sets

18 /117

Module examples on the web

MRST - MATLAB Reservoir Simulation Toolbox

Modules

You are here: MRST / Modules / Grid Coarsening

Grid Coarsening

The module it

Tutorials

for ing coarse partitions and turning these into MRST grids.

Example 1

This example shows you how to partition
rectangular 2D Cartesian grids, the
relationship between cell and block numbers,
and outlines the basics of the coarse-grid
structure, including numbering of cells, faces,
and node.

Example 3

The example continues the discussion of the
coarse-grid structure and shows how we can
partition the coarse faces so that there are
more than one face (connection) between
neighboring coarse blocks.

Example 5

In this example, we use the function
refineNearwell to make coarse grids with
various types of near-well refinement. The
examples uses both Cartesian and 2.5 D PEBI
fine grids.

SEARCH

Example 2

We show partitions of grids representing more
complex domains: a rectangular grid with a
semi-circular cutout, a 3D cup-formed domain,
22D Voronoi grid of rectangular domain with a
quater-circle cutout, and a comer-point grid
with a single fault.

Example 4

In this example, we take a closer look at
partition vectors and discuss how different
types of partitions can be combined into one.

Example 6

We partition the Norne field uniformly in logical
Cartesian space. Since the model contains
many inactive cells, the initial partition must be
postprocessed to ensure a contigous partition
vector. We visualize some of the coarse blocks
and show how they are connected with their
neighbors.

117

The module explorer

MRST module explorer

MRST
ad-blackoil
ad-core

zaglom
blackoil-sequential

book

co2lab

deckformat
dfm

diagnostics
dual-porosity
fubiot

hfm

incomp
libgzomatry
matlab_bgl
mex
mimetic

ntpfa
opm_gridprocessing
optimization

spelo

steady-state
streamlines

triangle

upr

upscaling

vem

vemmech
wellpaths

Module "coarsegrid coarsegridbamplerm I
coarsegridExample2.m

Functionality for partitioning grids and generating coarse grids. All coarse grids are assumed to be ~ coareearidExamples m

described by a partition vector that associates each cell to a unique coarse block. Blacks need to be coaresgridexampled m

connected. The coarse grids work well with most of the solvers and simulators in MRST and can also be | | coarsegridexamplas.m

visualized using the standard plotting routines. coarsegridexampleNorne.m
coarsegridExampleSAIGUP m

The 'agglom’ madule contains more advanced partitioning algerithms generating coarse grids that

adapt o geology and flow fields.

coarsegridExamplel
Introduction to Coarse Grids in MRST B
In MRST. a coarse grid always refers to a grid that is defined as
a partition of another grid, which is referred to as the ‘fine' grid. The
coarsegrid module defines a basic grid structure for such coarse grids
and supplies simple tools for partitioning fine grids. In this example,
we will show you the basics of the coarse-grid structure and how to
define partitions of simple 2D Cartesian grids.

Relevant literature

|An Introduction to Reservoir Simulation Using MATLAB; User Guide for the Matlab Reservoir Simulation TckS

<] [
An Introduction to Reservoir Simulation Using MATLAB: User Guide for the Matlab Reservoir Simulation
Toolbox (MRST) by K.-A. Lie SINTEF ICT (2015)

Edit | Publish ‘V\EWHTML

View | Preprint

Start GUI with the command: mrstExploreModules

Example: tutorial from incomp module

V.g=gq G=-5]

Vp + pgVz]

Vertical well and Dirichlet boundary

% Grid and rock parameters
nx = 20; ny = 20; nz = 10;
G = computeGeometry(cartGrid([nx, ny, nz]));
rock.perm = repmat(100 # millisdarcy, [G.cells.num, 1]);
fluid = initSingleFluid('mu’, 1#centi%poise,

'rho', 1014#kilogram/meter"3);
gravity reset on

% Fluid sources and boundary conditions

¢ = (nx/2#ny+nx/2 : nx#ny : nx#nysnz) .
src = addSource([], ¢, ones(size(c)) ./ day());
bc = pside([], G, 'LEFT', 10wbarsa());

% Compute transmissibilities
T = computeTrans(G, rock);

% Solve the system and convert to bars

rSol = initState(G, [], 0);

rSol = incompTPFA(rSol,G,T,f1uid, src',src, 'be! be);
p = convertTo(rSol.pressure, barsa());

From tutorial: incompTutorialSRCandBC.m

Source term and boundary
condition

~

Pressure distribution

Operating modules

Graphical user interface to modules:

mrstModule('gui')
moduleGUI

List all modules and their path

‘ mrstPath

Load new modules

‘ mrstModule add mimetic mpfa

Adding your own modules

] ad-blackoil [deckformat mpfa (] steady-state
[J'ad-core [dfm [mpsamech [streamlines
1 ad-eor diagnostics 1 mrst-qui [triangle
[lad-i [dual-poresity [| mrst_api [upr

[ad-props (] fubiot [msfvm [upscaling

[adjoint [hfm [msmfern [Jvem

] agglom incomp] msrsb [l vemmech
[blackoil-sequential L libgeometry ntpfa [wellpaths

ook (] matlab_bgl [opm_gridproces...
[cozlab [mex [] optimization
[coarsegrid mimetic [spel0
Unload all List paths Update Exit

mrstPath reregister distmesh ...

/home /username /mrst—2016b/utils/3rdparty/distmesh

Finding more information ...

= the MRST book and key publications

= example scripts

= Jolts (just-in-time online learning tools)
= module examples

= manual pages for individual routines — all routines in MRST are
documented using a style similar to standard MATLAB that describes
synopsis, input/output parameters, and how the routine works. In
most cases, the documentation also offers simple examples of usage
and list related routines

= the source code itself
= FAQ webpage and MRST-users mailing list

= public data sets

23 /117

Manual pages: computing transmissibility

>> help computeTrans
Compute transmissibilities.

SYNOPSIS:
T = computeTrans(G, rock)
T = computeTrans(G, rock, ’pn’, pv, ...)
PARAMETERS :
G - Grid structure as described by grid_structure.
rock - Rock data structure with valid field ’perm’. The permeability
is assumed to be in measured in units of metres squared (m"2).
Use function ’darcy’ to convert from darcies to m-2, e.g.,
perm = convertFrom(perm, milli*darcy)
if the permeability is provided in units of millidarcies.
The field rock.perm may have ONE column for a scalar
permeability in each cell, TWO/THREE columns for a diagomal
permeability in each cell (in 2/3 D) and THREE/SIX columns for a
symmetric full temsor permeability. In the latter case, each
cell gets the permeability tensor
Ki=1[kt k2] in two space dimensions
[k2 k3]
RETURNS:

T - half-transmissibilities for each local face of each grid cell in the grid.
The number of half-transmissibilities equals the number of rows in G.cells.faces.

COMMENTS :
PLEASE NOTE: Face normals are assumed to have length equal to the corresponding
face areas. This property is guaranteed by function ’computeGeometry’.

SEE ALSO:
computeGeometry, computeMimeticIP, darcy, permTensor.

Finding more information ...

= the MRST book and key publications

= example scripts

= Jolts (just-in-time online learning tools)
= module examples

= manual pages for individual routines

= the source code itself — all parts of MRST are available as open
source code. However, MRST is a research tool that was developed
primary to provide a flexible development platform, and some parts of
the software may admittedly be quite hard to digest for those
unfamiliar with our way of writing efficient MATLAB

= FAQ webpage and MRST-users mailing list

= public data sets

25 /117

Source code: computing transmissibility

% Vectors from cell centroids to face centroids
cellNo = rldecode(1:G.cells.num, diff(G.cells.facePos), 2)';
if ~isempty(opt.cellCenters)
C = opt.cellCenters;
else
C = G.cells.centroids;
end
if ~isempty(opt.cellFaceCenters)
C = opt.cellFaceCenters — C(cellNo,:);
else
C = G.faces.centroids(G.cells.faces(;1), :) — C(celllo,:);
end

% Normal vectors

sgn = 2#(cellNo == G.faces.neighbors(G.cells.faces(:,1), 1)) — 1;
N = bsxfun(Qtimes, sgn, G.faces.normals(G.cells.faces(:1),:));
clear sgn;

if strcmpi(opt.K_system, 'xyz'),
[K, i, j] = permTensor(rock, G.griddim);

assert (size(K,1) == G.cells.num,
[" Permeability must be defined in active cells only. \n',
'Got %d tensors, expected %d (== number of cells).'],

size(K,1), G.cells.num);

% Compute T = C'#K#N / C'*C. Loop—based to limit memory use.
T = zeros(size(cellNo));
for k=1:size(i,2),
T =T + sum(C(:,i(k)) .# K(cellNo,k) .* N(: j(k)), 2);
end
clear K i j cellNo N;
T =T./ sum(C.%C,2);
clear C;

From computeTrans.m

26

117

Finding more information ...

the MRST book and key publications
example scripts

Jolts (just-in-time online learning tools)
module examples

manual pages for individual routines

the source code itself

FAQ webpage and MRST-users mailing list

public data sets

27 /117

The MRST-users mailing list

Hosted on Google group: sintef-mrst@googlegroups.com

Please consider the following points before posting a question:
Search the forum to check if your question has been answered

Formulate your question carefully. If we cannot understand, we
cannot help you

For code-technical issues, prepare a complete minimal example
Please help out in answering questions from other users

Have a little patience; this is not a 24-7 emergency line

URL: https://groups.google.com/forum/#!forum/sintef-mrst

Finding more information ...

the MRST book and key publications
example scripts

Jolts (just-in-time online learning tools)
module examples

manual pages for individual routines

the source code itself

FAQ webpage and MRST-users mailing list

public data sets — a number of data sets are offered alongside with
the software; these data sets are used in various examples and
tutorials of the software

29 /117

Public data sets

Johansen

Public data sets

Graphical user interface to download

and get information about data sets: e — —
CaseB4 et 4‘“‘\‘\;‘“
\ i DateauLL) \ N
CO2At| 1Ses —
Egg =
IGEMSgrids
- o IGEMSsurfaces
Information about specific data set s =
SAIGUP
SPEL Corner-point model with 91831 cells =
‘ getDatasetInfo('norne') ‘ spEL0 vods! containe: Grid and rock
SPE3 The model represents a 303 ¢m model of a
SPEY sedimentary bed that contains six different rock types.
;he mudT\ isa quuiexa;ﬂp\etuf = comersort qm:h
21ing 2 arge number of nactvs calls and cels ui
Path for each known data set S s, -
‘ getDatasetPath('nornel) ‘ T’—Wz Download| Delete || Webpage | Listfiles | Exarnples
Query/set path for all public data sets
mrstDataDirectory
mrstDataDirectory('/home/username/mydata/mrst/")

Software requirements

Minimal requirement is MATLAB version 7.4 (R2007a).

Certain modules use features that were not present in R2007a:
Automatic differentiation relies upon new-style classes (classdef) from
R2008a.

Various scripts and examples use new syntax for random numbers from
R2007b.

Some scripts in the modules may use tilde operator to ignore return values
(e.g, [~ i]=max(X,1)) from R2009b.

Some solvers (e.g., fully implicit) are not efficient on versions older than
R2011b.

Most of MRST can be used with Octave, except for graphical user interfaces
and some functionality in the object-oriented framework for fully implicit
solvers based on automatic differentiation

More information: http://www.sintef.no/Projectweb/MRST/FAQ/

External dependencies

Apart from MATLAB, MRST does not rely on any third-party
software/libraries.
However, the following are useful:

AGMG — simple but efficient algebraic multigrid solver
MATLAB-BGL — MATLAB Boost Graph Library

METIS — partitioning of fully unstructured grids, etc.
Export_fig — to produce high quality figures for publications

More information: http://www.sintef .no/Projectweb/MRST/FAQ/

33/117

Terms of use

You are free to use the software within the GNU GPL3 license, but ...

Citing MRST

If you are using MRST in any publication, we would be grateful if you cite the MRST book or one of the following three papers (possibly in
addition to a link to our webpage):

K.Bao, K-A. Lie, O. Mayner, and M. Liu. Fully implicit simulation of polymer flooding with MRST. Comput. Geosci.,
2017.DOI: 10.1007/s10596-017-9627-2. Also available from: Springer Nature Sharelt.

An earfier version was published as: K. Bao, K-A. Lie, . Mayner, and M. Liu Fully-implicit simulation of polymer flooding with MRST.
ECMOR XV, Amsterdam, Netheriands, 29 Aug~1 Sept, 2016. DOI: 10.3997/2214-4609.201601880

. S. Krogstad, K--A. Lie, O. Mgyner, H. M. Nilsen, X. Raynaud, and B. Skaflestad. MRST-AD - an open-source framework
& .. 6 for rapid prototyping and evaluation of reservoir simulation problems. Paper 173317-MS presented at the 2015
Reservoir simulation Symposium, Houston, Texas, USA, 23-25 February 2015.

K-A.Lie, S. Krogstad, I. S. Ligaarden, J. R. Natvig, H. M. Nilsen, and B. Skaflestad. Open source MATLAB
implementation of consistent discretisations on complex grids. Comput. Geosci., , Vol. 16, No. 2, pp. 297-322, 2012.
I' DOI: 10.1007/s10596-011-9244-4
- Complete MATLAB scripts that reproduce (almost) all the figures and examples in the paper are available for
download, see e.g., Example 5 and Example 6.

An earlier version was published as: K.-A. Lie, S. Krogstad, |. S. Ligaarden, J. R. Natvig, H. M. Nilsen, and B. Skaflestad. Discretisation on
complex grids — Open source MATLAB implementation. Proceedings of ECMOR XII, Oxford, UK, 6-9 September 2010

Scientific publications utilizing MRST

MRST has been used in a large number of journal articles, conference proceedings, and master and doctoral theses. We try to collect as many
as possible of these publications and have compiled them in separate lists. If your paper is missing in the lists, if have you used MRST in your
thesis, or if have you supervised students using MRST, we are of course very happy to hear aboutit. If you provide us with publication details,
we will list your publication or details about the thesis. If you also provide us with an illustrateive picture and a short description, we will
highlight your work on our gallery pages. Contact: Knut-Andreas Lie@sintef.no

34 /117

Computer exercises

Download and install the software

Run flowSolverTutoriall from the command line to verify that your
installation is working.

Load the flowSolverTutoriall tutorial in the editor and run it in cell mode.
Use help or doc to inspect the documentation for the various functions that are
used in the script.

Run the flowSolverTutoriall tutorial line-by-line: Set a breakpoint on the first
executable line by clicking on the small symbol next to line 27, push the 'play
button’, and then use the 'step’ button to advance a single line at the time.
Change the grid size to 10 x 10 x 25 and rerun.

Use mrstExploreModules() to locate and load the incompIntro tutorial from the
incomp module. Examine the tutorial in the same way as you did for
flowSolverTutoriall. Publish the workbook

35 /117

© Introduction

© Getting started with MRST
© Grids and petrophysical data
© Incompressible flow

© Multiphase flow

© Compressible flow

e The AD-OO framework in MRST

36 /117

What you will learn in this section

In this section, we will discuss:

standard grids and grid factory routines in MRST
stratigraphic grids
petrophysical properties and simplified geostatistics
unstructured representation used in MRST
techniques for manipulating (and visualizing) grids

You will also get a tast of plotting routines, common tricks, etc

To learn more:

watch the videos in Jolt2

study tutorials called gridTutorial*.m in mrst-core
— read Lie et al. (COMG, 2012), doi: 10.1007/s10596-011-9244-4
— read Chapters 2 and 3 in the MRST book

37/117

Grids and physical quantities

The fundamental object in MRST is the grid:

all grids are assumed to be unstructured

data structure for geometry and topology

several grid factory routines

input of industry-standard formats

Physical quantities defined as dynamic objects in Matlab:
properties of medium: ¢, K, net-to-gross, ...
reservoir fluids: p, u, k., PVT, ...
driving forces: wells, boundary conditions, sources
reservoir state: pressure, fluxes, saturations, ...

we assume Sl units (e.g., [K] = m?, [u] =Pa-s, ...)

Functions in MRST accept these objects as input,
manipulate them, and produce them as output

=
N
< <
—~ i
-
~— - o
e s
&1
SN
= -
(qV]
o~
=~ g= E
LN 2
=5 R
27 %o 2
S |”w" T
T|EE Ed M
2199
& o o 02 3
o) n n ©n o
c g a (=]
< 0 O 0 N
— L P tw | L <
R N8 2835 288232823 s
O —~
W) ¥ |ve R
O
=
o1} .-
~
N
S S
A = g
un ==l =
g 25 °F
£ 54 o8
(T W @
) TR E=Ar) o,
o 4 =d
. . 'S S
() 0l EE gn
S Sl¥x of
- 2 |28 28
a0 L IT3F T*
- Halial — =<
) S| 5 & 4o
= Oles o
P P P o°
i s |88 &%
Im m 0 O o
o
S M_wo I :1
- ¥ |pe R
0]

7

39/11

Standard grids: curvilinear grids

Create a rough grid by perturbing the inner nodes randomly

nx = 12; ny=6;
G = cartGrid([nx, ny]);
plotGrid(G,'LineStyle',':");

I = true(G.nodes.num,1); % Logical indexing is fast in MATLAB
I(gridFaceNodes(G, boundaryFaces(G))) = false;

G.nodes.coords(I,:) = G.nodes.coords(I,:) + .6%(rand(sum(I),2)—.5);
plotGrid(G,'FaceColor', 'none', 'LineWidth',1);

6

5

40 /117

Standard grids: fictitious domains

Mapping a curvilinear grid to a complex shape is
generally difficult.

Alternative approach: embed the domain within a
larger “fictitious” domain of simple shape,
boolean indicator value tells whether each cell is
part of the domain or not. Here, an ellipsoid
within a cube:

x = linspace(—2,2,21);
G = tensorGrid(x,x,x);
subplot(1,2,1); plotGrid(G);view(3); axis equal

subplot(1,2,2); plotGrid(G,'FaceColor', 'none');
G = computeGeometry(G);

¢ = G.cells.centroids;

r =c(;1).72 + 0.25%c(:,2)."24+0.25%c(:,3)."2;
G = removeCells(G, r>1);

plotGrid(G); view(—70,70); axis equal;

41 /117

Standard grids: Delaunay and Voronoi grids

o
o
o
o
o
o

-+ 0 o o o o o

Duality: Delaunay and Voronoi grids

For 3D tetrahedral grids, MRST supplies the
function tetrahedralGrid(x,y,z). The function
pebi() has no natural counterpart in 3D, but
routines exist in the upr module

=N

"&\VA‘@(‘\
Ao L
IRARAE)Aw Q
Y

load seamount; plot(x(:),y (:
G = triangleGrid([x(:)
plotGrid(G,'FaceColor' ,[.8 .

V = pebi(triangleGrid([x y]));

plotGrid(V,'FaceColor',[.8 .8 .8]);

42 /117

Using an external grid generator

Install DistMesh by Persson & Strang as a module

path = fullfile(ROOTDIR, utils', '3rdparty ', 'distmesh');
mkdir(path)

unzip('http:// persson.berkeley.edu /distmesh/distmesh.zip', path);
mrstPath(' reregister ', 'distmesh', path);

and use it to grid around a circular inclusion

mrstModule add distmesh;

£d=0(p) ddiff(drectangle(p,—1,1,—1,1), dcircle(p,0,0,0.5));
[p,t]=distmesh2d(fd, Ghuniform, 0.2, [-1,—1;1,1], [-1,—1;—-1,1;1,—1;1,1]);
G = triangleGrid(p, t);

AV

S

SIS
N
A\

For details: see Chapter 3.2.4 of the MRST book

43 /117

Layered and stratigraphic grids

MRST has a few simple routines for generating layered /stratigraphic grids

% Extrude a standard MATLAB dataset % Make and process simple corner—point description
load seamount grdecl = simpleGrdecl([20, 10, 5], 0.12)

g = triangleGrid([x(:) y (:)]); G = processGRDECL(grdecl);

P = pebi(g); plotGrid(G,' FaceAlpha',0.8);

V = makeLayeredGrid(P, 5); plotFaces(G,find(G.faces.tag>0), 'FaceColor', red");
plotGrid(V), view(—40, 60), axis off view (40,40), axis off

44 /117

Rock modelling in MRST

All flow and transport solvers in MRST require a rock structure, which by
convention is called rock, and contains two fields:

rock.poro — porosity, column vector with one entry per active cell

rock.perm — permeability in Sl units

The permeability can either be a single column (isotropic), two or three
columns (diagonal tensor), or a symmetric, full tensor permeability

. . Ki(i) Ks(i) Ks(i)

Kl(l) Kz(l) . . .

Ki = . NE I(z = KQ(Z) K (Z) K (Z)
R Rt Koli) Ks(i) Koli)

Nonsymmetic permeabilities are currently not supported

The rock object can also hold net-to-gross, ntg, consisting of a scalar or
a single column vector with one value per active cell

45 /117

Example: ogeneous model

Square 10 x 10 grid model with a uniform porosity of 0.2 and isotropic
permeability equal 200 mD:

G = cartGrid([10 10]);
rock = makeRock(G, 200millixdarcy, 0.2);

Because MRST works in Sl units, we must convert from the field units
'darcy’ to the Sl unit 'meters?’. Alternative: use the conversion function
convertFrom(200,milli*darcy)

Homogeneous, anisotropic permeability can be specified in the same way:

rock = makeRock(G, [100 100 10].*millixdarcy, .2);

Warning: It is better to use makeRock instead of setting rock.poro and rock.perm directly to
avoid unintentionally copying data elements from existing rock objects

46 /117

Example: heterogeneous model

20

- _—
| o
N — -
. . - - L -
Generate ¢ as a Gaussian field and then o - e
compute K from the Carman—Kozeny = S
. L}
relation "Hm'—s-m‘gs‘vﬂ
3d? HE & 2 2 T
K — 1 ¢ dp 02 022 024 026 028 03 032 034 03 038 04
721 (1 — ¢)2’

plotCellData(G,rock.poro);
colorbar(‘horiz'); axis equal tight;

In MRST:

G

cartGrid([50 20]);

gaussianField(G.cartDims, ...
[0.20.4], [11 3], 2.5);

K = p."3.%(1le—5)"2./(0.81x72%(1—p)."2);

rock = makeRock(G, K(:), p (}));

MRST only has very simplified support for
geostatistics. For more realistic
geostatistics, you should consider
commercial software or e.g., GSLIB

plotCellData(G,convertTo(rock.permmillisdarcy))
colorbar('horiz'); axis equal tight; view(3);

47 /117

Example: stratigraphic model

Generate a layered model with a single fault in the middle.

G
K

processGRDECL(simpleGrdecl([50 30 10], 0.12));
logNormLayers(G.cartDims, [100 400 50 350], 'indices', [1 2 5 7 11]);

Four layers with mean values: 100, 400, 50, and 350 mD (top to
bottom), and layer thickness: one, three, two, and four grid cells.

plotCellData(G,1log10(K), 'EdgeColor','k");
view(45,30); axis tight off,
set(gca,'DataAspect’,[0.5 1 1])

h = colorbar(horiz');

ticks = 25#2.7[0:5];

set(h,'XTick', log10(ticks),"XTickLabel',ticks);

48 /117

Example: Model 2, 10" SPE Comparative Solution Project

Separate module, spe10, for downloading and accessing this model

‘ mrstModule add spel0; rock = SPE10_rock(); ‘

w 10000
— Nes:
—Tarl ben

Iateral permeablllty vertlcal permeablllty

49 /117

Example: model from Eclipse input deck

Download the SAIGUP data set using mrstDatasetGUI. List of files:

028_A11.EDITNNC 028.MULTX 028.PERMX 028.SATNUM SAIGUP.GRDECL
028_A11.EDITNNC.001 028.MULTY 028.PERMY SAIGUP_A1.ZCORN

028_A11.TRANX 028.MULTZ 028.PERMZ SAIGUP.ACTNUM

028_A11.TRANY 028.NTG 028.POR0O SAIGUP.COORD

Use deckformat module to read data

mrstModule add deckformat;
grdecl = readGRDECL(fullfile(getDatasetPath('SAIGUP'),'SAIGUP.GRDECL'))

grdecl =
cartDims: [40 120 20]

COORD: [29766x1 double]
ZCORN: [768000x1 double]

ACTNUM: [96000x1 int32]
PERMX: [96000x1 double]
PERMY: [96000x1 double]
PERMZ: [96000x1 double]
MULTX: [96000x1 double]
MULTY: [96000x1 double]
MULTZ: [96000x1 double]
PORO: [96000x1 double]
NTG: [96000x1 double]
SATNUM: [96000x1 double]

50 /117

Example: synthetic shallow-marine model

The SAIGUP model uses the Eclipse '"METRIC' conventions (permeability
in unit md, etc), so we first convert to S| units

usys = getUnitSystem('METRIC');
grdecl = convertInputUnits(grdecl, usys);

Then we generate a space-filling grid and extract petrophysical properties

G = processGRDECL(grdecl);
G = computeGeometry(G);
rock = grdecl2Rock(grdecl, G.cells.indexMap);

51/117

Example: synthetic shallow-marine model

horizontal permeability vertical permeability

Grids in MRST: fully unstructured

All grids are assumed to be unstructured. Basic representation:

S sl f

cells nodes faces

Choices in grid representation are guided by utility and convenience in
low-order finite-volume methods

Available geometric information: centroids, normals, areas, and volumes
Heavy use of indirection maps

Redundant information must be constructed, e.g., using run-length encoding

53 /117

Grid structure: cells

The cell structure, G.cells, has the mandatory fields:
num — the number N, of cells in the global grid

facePos — indirection map into the faces array. Information of cell
i is found in submatrix faces(facePos(i) :facePos(i+1)-1,:)

The number of faces of each cell may be computed using the statement diff (facePos).
Likewise, the total number of faces is given as ny = facePos(end)-1

faces — ny x 3 array of global faces connected to a given cell.
Specifically, if faces(i,1)==j, then global face number
faces(i,2) is connected to global cell number j.

The third column is optional and can for certain types of grids contain a tag used to
distinguish face directions

The first column is redundant: cell index j is simply repeated facePos(j+1)-facePos(j)
times. To conserve memory, we regenerate it using run-length encoding:
rldecode(1:G.cells.num, diff(G.cells.facePos),2).’

54 /117

Grid structure: cells

Optional field:

indexMap — N, X 1 array mapping internal cell indices to external
cell indices. For models with no inactive cells, indexMap equals

1: N.. For cases with inactive cells, indexMap contains the indices
of the active cells sorted in ascending order.

For logically Cartesian grids, a map of cell numbers to logical indices can be constructed
using the following statements in 3D:

[1jk{1:3}] = ind2sub(dims, G.cells.indexMap(:));
ijk = [L3%{:3];

Here, 1jk(i:) is the global (I, J, K) index of cell 4.

Additional fields, typically added by a call to computeGeometry:
volumes — an N, x 1 (double) array of cell volumes

centroids — an N, x d (double) array of cell centroids

55 /117

Grid structure: faces

The face structure, G.faces, has the mandatory fields:
num — the number Ny x 1 of cells in the global grid

facePos — indirection map into the nodes array.

nodes — an N,, x 2 array of vertices. If nodes(i,1)==j, local
vertex ¢ is part of global face number j and corresponds to global
vertex nodes (i,2). Nodes are oriented such that a right-hand rule
determines the direction of the face normal. First column is
redundant

neighbors — Ny x 2 array. Global face ¢ is shared by global cells
neighbors(i,1) and neighbors(i,2). One of the entries in each
row can be zero, but not both, to indicate that this is an external
face belonging to only one cell (the nonzero entry).

56 /117

Grid structure: faces and nodes

Optional field:

tag — can contain user-defined face indicators

Additional fields, typically added by a call to computeGeometry:

areas — an Ny x 1 of face areas

normals — an Ny x d of area weigthed, directed face normals,
which on face 7 points from cell neighbors(i, 1) to cell
neighbors(i,2).

centroids — an Ny x d array of face centroids.

The vertex structure, G.nodes, consists of two fields:

num — number N, of global nodes in the grid

coords — an N,, X d array of physical nodal coordinates. Global
node i is at physical coordinate coords(i,:).

57 /117

Example: grid structure

‘ G = removeCells(cartGrid([3,2]), 2)

G =
cells: [1x1 struct]
faces: [1x1 struct]
nodes: [1x1 struct]
cartDims: [3 2]
type: {’tensorGrid’ ’cartGrid’ ’removeCells’}
griddim: 2
cells.faces = faces.nodes = faces.neighbors =
ul 14 45 ol 4 7 1 1 1 (East) 11 0o 1
o = b = =+ = i 19 3 (South) 105 10
12 2 (West) 2 2 o 2
1 11 4 (North) 2 6 2 0
| 2 3 1 (East) 3 3 o 3
P ® ©) r ® B 2 10 3 (South) 3 7 3 4
2 4 2 (West) 4 4 4 5
2 13 4 (North) 4 8 5 0
3 5 1 (East) 5 5 0o 1
E3; 1% {61 12 7 13 18] 3 11 3 (South) 5 9 0o 2
3 6 2 (West) 6 6 13
3 14 4 (North) 6 10 0o 4
4 6 1 (East) 77 2 5
4 12 3 (South) 7 11 3 0
t @ £ P @ f 4 7 2 (West) 8 8 4 0
4 15 4 (North) 8 12 5 0
5 7 1 (East) 9 2
5 13 3 (South) 9 1
A} 9 2] 3] 10 [4] 5 8 2 (West) E
5 16 4 (North)

58 /117

Geometry computation: basic steps

Tesselation of faces

Area-weighted centroid and normal vector Triangulation of cell volume

59 /117

Computer exercises

List all tutorials in mrst-core and go through at least one of each of the
following types:

datasets/show<name>.m grids/gridTutorial<name>.m

Make the grid below. Hint: the grid spacing in the z-direction is given by
Az (1 — 3 cos(wz)) and the colors signify cell volumes.

°

0z
. ‘
06
08

02 ©
05 04
o, o8 °

Create MRST grids from the standard data set trimesh2d. How would
you assign lognormal petrophysical parameters to these grids so that the
spatial correlation is preserved?

60 /117

© Introduction

© Getting started with MRST
© Grids and petrophysical data
© Incompressible flow

© Multiphase flow

© Compressible flow

e The AD-OO framework in MRST

61 /117

What you will learn in this section

We will go through:
discrete differential and averaging operators

finite volume methods for fV(KVp) =q
automatic differentiation

flow solvers in the incomp family
You will also get a tast of efficient vectorization tricks in MATLAB

To learn more:
— watch the videos in Joltl
— study the 1ph tutorials/examples in the incomp module
— read Lie et al. (COMG, 2012), doi: 10.1007/s10596-011-9244-4
— read Chapters 4 to 6 in the MRST book

Discrete differentiation operators

Idealized models JG|~id structure in MRST]

¢ F(C

Q

I R O 9

O CI CRFRS I 1S

o~
-

[S

Map: cell —+ faces Map: face — cells

Starting point: mapping F' from cell to faces, and C from face to cells:

C = G.faces.neighbors; % Cells belonging to each face

¢ =c(all(Cc ~=0, 2), :); % Only interior faces

cn = gridCellNo(G); % Repeat cell number for all faces
F = G.cells.faces(:1); % Faces making up each cell
[nf,nc] = deal(size(C,1), G.cells.num); % Number of faces/cells

We only consider internal faces, mapping F' is represented as cn and F

63 /117

Discrete differentiation operators

Idealized models [Grid structure in MRST] Industry models
°° c F(c) @ @5 0 "
' ? 1 1 3 1
12 12
1 18
14 9 1
2 5 402
2 6 2 5
7 2 6
8 2 7
/ j . :
/) Map: cell — faces Map: face — cells
S :
I 6

The discrete div operator is a linear mapping from faces to cells:

1, If CcC = Cl(f),

div(v)[c] = Z sgu(f)v[f], sgu(f) = {_1 if c=Ca(f).

fEF(c)

Here, v[f] denotes a discrete flux over face f with orientation from cell
C1(f) to cell Ca(f)

63 /117

Discrete differentiation operators

Idealized models [Grid structure in MRST] Industry models
°° c F(c) @ @5 0 "
' ? 1 1 3 1
12 12
1 18
14 9 1
2 5 402
2 6 2 5
7 2 6
8 2 7
/ j . :
/) Map: cell — faces Map: face — cells
S :
I 6

The discrete grad operator maps from cell pair C1(f), Ca(f) to face f:

grad(p)[f] = p[Ca(f)] — p[C1(f)].

where p|[c] is a scalar quantity associated with cell ¢

63 /117

Discrete di tiation operators

r[ized models /[Grid structure in MRST] Industry models
N e 0) o G P .
H ? 1 1 3 1

: 12 12
1 3 1 8
1 1 9 1
2 5 4 2
2 6 2 5
2 7 2 6
28 2 7
2 2 £
S
3 1 =
Map: cell - faces Map: face — cells @

The div and grad operators are linear and can be represented as sparse
matrix multiplications:

D = sparse([(1:nf)"; (1:nf)'], C, ones(nf,1)¥[—1 1], nf, nc);
grad = Q(x) Dxx;
div = @(x) —D'xx;

With no-flow boundaries, the two operators are adjoint of each other, as
in the continuous case

63 /117

Finite-volume method: single-phase flow

Fundamental physics: Darcy's law
/ ﬁ(x)~ﬁfds:—/ K(z)Vp - iifds
Ly Ty

v[f] = —T[f] grad(p)[f]
Conservation of mass:
Cik - Kifls 1

/ v-nds = V-'Ddi’:/ qd® Tix = Aik —
92 Qe Ci, k|

c

div(v)[c] = q|c] Tir = [T:k1 4 T,;il]f1

64 /117

Finite-volume method: single-phase flow

Fundamental physics: Darcy's law

/ﬁ(x)~ﬁfds:—/ K(z)Vp - iifds
Ty Ty

v[f] = —T[f] grad(p)[f]

Conservation of mass:

. . - Cik - Kiti;
/ v-nds:/ V-'L}dm:/ qd® Ti,k:Ai,kl’k_*i’;’k
92 €,k

c c

div(v)[c] = q|c] Tir = [T:k1 4 T,;il]f1

We start by extracting face normals and vectors from cell to face

centroids:
sgn = 2*(cn == G.faces.neighbors(F, 1)) — 1;
¢ = G.faces.centroids(F,:) — G.cells.centroids(cn,:);
n = bsxfun(O@times, sgn, G.faces.normals(F,:));

Here, the first line determines the correct sign of the face normal

64 /117

Finite-volume method: single-phase flow

Fundamental physics: Darcy's law
/ U(x) -7y ds = —/ K(z)Vp - iifds
Ly Ty
v[f] = =T[f] grad(p)|f]

Conservation of mass:

. . - Cik - Kiti;
/ v-nds:/ V-'L}dm:/ qd® Ti,k:Ai,kl’k_*i’;’k
92 €,k

c c

div(v)[c] = q|c] Tir = [T:k1 4 T,;il]f1

We start by extracting face normals and vectors from cell to face
centroids:

sgn = 2*(cn == G.faces.neighbors(F, 1)) — 1;
¢ = G.faces.centroids(F,:) — G.cells.centroids(cn,:);
n = bsxfun(O@times, sgn, G.faces.normals(F,:));

Here, the first line determines the correct sign of the face normal

Extract permeability vector [K 5, Ky, Ky, Ky, for each cell:

[K, i, j] = permTensor(rock, G.griddim);

64 /117

Finite-volume method: single-phase flow

Fundamental physics: Darcy's law
/ ﬁ(x)~ﬁfds:—/ K(z)Vp - iifds
Ly Ty

v[f] = —T[f] grad(p)[f]
Conservation of mass:

. . - Cik - Kiti;
/ v-nds:/ V-vdm:/ qd® Ti,k:Ai,kl’k_*i’;’k
92 €,k

c c

div(v)[c] = q|c] Tir = [T:k1 4 T,;il]f1

Then, we can compute the one-sided transmissibilities 7T; j:

%In2D: i=[112 2], j=[121 2]
hT = sum(c(:,i) .* (@times, K(cn ,:), n(:, 3)), 2);
hT = hT./ sum(c.x*c,2);

Here, applies an element-by-element multiply operation to two arrays. Compact notation
for a double for-loop

64 /117

Finite-volume method: single-phase flow

Fundamental physics: Darcy's law
/ U(x) -7y ds = —/ K(z)Vp - iifds
Ly Ly
v[f] = —T[f] grad(p)[f]
Conservation of mass:

. . - Cik - Kiti;
/ v-nds:/ V-'L}dm:/ qd® Ti,k:Ai,kl’k_*i’;’k
92 €,k

c c

div(v)[c] = q|c] Tir = [T:k1 4 T,;il]f1

Then, we can compute the one-sided transmissibilities 7T; j:

%In2D: i=[112 2], j=[121 2]
hT = sum(c(:,i) .* (@times, K(cn ,:), n(:, 3)), 2);
hT = hT./ sum(c.x*c,2);

Here, applies an element-by-element multiply operation to two arrays. Compact notation
for a double for-loop

One-side transmissibilities can be computed once using the function:

hT = computeTrans(G, rock);

64 /117

Finite-volume method: single-phase flow

Fundamental physics: Darcy's law

/Ff U(x) -7y ds = _/Ff K(z)Vp - iifds
v[f] = —=Tf] grad(p)[f]

Conservation of mass:

/ U-ﬁds:/ V-ﬁdi’:/ qd%
0

c c

div(v)[d] = q[¢]

Cik - Kifls 1

Tikx = A;
ik ik G el?

s

T = [Ti 5 + T il

Finally, we can compute the transmissibilities T;:

T =1./ (F, 1 ./nT, [G.faces.num, 1]);
T T(all(C~=0,2),:);

Here,
and stores the result in the location given by p

collects all elements of v that have identical subscripts in p, sums them,

Finite-volume method: single-phase flow

Fundamental physics: Darcy's law
/ ﬁ(x)~ﬁfds:—/ K(z)Vp - iifds
Ly Ty

v[f] = —T[f] grad(p)[f]

Conservation of mass:

. R - Cik - Kiti;
/ v-nds:/ V-vdm:/ qd® Ti,k:Ai,k”k_*il;’k
92 . €,k

c

div(v)[c] = q|c] Tir = [T:k1 4 T,;il]f1

Usually, you would not have to implement all this, but rather call a
function that also includes various safeguards:

S = setupOperatorsTPFA(G,rock);

g =
T_all: [220x1 double]
T: [180x1 doublel]
C: [180x100 double]
Grad: @(x)-C*x
Div: @(x)C’*x

64 /117

Automatic differentiation

Discretization of flow models leads to large system of (non)linear
equations. Can be linearized and solved with Newton's method

OF

(x)(z" — ') = —F (')

Coding necessary Jacobians is time-consuming and error prone

Automatic differentiation

Idea: keep track of variables and derivatives simultaneously

Any code, regardless of complexity, can be broken down to a limited
set of arithmetic operations (+, —, *, /,...) and elementary functions
(sin, exp, power, ...)

Derivative rules are known for these operations and functions

Combine these with the chain rule

65 /117

Automatic differentiation

Consider a scalar primary variable = and a function f(x), whose AD
representations are the pairs (x,1) and (f, f2)

Must define the action of elementary operations and functions on all

such pairs:
(fs fe) +49:92) = {f + g, fo + 9u) »
(f, f2) (9, 92) = {f9, [92 + f23) ,
exp ((f, fz)) = (exp (f) ,exp (f) fz),
sin ((f, fo)) = (sin (f) ,cos (f) fz),

Use operator overloading to write a + b * ¢ rather than awkward
constructs like myPlus(a,myTimes(b,c))

Goal: make code as close as possible to mathematical description of
model

66 /117

Implementation of AD in MRST

[x,y] = initVariablesADI(1,2);
z = 3xexp(—x*y)

y = ADI Properties:

z = ADI Properties:

x = ADI Properties:
val: 1 val: 2 val: 0.4060
jac: {[11 [0]} jac: {[0] [11} jac: {[-0.8120] [-0.4060]}
i £ BN A D A
1 1 1 1 1 1
] 1 1 1] 1
[[1 ! ' 1
1 1 [1 1 1
or Oz dy Oy 0z 0z
or Oy dr Oy 0x lz=1y=2 Oy lz=1,y=2

MRST implementation tailored to reservoir simulation and MATLAB:

designed to be efficient for vector variables more than scalars
works with sub-Jacobians rather than full Jacobians to simplify

subsequent manipulation

67 /117

Applying AD to incompressible flow

First, we write the flow equation as a residual:
F(p)=V-(KVp)+¢=0
In discrete form:
F(p) =div(T grad(p)) + g=Ap+q=0

Apply Newton's method with a zero initial guess:

OF

g(p) (p—0)=-F0) & Ap=-—q

Using AD means that we never need to form A explicitly

68 /117

Solving the Poisson equation: —Ap = ¢

% Grid and grid information
G = cartGrid([5 5]);

G = computeGeometry(G);
rock = makeRock(G, 1, 1);
nc = G.cells.num;

% Operators
S = setupOperatorsTPFA(G,rock);

spy(S.C);

% Assemble and solve equations

p = initVariablesADI(zeros(nc,1));

q = zeros(nc, 1); % source term

q([1 nc]) =[1 —1]; % quarter five —spot

eq = S.Div(S.Grad(p))+q; % equation

eq(l) = eq(1) + p(1); % make solution unique
P = —eq.jac{1l}\eq.val; % solve equation
plotCellData(G,p);

69 /117

% Grid and grid information

G = computeGeometry(cartGrid([20 20], [1 1]));

rl = sum(bsxfun(@minus, G.cells.centroids ,[0.5 1])."2,2);
r2 = sum(bsxfun(@minus, G.cells.centroids ,[0.5 0]). ;
G = extractSubgrid(G, (r1>0.16) & (r2>0.16));

rock = makeRock(G, 1, 1);
nc = G.cells.num;

% Operators

S = setupOperatorsTPFA(G,rock);

spy(S.C);

% Assemble and solve equations
p = initVariablesADI(zeros(nc,1));

q = zeros(nc, 1);
q([1 nc]) =1 -1];

eq = S.Div(S.Grad(p))+q;
eq(1l) = eq(1) + p(1);
P = —eq.jac{1l}\eq.val;
plotCellData(G,p);

% source term
% quarter five —spot

% make solution unique
% solve equation

% Grid and grid information
load seamount

G = pebi(triangleGrid ([x(:) y (:)]));
G = computeGeometry(G);

rock = makeRock(G, 1, 1);

nc = G.cells.num;

% Operators
S = setupOperatorsTPFA(G,rock);

spy(S.C);

% Assemble and solve equations

p = initVariablesADI(zeros(nc,1));
q = zeros(nc, 1)

q([135 282 17]) = [-1 .5 .5];

eq = S.Div(S.T.*S.Grad(p))+q;
eq(1) = eq(1) + p(1);
P = —eq.jac{l}\eq.val;

plotCellData(G,p);

71/117

Switching between different dicretization schemes

Discretization schemes: represented in terms of discrete divand gradoperators,
and some discrete representation of a bilinear form, e.g., (@,7) = [- K17

As example, consider: V-i=gq, #=-KVp

Two-point flux approximation (TPFA)
Given a vector Ty of transmissibilities, the coded equations become

v = —T_tp.xgrad(p)

eq = div(v)—q; — eq = div(T_tp.*grad(p))+aq;

Multi-point flux approximation (MPFA)

Given a matrix Ty,p of transmissibilities, the coded equations become

v —T_mp*grad(p)

i = B s eq = div(T_mp*grad(p))+aq;

72 /117

Switching between different dicretization schemes, cont'd

Same example: V-i=q, 1U=-KVp

Lowest order mixed (or mimetic) formulation
Given a matrix M with m;; ~ fq,/?z . K_IIE]-, one may be tempted to code the
equations as

—M\grad(p);
eq = div(v)—q;

v

. will work but involves applying M~ to the ny X ne grad-matrix. Instead let flux v
be primary variable, and solve for both v and p:

[v,p] = initVariablesADI(zeros(nf, 1), zeros(nc, 1));

eq{1} = Mxv+grad(p); % Darcy's law
eq{2} = div(v)—q; % continuity equation
eq = cat(eq{:}); % concatenate equations

x = —eq.jac{l}\eq.val; % solve, x contains both v and p

73 /117

More advanced problems

You can continue to expand these examples with more effects:
buoyancy effects and fluid viscosity
source terms and boundary conditions
well models
multiphase mobilities

transmissibility multipliers

Eventually, the code will become quite involved and you will need to
encapsulate your implementation inside functions (or objects)

This is done in the incomp family of solvers:
incompTPFA, incompMimetic, incompMPFA,...

74 /117

Assembly of linear equation in incomp solvers

Automatic differentiation and discrete operators are new ideas in MRST.
The incomp solver family uses mechanical assembly. For TPFA:

We sum the transmissibilities of all faces to create the diagnonal:

d = accumarray([C(:,1); C (:,2)], repmat(T ,[2,1]).[nc, 1]);

Then, we construct the discrete matrix

I=([c(.1); C(52); (1:nc)'];

J=1c(32); ¢(31); (1:nc)';

V = [-T; —T; d]; clear d;

A = sparse(double(I), double(J), V, nc, nc);

Assuming we know the right-hand side, we can solve the flow

equation:
A(1) = 2%A(1); % Set p=0 in cell #1 if only Dirichlet b.c
p = mldivide(A, rhs);

75 /117

Basic data structures in simulation models

Fluid properties:

fluid = initSingleFluid('mu', lxcentixpoise, ...
'rho', 1014xkilogram/meter”3);

Reservoir states (physical variables):

state = initResSol(G, pO, s0);
state = initState(G, W, p0, s0);

Fluid sources

src = addSource(src, cells, rates);
src = addSource(src, cells, rates, 'sat', sat);

76 /117

Basic data structures in simulation models

Boundary conditions

bc = addBC(bc, faces, type, values);
bc = addBC(bc, faces, type, values, 'sat', sat);

For grids having logical IJK numbering:

bc = pside(bc, G, side, p);
bc = fluxside(bc, G, side, flux)

where side would be 1/°West’/’XMin’/’Left’, etc

Wells with Peacemann well model:

W = addWell(W, G, rock, cellInx);
W = addWell(W, G, rock, cellInx, 'pn', pv, ...);

For convenience, we also have the functions

W = verticalWell(W, G, rock, I, J, K)
W = verticalWell(W, G, rock, I, K)

77 /117

Incompressible flow solvers in

The three main solvers available are:
The standard two-point solver:

mrstModule add incomp;
hT = computeTrans(G, rock);
state = incompTPFA(state, G, hT, fluid, ...);

Lowest-order mimetic finite-difference methods:

mrstModule add mimetic;
IP = computeMimeticIP(G, rock);
state = incompMimetic(state, G, IP, fluid, ...);

The MPFA-O multipoint flux-approximation method:

mrstModule add mpfa;
hT = computeMultiPointTrans(G, rock);
state = incompMPFA(state, G, hT, fluid)

Example: quarter five-spot with source terms

gravity reset off
[nx,ny] = deal(20);

G = cartGrid([nx,ny],[500,500]);

G = computeGeometry(G);

rock = makeRock(G, 100#millixdarcy, .2);
hT = computeTrans(G, rock);

fluid = initSingleFluid('mu', lkcenti*poise, ...
'rho', 1014xkilogram/meter”3);

pv = sum(poreVolume(G,rock));
src = addSource([], 1, pv);
src = addSource(src, G.cells.num, —pv);

state = initResSol(G, 0.0, 1.0);

state = incompTPFA(state, G, hT, fluid, 'src', src);
plotCellData(G, state.pressure);

plotGrid(G, src.cell, 'FaceColor', 'w');

mrstModule add streamlines;

seed = (nx:nx—1l:nx*ny).";

Sf = pollock(G, state, seed, 'substeps', 1);

Sb = pollock(G, state, seed, 'substeps', 1, 'reverse', true);
h=streamline([Sf; Sb]); set(h,'Color', 'k');

79 /117

Example: horizontal and vertical well

[nx,ny,nz] = deal(20,20,5);
G = cartGrid([nx,ny,nz], [500 500 25])
G = computeGeometry();

hT = computeTrans(G, rock);

W = verticalWell([], G, rock, 1, 1, linz,
"Type', 'rate','Comp.i', 1,
'Val', 3e3/day,
'Radius', .12xmeter, 'name', '|');

W = addWell(W, G, rock, nx : ny : nx*ny,
'Type', 'bhp', 'Comp.i', 1,
"Val', 1.0e5, 'Radius', .12*meter, ...
'Dir', |y|v "name’, 'P');

gravity reset on;
state = initState(G, W, 0);
state = incompTPFA(state, G, hT, fluid, 'wells', W);

plotCellData(G, state.pressure,'EdgeAlpha',.01,'FaceAlpha’,.4);
plotWell(G, W(1), 'radius', 1, 'color', 'r');
plotWell(G, W(2), 'radius', .5, 'color', 'b");
view(3), camproj perspective, axis tight off

80 /117

Computer exercises

Run the quarter five-spot example with the following modifications:

(1) Replace the Cartesian grid by a curvilinear grid, e.g., use twister or a
random perturbation of internal nodes as shown in the lectures. Do you
see differences if you replace TPFA with mimetic of MPFA?

(2) Set the domain to be a single layer of the SPE 10 model. Hint: use
getSPE10rock() to sample the petrophysical parameters.

Notice that pollock may not work for non-Cartesian grids and you may wish to
compute time-of-flight instead using the diagnostics module.

Pick a bed model from BedModels1 or BedModel2. Compute flow
subject to linear pressure drop first in the x and then in the y-direction.
A unit pressure drop is the most wide-spread computational setup used
for flow-based upscaling.

Explore the many tutorial examples found in mrst-core, incomp and
mrst-book/1phase

81/117

© Introduction

© Getting started with MRST
© Grids and petrophysical data
© Incompressible flow

© Multiphase flow

© Compressible flow

e The AD-OO framework in MRST

What you will learn in this section

In this section, we study incompressible, two-phase flow

You will learn about:
discretizing the transport equation on unstructured grids
nonlinear solution strategy (Newton—Raphson, time-step control)

implementation in MRST
To learn more:

— study the 2ph tutorials/examples in the incomp module
— read Chapters 8 to 10 in the MRST book

83 /117

Two-phase, incompressible flow

The solvers of the incomp family are designed to solve two-phase models
consisting of an elliptic pressure equation

V-'D’:q’ = _)‘(Vpn waPc_ (pwfw +pnfn)gvz)

and a hyperbolic/parabolic transport equation

¢7 +V- [fw (U-i— An(ApgVz + VPC))] = qu

84 /117

Two-phase, incompressible flow

The solvers of the incomp family are designed to solve two-phase models
consisting of an elliptic pressure equation

V-'D’:q’ = _)‘(Vpn waPc_ (pwfw +pnfn)gvz)

and a hyperbolic/parabolic transport equation

¢7 +V- [fw (U-i— An(ApgVz + VPC))] = qu

Standard approach — sequential solution procedure:

Compute initial state and set t =0

While t < T
Fix S, and solve elliptic pressure equation
Fix p and ¢ and solve transport equation a time At
t=t+ At

84 /117

Two-phase, incompressible flow

The solvers of the incomp family are designed to solve two-phase models
consisting of an elliptic pressure equation

V-'D’:q’ = _)‘(Vpn waPc_ (pwfw +pnfn)gvz)

and a hyperbolic/parabolic transport equation

¢7 +V- [fw (U-i— An(ApgVz + VPC))] = qu

For the pressure equation, we use same methods as discussed above with
obvious modifications. Solvers implemented for multiphase elliptic
pressure equation:

incompTPFA, incompMimetic, incompMPFA,...

The only changes are in how mobility and right-hand side are computed

84 /117

Two-phase, incompressible flow

The solvers of the incomp family are designed to solve two-phase models
consisting of an elliptic pressure equation

V-7= q, = _)‘(Vpn waPc - (pwfw + pnfn)gvz)

and a hyperbolic/parabolic transport equation

¢7 +V- [fw (U-i— An(ApgVz + VPC))] = qu

For the transport equation, we have two different solvers:

state = explicitTransport(state, G, tf, rock, fluid, 'mechl’, obj1, ...)
state = implicitTransport(state, G, tf, rock, fluid, 'mechl’, obj1, ...)

designed to work on fully unstructured grids, but only implemented for
two-phase flow

84 /117

Discretization of ¢S; + V - H(S) =0

Flux H incorporates effects of viscous,
gravity, and capillary forces:

AwAnK
Aw + An
H{(S) + Hg(S) + He(S).

H(S) = f(s)7+ (ApG+ VP:(5))

85 /117

Discretization of ¢S; + V - H(S) =0

Flux H incorporates effects of viscous,
gravity, and capillary forces:

AwAnK
Aw + An
H{(S) + Hg(S) + He(S).

H(S) = f(s)7+ (ApG+ VP(S))

Integrated over cell ; and in time

1 bnta -
sl _on — / / H(S(Z,t)) - i dsdt
' ' ¢i|Qi|zk: tn T (S@.0)) - o ds

85 /117

Discretization of ¢S; + V - H(S) =0

Flux H incorporates effects of viscous,
gravity, and capillary forces:

AwAnK
Aw + An
H{(S) + Hg(S) + He(S).

H(S) = f(s)7+

(Apg+ VP(S))

Integrated over cell ; and in time

1 bnta -
sl _on — / / H(S(Z,t)) - i dsdt
' ' ¢i|Qi|zk: tn T (S@.0)) - o ds

For first-order methods, we can evaluate integral at end-points:

At =
S _gn — H(S(Z,tm)) - fixds, m=n,n+1

Yol Uy,

85 /117

Discretization of ¢S; + V - H(S) =0

Flux H incorporates effects of viscous,
gravity, and capillary forces:

AwAnK
Aw + An
H{(S) + Hg(S) + He(S).

H(S) = f(s)7+ (ApG+ VP:(5))

For first-order methods, we can evaluate integral at end-points:

Al ﬁ(S(f, tm)) - Tl K ds, m=n,n+1

Sprt— S =
’ ®il4| Jr,,

Capillary term is discretized using the TPFA method:

Ai iV P(S) ity ~ [T + T,;}]*l (P.(S;) — Pe(Sk)) = Pii(S)

85 /117

Discretization of ¢S; + V - H(S) =0

Flux H incorporates effects of viscous,
gravity, and capillary forces:

AwAnK
Aw + An
H{(S) + Hg(S) + He(S).

H(S) = f(s)7+

(Apg+ VP(S))

For first-order methods, we can evaluate integral at end-points:

At -
Sptt g = H(S(Z,ty)) - flipds, m=n,n+1
®il4| Jr,,
We define a “gravity flux" g;; that is independent of saturation:

ik = (Ap)la, Kig - ik,

ik = [g,_l —+ g_l]il oo
7 i,k ki I ki = (Ap)|9k Kkg M

85 /117

Discretization of ¢S; + V - H(S) =0

Flux H incorporates effects of viscous,
gravity, and capillary forces:

AwAnK
Aw + An
H{(S) + Hg(S) + He(S).

H(S) = f(s)7+

(Apg+ VP(S))

Summing up, we have:

H;y, = ® i LR Ngi + P
S v v vy vl LU

where A} and A% are upstream-evaluated phase mobilities

85 /117

Discretization of ¢S; + V - H(S) =0

Flux H incorporates effects of viscous,
gravity, and capillary forces:

AwAnK
Aw + An
Hy(S) + Hy(S) + He(S).

H(S) = f(s)7+ (ApG+ VP:(5))

Summing up, we have:

u u \u

= ;_U/\% Vik +)\%w_i_ 7;\% [gir + Pir]

Hyy,

where A%, and A are upstream-evaluated phase mobilities

If sign of v;r and g; + Pji is different, choose mobilities from opposite
sides. Otherwise, check sign of v + A (gix + Pix) for « = w,n

85 /117

Implementation in MRST

Explicit scheme: S"** = S§™ — F(S™, S™). Implicit scheme: F(S™*!,8™) =0
At
Fi(s,r) =s; —ri + m [Z H;y(s) — max(g;,0) — min(g;, O)f(sz)}
1 K2 k

A (84, 5K)
)\%(Si7 Sk) +)\;‘L(Si, Sk)

Hp(s) = [vik + A& (s5, 586)(gik + Pig)]

86 /117

Implementation in MRST

Explicit scheme: S"** = S§™ — F(S™, S™). Implicit scheme: F(S™*!,8™) =0
At
Fi(s,r) =s; —ri + m [Z H;y(s) — max(g;,0) — min(g;, O)f(sz)}
1 K2 k

A% (54, 5K)

H; =
M(S) A%(Sivsk) +)\;‘L(Si,sk)

[vik + A& (s5, 586)(gik + Pig)]

To avoid code duplication, the residual form F and its Jacobian J = dF
are computed in a private helper function:

F,Jac] = twophaseJacobian(G, state, rock, fluid, 'pnl', pvi, ...
P. P

Code is quite complex since Jacobian is computed explicitly (this was
developed before AD was introduced in MRST)

86 /117

Implementation in MRST

Explicit scheme: S"** = S§™ — F(S™, S™). Implicit scheme: F(S™*!,8™) =0
At
Fi(s,r) =s; —ri + W [Z H;y(s) — max(g;,0) — min(g;, O)f(sz)}
1 K2 k

A% (54, 5K)

H; =
M(S) A%(Sivsk) +)\;‘L(si,sk)

[vik + A& (s5, 586)(gik + Pig)]

Explicit transport solver:

F = twophaseJacobian(G, state, rock, fluid, 'wells', opt.wells, ...);
s = state.s(:,1);
t =0;
while t < tf,
dt = min(tf—t, getdt(state));
s(:) = s — F(state, state, dt);
t =t 4 dt;
s = correct_saturations(s, opt.satwarn);
state.s = [s, 1—s];
end

86 /117

Implementation in MRST

Explicit scheme: S"** = S§™ — F(S™, S™). Implicit scheme: F(S™*!,8™) =0
At
Fi(s,r) =s; —ri + m [Z H;y(s) — max(g;,0) — min(g;, O)f(sz)}
1 K2 k

A (84, 5K)
)\%(Si7 Sk) +)\;‘L(Si, Sk)

Hp(s) = [vik + A& (s5, 586)(gik + Pig)]

Implicit solver uses a Newton method:
0= F(so+ ds) = F(so) + J(s0)ds,

J(sY) st = —F(s"), s st 4 55t

86 /117

Implementation in MRST

Explicit scheme: S"** = S§™ — F(S™, S™). Implicit scheme: F(S™*!,8™) =0
At
Fi(s,r) =s; —ri + m [Z H;y(s) — max(g;,0) — min(g;, O)f(sz)}
1 K2 k

A (845 81)

H; =
M(S) A%(Sivsk) +)\;‘L(Si,8k)

[vik + A& (s5, 586)(gik + Pig)]

Implicit solver uses a Newton method:
0= F(so+ ds) = F(so) + J(s0)ds,

J(sY) st = —F(s"), s st 4 55t

To get saturation values in [0, 1], we need to introduce a line-search
method that uses p* = §s‘*! as search direction. MRST uses an inexact
method that asks for a sufficient decrease in F'(s* + ap’) and reduces o
in a geometric sequence.

86 /117

Time-step control

mints = pow2(tf, —opt.tsref);
[t, dt] = deal(0.0, tf);
while t < tf && dt >= mints,
dt = min(dt, tf — t);
redo_newton = true;
while redo_newton,
sn_0 = resSol; sn = resSol; sn.s(:) = min(1,sn.s+0.05);
res = F(sn, sn_0, dt);
err = norm(res(:), inf);
[nwtfail, linfail, it] = deal(err>opt.nltol,false,0);
while nwtfail && ~1linfail && it < opt.maxnewt,

J = Jac(snm, sn_0, dt);
ds = —reshape(opt.LinSolve(J, reshape(res', [], 1)), ns, [])';
[sn, res, alph, linfail] = update(sn, sn_0, ds, dt, err);
it =it + 1;
err = norm(res(:), inf);
nwtfail = err > opt.nltol;
end
if nwtfail,
% Chop time step in two, or use previous successful dt
else
redo_newton = false;
t =t + dt;
% If five successful steps, increase dt by 50%
end
end
resSol = sn;
end

87 /117

Example: Buckley—Leverett displacement

G = computeGeometry(cartGrid([100,1]));
rock = makeRock(G, 100xmillixdarcy, 0.2);
fluid = initSimpleFluid('mu', [1, 1].*centixpoise, ...
'rho', [1000, 1000].%kilogram/meter”3, 'n', [2,2]);

bc = fluxside([], G, 'Left', 1, 'sat', [1 0]);
bc = fluxside(bc, G, 'Right', —1, 'sat', [0 1]);
hT = computeTrans(G, rock);

rSol = initState(G, [|, 0, [0 1]);
rSol = incompTPFA(rSol, G, hT, fluid, 'bc', bc);
rSole = explicitTransport(rSol, G, 10, rock, fluid, 'bc', be, 'verbose', true);

1

T
— — — Expl: 199 steps

0.9 n= 4: 47its
n=10: 65its

0.8 n=20:102its [
n=40: 161 its

07 n=100: 301 its]|

06 n=200: 407 its

0.5
0.4
0.3
0.2

70 80 90 100 88 /117

Example: inverted gravity column

gravity reset on

G = cartGrid([1, 1, 40], [1, 1, 10]);

G = computeGeometry(G);

rock = makeRock(G, 0.1xdarcy, 1); P TN, _

fluid = initCoreyFluid(... — =
'mu' , [0.30860, 0.056641]%centixpoise, ... T

'rho', [975.86,686.54]«kilogram/meter”3, ...
'n', [2,2], 'sr', [.1,.2], 'kwm',[.2142,.85]);
hT = computeTrans(G, rock);

xr = initResSol(G, 100.0xbarsa, 1.0);
xr.s(end/2+1:end) = 0.0;

xr = incompTPFA(xr, G, hT, fluid);
dt = b5xday; t=0;

for i=1:150
Xr = explicitTransport(xr, G, dt, rock, fluid, 'onlygrav', true);
t = t+dt;

xr = incompTPFA(xr, G, hT, fluid);
end

Example: inverted gravity column

t

t = 0 days t = 250 days t = 500 days

t = 125 days t = 375 days t = 750 days
90 /117

Potential pitfall: capillary-dominated flow

91 /117

© Introduction

© Getting started with MRST
© Grids and petrophysical data
© Incompressible flow

© Multiphase flow

@ Compressible flow

e The AD-OO framework in MRST

What you will learn in this section

In this section, we study compressible single-phase and multiphase flow
You will learn about:

rapid prototyping of new models using AD

use of discrete operators for compact implementations

the AD-OO framework

To learn more:
— study examples/tutorials in the ad-core and ad-blackoil modules
— read Chapter 9 in the MRST book
— read Krogstad et al. (SPE RSS, 2015), doi: 10.2118/173317-MS
— read Bao et al. (COMG, 2017), doi: 10.1007/s10596-017-9624-5

93 /117

Single-phase weakly compressible flow

The governing equation is

2 Y ((K/i)Vp) = 0

Semi-discrete flow equations on residual form with implicit time
discretization and discrete operators div, grad.

1 K n+1
Ec(pn+1 —-p") - div(ggrad(p)) =0

presEq = @(}\a p?, dt) (1/dt)*cx(p—p0) — div((T/mu).*grad(p));

<

<
1 ~

1 ~
1 ~

1 S <

current time step previous time step

94 /117

Single-phase weakly compressible flow

load seamount
G = pebi(triangleGrid([x(:) y (:)]));
G.nodes.coords = G.nodes.coordsx*100;

c = le—4;
mu = lxcentixpoise;

presEq = Q(p, pO, dt) ...
(1/dt)*cx(p—p0) — div((T/mu).xgrad(p));

p0 = 100*atm*ones(nc, 1); p0(r<5) = 200*atm;
p = initVariablesADI(pO);
[t,T,dt] = deal(0,10«day hour);

while t < T,
t =t + dt;
pO0 = p.val;

eq = presEq(p, pO, dt);
p.val = p.val —(eq.jac{l} \ eq.val);

clf, plotCellData(G,p.val);
caxis([100 200]*atm); drawnow;
end

95 /117

Single-phase compressible flow

Weakly compressible model:

Op _

Model with rock and fluid compressibility:

2 (0p) V- (pKVp) =0

% Fluid properties
c = le—4;
mu = lkcentixpoise;

% Rock property
[phiO,c_r,pr] = deal(0.3, le—3, lxatm);
phi =@(p) ..
phiO + (1—phi0)*(1—exp(—c_r*(p—pr)));

% Fluid properties

rho0 = 1073; c_f = 5e—5;

rho = @(p) (rhoOxexp(c_f*(p — pref)));
mu = lxcentixpoise;

% Set up equation
presEq = Q(p, p0, dt) ...

(1/dt)*cx(p—p0) — div((T/mu).x*grad(p));

% Set up equation
pv = @©(p) (phi(p).* G.cells.volumes);
presEq = @(p, p0, dt) ...

—div(avg(rho(p)).*(T/mu).*grad(p));

(1/at)x(pv(p).*rho(p) — pv(p0).xrho(p0)) ...

avg is a face-average operator: R"¢ — R™f

96

117

Adding effects: gravity

Semi-discrete flow equations on residual form:
1 n+1 n . n+1 K
Al @7 =(@p) T+ div(pn)" T =g, v = (grad(p)—gpgrad(2))

Homogeneous equation implemented in MRST

gradz = grad(G.cells.centroids(:,3));
v = ©O(p) —(T/mu).x(grad(p) — g*avg(rho(p)).xgradz);

presEq = Q(p, p0, dt) (1/dt)*(pv(p).*rho(p) — pv(p0).*rho(p0)) ...
+ div(avg(rho(p)).*v(p));

97 /117

Adding effects: gravity

Semi-discrete flow equations on residual form:
1 n+1 n . n+1 K
Al @7 =(@p) T+ div(pn)" T =g, v = (grad(p)—gpgrad(2))

Homogeneous equation implemented in MRST

gradz = grad(G.cells.centroids(:,3));
v = ©O(p) —(T/mu).x(grad(p) — g*avg(rho(p)).xgradz);

presEq = Q(p, p0, dt) (1/dt)*(pv(p).*rho(p) — pv(p0).*rho(p0)) ...
- aiv(ayg(sho(p)) - +v(p));
/

current time step L p at cell face

previous time step

97 /117

Adding effects: well model and controls

Peacemann well model, with hydrostatic pressure in well bore, and
control on bottom-hole pressure:

De = Poh + g Dzep(pon),

p Pbh
dc = 7W1(pc - p)7
I
S 1 dc
"=
p (&
pur, = constant
Implemented in MRST:
we = W(1).cells; % connection grid cells
WI =W(1).WI; % well—indices
dz = W(1).dz; % connection depth relative to bottom—hole
p_conn = @(bhp) bhp + g#dz.*rho(bhp);
g_conn = @(p, bhp) WI.*(rho(p(wc))/mu).*(p_conn(bhp) — p(wc));
rateEq = @(p, bhp, qS) qS—sum(q_conn(p, bhp))/rhoS;
ctrlEq = @(bhp) bhp—100%barsa;

loop and assembly of equations

[p. bhp, aS] =

1n1tVar1ab1esADI(p1n pin(wc(1)), 0);
t = 0; step = 0;
while t < totTime,

t =t + dt;

% Newton loop

resNorm = 1e99;

p0 = double(p); % Previous step pressure

nit = 0;

while (resNorm > tol) && (nit < maxits)
% one Newton iteration

end

if nit > maxits,
error('Newton solves did not converge')
end
end

99 /117

Details of simulator: time loop and assembly of equations

% —— ONE NEWTON ITERATION
% Add source terms to homogeneous pressure equation:
eql = presEq(p, pO, dt);

[p, bhp, gS] = ... eql(wc) — eql(we) — q.conn(p, bhp):
initVariablebADI(p qt(we) = eqi(wc) —q (p. bhp)

% Collect all equations
egs = {eql, rateEq(p, bhp, qS), ctrlEq(bhp)};

% Concatenate equations and solve for update:
eq = cat(eqs{:});

J = eq.jac{l}; % Jacobian

res = eq.val; % residual

upd = —(J \ res); % Newton update

% Update variables

p.val =p.val + upd(pIx);
bhp.val = bhp.val + upd(bhpIx);
end gS.val = gS.val + upd(qSIx);

if nit\> maxits,
errog('Newton

resNorm = norm(res);
nit = nit + 1;

99 /117

Adding effects: pressure-dependent viscosity

Assume the following model:

w(p) = poll + cr(p — pr)]

100 /117

Adding effects: pressure-dependent viscosity

Assume the following model:

w(p) = poll + cr(p — pr)]

Arithmetic averaging:

mu = ©(p) muO*(1+c_mux(p—pr));
v =0(p) —(T./mu(avg(p))).*(grad(p) — gravg(rho(p)).xdz);

gcon = @(p,bhp) WI.*(rho(p(wc))./mu(p(wc))).*(pcon(bhp)—p(wc));

This is alll No need to recompute derivatives for Newton's method

Unfortunately, this approach is only correct on Cartesian grids

100 /117

Adding effects: pressure-dependent viscosity

Assume the following model:
w(p) = poll + cr(p — pr)]

Harmonic averaging:

[cn,F] = getCellNoFaces(G);

hf2f = sparse(F,(1:numel(cn))',1);

hf2f = hf2f(all (C~=0,2),:);

fmob = ©@(mu,p) 1./(hf2fx(mu(p(cn))./hT))

v = @(p) —fmob(mu,p).*(grad(p) — g*avg(rho(p)).x*dz);

We multiply each one-sided transmissibility T; ;, by the correct p(p) value
and then compute their harmonic average

Previously, we used accumarray to average Tj j, but this function does not work for
AD variables. Hence, we multiply by a sparse matrix instead

100 /117

Adding effects: thermal flow

%[d)p(n N+ V- [plp,T)0] =q, T=- Vp — gp(p, T)VZ]

w(p,T) [

%[dw(p, T)Ef(p,t) + (1 — ¢)Er(p, T)] + V- [p(p, T)H;(p, T)7] = V - [kVT]| = qe

Constitutive laws and op] Discrete i
gzr :g?;:v;‘}:mi(i;;((m:i (o= o) 3; v =0(p,T) -(Tr./mu(avg(p),avg(T))) ...
S © 06 e i = gD .*(grad(p) - g*avg(rho(p,T)).*dz);
: Eq = 0(p,T, p0, T0, dt) ...
rho = @(p,T) rhor.*(1+(cp*(p - pr))) . *exp(-ct*(T-Tr)); B
m = 0(p,T) mu0(1+cmupk (p-p_r)) . ¥exp(~cmuts (T-T_r)) ; /DD L) > FUEED LGB oo
" + div(avg(rho(p,T)) .*v(p,T));
-7 0,0, 0
R S (1/dt)*(pv(p) . *rho(p,T) .*E£ (p,T) + spv(p) .*Er(T)

E - pu(p0) .*rho(p0,T0) . xE£ (p0,T0) - spv(p0) . *Ex(TO)) ...
+ div(upw(HE (p,T) ,v(p, T)>0) . xavg (rho (p,T)) .¥v(p,T)). - .

upw = 0(x,flag) x(N(:,1)).*double(flag) ... + div(-Th.*grad(T));

+ x(N(:,2)).*double("flag);

101 /117

Adding effects: thermal flow

%[d)p(n N+ V- [plp,T)0] =q, T=- Vp — gp(p, T)VZ]

u(p,T) [

%[dw(p, T)Ef(p,t) + (1 — ¢)Er(p, T)] + V- [p(p, T)H;(p, T)7] = V - [kVT]| = qe

Constitutive laws and op] Discrete i
pvr = poreVolume(G, rock);

-) . v =0T ~(Tr./m(avg(p),avg(M)) ...
pv = 0(p) pvr .* exp(cr * (p - pr)); *(grad(p) - gravg(rho(p,T)).*dz);
spv = @(p) G.cells.volumes - pv(p);
: Eq = @(p,T, p0, TO, dt) ...
rho = 0(p,T) rhor.*(1+(cp*(p - pr))) . *exp(~ctx(T-Tr)); P (f?dt)*}zpv(p) *rh>o(P) - pv(p0) . *rho(p0,T0))
mu = @(p,T) muO*(1+cmup*(p-p_r)) .*exp(-cmut*(T-T_r)); + div(avy) ; ’ '
" g(rho(p,T)) .*v(p,T));
-

i gt w P (1/dt)*(pv(p) . #rho(p,T) .*E£ (p,T) + spu(p) .+Ex (T)

E - pu(p0) .*rho(p0,T0) . xE£ (p0,T0) - spv(p0) . *Ex(TO)) ...
+ div(upw(HE (p,T),v(p,T)>0) . xavg(rho(p,T)) .*v(p,T))...

upw = 0(x,flag) x(N(:,1)).*double(flag) ... + div(-Th.*grad(T));

+ x(N(:,2)).*double("flag);

Anonymous functions may lead to redundant function evaluations. To cure, move
computation of residuals inside a function and compute and store constitutive
relationships in temporary variables

101 /117

Adding effects: multiple phases (without mass transfer)

(¢Sapa>n+1 - <¢Sapo¢)n
At

n KkTOé 7 7
vt = — P [grad(p™t!) — gpl T grad(z)]

+div(pv)at! = (pg)it!

102 /117

Adding effects: multiple phases (without mass transfer)

@Sap,)" ™ = (@Sapy)" i
: ! Atn< L 1 aiv(poyrtt = (pg)nt
Kk, . .
vptlh = — P [grad(p"') — gpl ' grad(z)]

We start by computing all cell-based properties:

% Densities and pore volumes
[rW,rW0,r0,r00] = deal(rhoVW(p), rhoW(p0), rhoO(p), ThoO(p0));
[vol, vol0] = deal(pv(p). pv(p0));

% Mobility: Relative permeability over constant viscosity
mobW = krW(sW)./muW;
mob0 = kr0(1—sW)./mu0;

102

117

Adding effects: multiple phases (without mass transfer)

(¢Sapa>n+1 - <¢Sapa)n
At

n KkTOé 7 7
vt = — P [grad(p™t!) — gpl T grad(z)]

+div(pv)at! = (pg)it!

Next, we compute differences in phase pressure across cell interfaces:

dp = grad(p);
dpW = dp—g*avg(zW). xgradz;
dp0 = dp—gxavg(r0).*gradz;

and use this to define upwind-weighted fluxes:

upw = Q(flag, x) flag.*x(C(:, 1)) + ~flag.*x(C(:, 2));

v = —upw(double(dpW) <= 0, rW.*mobW).*T.*dpW;
v0 = —upw(double(dp0) <= 0, r0.*mob0).*T.*dp0;

102 /117

Adding effects: multiple phases (without mass transfer)

(¢Sapa>n+1 - <¢Sapa)n

INT +div(pv)i Tt = (pg)itt
n KkTOé n n
vt = — P [grad(p™t!) — gpl T grad(z)]

Now, we have all we need to compute residual equations

water = (1/dt(n)).*(vol.*rW.*sW — vol0.*rWO0.*sWO0) + div(vW);
0il = (1/dt(n)).*(vol.*r0.%(1—sW) — vol0.%r00.%(1—sWO0)) + div(v0);

eqs = {oil, water};

eg = cat(eqs{t:}); \\\ \ .

\8£\\\\80\\
Op

102 /117

Adding effects: multiple phases (without mass transfer)

(¢Sapa>n+1 - <¢Sapa)n
At

n KkTOé 7 7
vt = — P [grad(p™t!) — gpl T grad(z)]

+div(pv)at! = (pg)it!

To get a robust simulator, we would also need to include:
Time-step control inside the loop
A line-search algorithm rather than simple Newton
Possibly also some preconditioning method

Notice also that this code cannot be used to simulate incompressible flow.
Trick: add small rock compressibility.

Rapid prototyping in MRST

Use abstractions to express your ideas in a form close to the underlying
mathematics

The interactive environment offers you:

— ability to try out each operation and build program as you go

— wide range of built-in functions for numerical computations

— powerful data analysis, graphical user interface, and visualization
Easy to debug and modify/improve existing codes:

— run code line by line, inspect and change variables at any point

— step back and rerun parts of code with changed parameters

— add new behavior and data members while executing program

Later, one can, if necessary, replace bottleneck operations with accelerated
editions implemented in a compiled language

103 /117

© Introduction

© Getting started with MRST
© Grids and petrophysical data
© Incompressible flow

© Multiphase flow

© Compressible flow

e The AD-OO framework in MRST

104 /117

Advanced simulators: motivation

So far in the lecture, we have seen how automatic differentiation can be
used to prototype simulators. Writing a single script has advantages:

= fast to prototype

= self-contained and easy to modify

However, there are some disadvantages as well:

= mixing logic of Newton solver with definition of model equations
= time-stepping and plotting will be done per script

= implementing several variations of the same model will result in code
duplication

105 /117

Advanced simulators: motivation

Code will eventually start to become complicated:
complex rock-fluid/PVT models
hysteretic behavior (post-iteration updates)
wells with advanced schedules and controls
time-step control and iteration control
CPR type preconditioners and multigrid solvers
advanced flow models that are extensions of simpler models

sub-equations with different discretizations, nested iterations, ...

106 /117

Next step: object-orientation

Introduce object-orientation to separate:

physical models

discretizations and discrete operators
nonlinear solver and time-stepping
assembly and solution of the linear system

Only expose needed details and enable more reuse of functionality that
has already been developed

107 /117

Next step: object-orientation

The object-oriented AD framework makes it easy to write general
simulator classes:

standardized interfaces make Newton solver independent of the
specifics of the physical model

standardized input/output makes it easy to compare and plot results

switching linear solvers or time-stepping strategy is straightforward
(Compare ad-blackoil and blackoil-sequential)

Typical workflow: build simple prototype — migrate to class-based solver

107 /117

The AD-OO modules

MRST core

Basic functions/data structures:
grid, petrophysics, wells, boundary
conditions, I/O, grid processing,
AD library, plotting, ...

mrst-gui

deckformat

Graphical interfaces for interactive
visualization of reservoir states and
petrophysical data

Input of ECLIPSE simulation
decks: read, convert to SI units,
and construct MRST objects for
grids, fluid and rock properties,
wells and simulation schedules

ad-core

ad-blackoil

General simulation framework:
abstract model classes, time-step
and iteration control, linearizations,
linear solvers, hooks for I/O and
plotting, ...

General 3-phase black-oil simulator
with dissolution and vaporization,
specialized 1- and 2-phase models,
CPR preconditioning

ad-props

Initialization of fluid models from
ECLIPSE input decks

ad-eor

Fully implicit simulators for water-
based EOR: polymer and surfac-
tant

core functionality
utility module

AD-OO module

Example: two-phase Buckley—Leverett

G = cartGrid([50, 1, 1], [1000, 10, 10]*meter);
G = computeGeometry(G);
rock = makeRock(lxdarcyxones, .3);

fluid = initSimpleADIFluid('phases', 'WO', 'n', [2 2]);

% Set up model and initial state.

model = TwoPhaseOilWaterModel(G, rock, fluid);
state0 = initResSol(G, 50xbarsa, [0, 1]);
state0.wellSol = initWellSolAD([], model, state0);

% Set up drive mechanism: constant rate at x=0, constant pressure at x=L
injR = —sum(poreVolume(G,rock))/(500*day);

bc = fluxside([], G, 'xmin', —injR, 'sat', [1, 0]);

bc = pside(bc, G, 'xmax', Oxbarsa, 'sat', [0, 1]);

109 /117

Example: two-phase Buckley—Leverett

G = cartGrid([50, 1, 1], [1000, 10, 10]+meter);
G = computeGeometry(G);

rock = makeRock(lxdarcyxones, .3);

fluid = initSimpleADIFluid('phases', 'WO', 'n', [2 2]);

% Set up model and initial state.

model = TwoPhaseOilWaterModel(G, rock, fluid);
state0 = initResSol(G, 50xbarsa, [0, 1]);
state0.wellSol = initWellSolAD([], model, state0);

% Set up drive mechanism: constant rate at x=0, constant pressure at x=L
injR = —sum(poreVolume(G,rock))/(500xday);

bc = fluxside([], G, 'xmin’, —injR, 'sat', [1, 0]);

bc = pside(bc, G, 'xmax', Okbarsa, 'sat', [0, 1]);

Simulate 1 PVI using a manual loop:

[dT, n] = deal(20xday, 25);
states = cell(n+1, 1);
states{l} = state0;

solver = NonLinearSolver();

for i = 1in
state = solver.solveTimestep(states{i}, dT, model, 'bc', bc);
states{i+1} = state;

end

Example: two-phase Buckley—Leverett

G = cartGrid([50, 1, 1], [1000, 10, 10]+meter); B g dor e
. Dadde| h|%
G = computeGeometry(G); -
O XOR@a| S ks X AL OEHO
rock = makeRock(lxdarcyxones, .3);
fluid = initSimpleADIFluid('phases’, 'WO', 'n', [2 2]);

% Set up model and initial state.

model = TwoPhaseOilWaterModel(G, rock, fluid);
state0 = initResSol(G, 50xbarsa, [0, 1]);
state0.wellSol = initWellSolAD([], model, state0);

% Set up drive mechanism: constant rate at x=0, constant pressure at x=L
injR = —sum(poreVolume(G,rock))/(500xday);

bc = fluxside([], G, 'xmin’, —injR, 'sat', [1, 0]);

bc = pside(bc, G, 'xmax', Okbarsa, 'sat', [0, 1]);

n S === [[Pey [=] > [smess 5
Simulate 1 PVI using a manual loop:

[dT, n] = deal(20xday, 25);
states = cell(n+1, 1);
states{l} = state0;

solver = NonLinearSolver();

for i = 1in
state = solver.solveTimestep(states{i}, dT, model, 'bc', bc);
states{i+1} = state;
end
plotToolbar(G, states, 'field ', 's:1', 'plotld', true,
"lockCaxis', true,'startplayback ', true);

Example: two-phase Buckley—Leverett

Figure 1 SIGIE
c = cartGrid([50, 1, 1], [1000, 10, 10J+meter); Be £t vew Tools Deskop windowHelp 3
. DEES|k 9L B0 =0
G = computeGeometry(G); =
OB @ 2k X AL Qoo
rock akeRock(1xdarcyxones, .3);

fluid = initSimpleADIFluid('phases’, 'WO', 'n', [2 2]);

% Set up model and initial state.

model = TwoPhaseOilWaterModel(G, rock, fluid);
state0 = initResSol(G, 50xbarsa, [0, 1]);
state0.wellSol = initWellSolAD([], model, state0);

% Set up drive mechanism: constant rate at x=0, constant pressure at x=L
injR = —sum(poreVolume(G,rock))/(500xday);

bc = fluxside([], G, 'xmin’, —injR, 'sat', [1, 0]);

bc = pside(bc, G, 'xmax', Okbarsa, 'sat', [0, 1]); "

o0 oo 0

BT = e [I [P

Repeat simulation with general solver:

schedule = simpleSchedule(repmat(dT,1,25), 'bc', be);
[~,sstates] = simulateScheduleAD(state0, model, schedule);

plotToolbar(G, sstates, 'field', 's:1','lockCaxis', true),
caxis([0 1]), view(10,10)
colorbar

Example: two-phase Buckley—Leverett

G = cartGrid([50, 1, 1], [1000, 10, 10]+meter);

G = computeGeometry(G);

rock = makeRock(lxdarcyxones, .3);

fluid = initSimpleADIFluid('phases', 'WO', 'n', [2 2]);

% Set up model and initial state.

model = TwoPhaseOilWaterModel(G, rock, fluid);
state0 = initResSol(G, 50xbarsa, [0, 1]);
state0.wellSol = initWellSolAD([], model, state0);

% Set up drive mechanism: constant rate at x=0, constant pressure at x=L
injR = —sum(poreVolume(G,rock))/(500xday);

bc = fluxside([], G, 'xmin’, —injR, 'sat', [1, 0]);

bc = pside(bc, G, 'xmax', Okbarsa, 'sat', [0, 1]);

Simulating TwoPhaseOilWaterModel
Soling conrol step rumber 14 0725

‘Simulated 260 days of 1 year, 135 days n schedule

The general solver has a hook, that visualizes the progress of the
simulation, enables you to stop it and continue running in 'debug’ mode:

fn = getPlotAfterStep(stateO, model, schedule, ...
"lockCaxis ', true, 'plotld', true);

[~,sstates,report] = ...

"plotWell', false, ' plotReservoir ', true, 'field ', 's:1',

simulateScheduleAD(state0, model, schedule, afterStepFn', fn);

More about the

Classic Newton

[xit, t] = initializeSolution(...)
while t < T

t=t4dt
X = xit
do

[R.J] = computeResiduals(xit,x)
upd = J7'R
xit = xit 4+ upd
while norm(R)>tol
end

nonlinear solver

. [Main loop

. [x, t] = initializeSolution(...)

t | whilet < T

' [AT, ctrl]=getControl(t)

. 7=0

' while 7 < AT

. do

' [At, ...]=getTimeStep(. . .)

. [ok, 7, ...]=solveMinistep(t + 7, At, ...
! while ok=false g
' end

* |end

' Context:

. — physical model and reservoir state

: — nonlinear solver and time loop

' — linearization of discrete equations

. — linear solver

solveMinistep

= getEqs(t + 7, ...)

x
while res > tol & it < itmax
Isys = assembleLinSys(res, J, .
Isol = setupLinSolver(xit, lsys,
upd
upd
xit = updatelterate(upd, ...)
cleanupLinSolver(lsol)
[res, J] = getEqgs(t + 7, ...)
end
if it < itmax
ok = tru
[rox, ...
else
ok = false
end

solveLinSys(xit, Isys, Isol, .

= updateSolution(xit)

)

tabilizeStep(xit, upd, lsys, ...

111

117

More about the nonlinear solver

Nonlinear solver

Solves nonlinear problems sub-divided
into one or more mini steps using
Newton’s method

Initial ministep:
At

Time step selector

(Statc

LPrimary variables: p, Su, Sg,Rs, Ry... }P“mdr\,>
4

Determines optimal time steps

SimpleTimeStepSelector,
IterationCountSelector,

L StateChangeTimeStepSelector, ...

Physical model

Type color legend

—— Input

—— Contains object

Linear solver

[Well solutions

LWell data: qW, q0, qG, bhp,

-)

Update variables:
P« pP+0p.s¢s+0s, ..

Defines mathematical model: Resid-
ual equations, Jacobians, limits on
updates, convergence definition...

TwoPhaseOilWaterModel,
L ThreePhaseBlackOilModel

Well model

‘Well equations, control switch, well-

Lbore pressure drop, ...

Solves linearized problem and returns
increments

BackslashSolverAD, AGMGSolverAD,
CPRSolverAD, MultiscaleSolverAD, ... J

Assemble: Az =b

\ Linearized problem

Jacobians, residual equations and
meta-information about their types J

111 /117

The layout of the AD solvers

(Initial state)

(Controls

[swp,

Solves simulation schedule comprised
eps and drive mechanisms

Time step and control numbers
{(AT3, C), ..., (AT, Cu)},

{(W3, BCy),

of time

J {mﬁmm wells and be

(Wi, BCu)}

(wells/be)

simulateScheduleAD

- Initial ministep:
Nonlincar solver At

Time step selector

State(T;), AT;, Controls(C;)

Solves nonlinear problems sub-divided
into one or more mini steps using
Newton’s method

State(T; + AT})

Adjusted:
Al

Determines optimal time steps
SimpleTimeStepSelector,

IterationCountSelector,
StateChangeTineStepSelector,

1 model

Physic

Type color legend

Function(s)

— Iuput
—— Contains object

> Optional outpu

Linear solver
Solves linearized problem and returns

Result handler .
-~ | Primary variables: p, sy, sg. R, Ry.

Stores and retrieves simulation data.

and efficient manner.

Defines mathematical model: Resid-
ual equations, Jaco imits on
updates, convergence definition.

TwoPhase0ilWaterlodel,

v
Visualize well curves, reservoir proper-
ties, etc

ualization

plotCellbata, plotToolbar,
plotiellsols,

ThreePhaseBlack0ilHodel

Well model

increments

BackslashSolverAD, AGHGSolverAD,
CPRSolverAD, MultiscaleSolverAD, ...

Well equations, control switch, well-
bore pressure drop,

Assemble: Az =1b

Linearized problem

Jacobians, residual equations and

meta-information about their types

The framework is designed so that you can only work on the components you
are interested in: If you want to write a flow solver, you do not need to debug a

Newton solver.

Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel
Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sq,p,T, 4o, Pon

ThreePhaseBlackOilModel
Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rg,r,

113 /117

Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sq,p,T, 4o, Pon

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rg,r,

PhysicalModel

Properties:

operators, G
nonlinearTolerance, stepFunctionIsLinear
verbose

113 /117

Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sq,p,T, 4o, Pon

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rg,r,

PhysicalModel

Properties:

operators, G
nonlinearTolerance, stepFunctionIsLinear
verbose

Quality assurance:

state = model.validateState(state)
model = model.validateModel(...)

113 /117

Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sq,p,T, 4o, Pon

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rg,ry

PhysicalModel

Properties:

operators, G

nonlinearTolerance, stepFunctionIsLinear
verbose

Quality assurance:

state = model.validateState(state)
model

= model.validateModel(...)

Querying / setting model properties:

P = model.getProp(state, 'pressure')

[p,s] = model.getProps(state, 'pressure', 's')
[£,i] = model.getVariableField(name)

state = model.setProp(model, state, 'pressure', 5)
state = model.incrementProp(state, 'pressure’, 1)
state = model.capProperty(state,'saturation’, 0, 1)

These are examples of syntax for derived classes and
will not work on a PhysicalModel, which has no

associated variables 31

Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sq,p,T, 4o, Pon

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rg,r,

PhysicalModel

Get drive mechanisms:

[..,ctrl] = model.getDrivingForces(model, ctrl)

113 /117

Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sq,p,T, 4o, Pon

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rg,r,

PhysicalModel

Get drive mechanisms:

[..,ctrl] = model.getDrivingForces(model, ctrl)

Linearize and assemble discrete problem:

[problem, state] = ...
model.getEquations(stateO, state, ...
dt, drivingForces, varargin)

113 /117

Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sq,p,T, 4o, Pon

ThreePhaseBlackOilModel

PhysicalModel

Get drive mechanisms:

[..,ctrl] = model.getDrivingForces(model, ctrl)

Linearize and assemble discrete problem:

[problem, state] = ...
model.getEquations(stateO, state, ...
dt, drivingForces, varargin)

Compute a linearized time step:

[state, report] = ...
model.stepFunction(model, state, stateO, ..
dt, drivingForces, linsolve, ...
nonlinsolve, iteration, varargin)

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rg,r,

113 /117

Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sq,p,T, 4o, Pon

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rg,r,

PhysicalModel

Update state from Newton increment:

[state, report] = model.updateState(state, ...
problem, dx, drivingForces)

and other utility functions:

[conv, ..] = model.checkConvergence(problem, n)

[state,rep] = model.updateAferConvergence(...
stateO, state, dt, drivingForces)

113 /117

Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sq,p,T, 4o, Pon

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rg,r,

ReservoirModel

Properties:

% Submodels
fluid, rock, gravity
FacilityModel

% Physical properties
water, gas, oil
saturationVarNames, componentVarNames

% lterations parameters

dpMaxRel, dpMaxAbs, dsMaxRel, dsMaxAbs
maximumPressure, minimumPressure
useCNVConvergence, toleranceCNV
toleranceMB

% Miscellaneous

113 /117

Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sq,p,T, 4o, Pon

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rg,r,

ReservoirModel

Declaration of physical variables:

function [fn,ix] = getVariableField(model, name)
switch (lower(name))

case {'pressure', 'p'}
ix = 1;
fn = 'pressure';
[} 1 1 1 H 1
case {'s sat', 'saturation'}
ix=""
fn="s';

case {'sw', 'water'}
ix = model.satVarIndex('sw');

fn ='s';

end

Plus a large number of utility functions to extract,
update, and store these physical variables

113 /117

Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sq,p,T, 4o, Pon

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rg,r,

ReservoirModel

The class declares known drive mechanisms:

function forces = getValidDrivingForces(model)
forces = getValidDrivingForces
@PhysicalModel(model);

forces.W = [|;

forces.bc = [[;

forces.src = [];
end

and define how to evaluate relative permeability,
get surface densities, etc.

The class also specifies how to add well equations,
source terms, and boundary conditions to the
equation system, but does not implement specific
flow equations.

113 /117

Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

ReservoirModel

Default discretization is a two-point method:

function model = ...
setupOperators(model,G, rock, varargin)
model.operators = ...

end

setupOperatorsTPFA(G, rock, varargin{:});

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sq,p,T, 4o, Pon

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rg,r,

113 /117

Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sq,p,T, 4o, Pon

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rg,r,

ThreePhaseBlackOilModel

Implementes specific equations, which in this case
is a general black-oil model with dissolved gas and
vaporized oil.

Evaluation of residual equations:

[problem, state] = ...
equationsBlackUil(stateO, state,...
model, dt, drivingForces, varargin)

Details of this function is as given for two-phase
case above, but with more features and logic that
switches unknowns depending on phases present

113 /117

Constructing a simulation model from ECLIPSE input

Input deck

oeusITY
o2m2 1000 .01/
b 721 is the reservoir density. this needs the equivalent
surface density which is 0282 (L.e. 721415 (FVF

0 1.5225 1.0

20 115075 10

30

90 14775 1.0 /
» o o vis viscosibility

P
2501.6 10-5 0.4 0.0 /
- e o
et

250 265 /

- mauoe

Input parser

Reads complete simulation decks:
grid and petrophysics, fluid and rock
properties, region information, well
definitions, operating schedule, con-
vergence control, etc

Struct

Function

—— Input

----- Contains

Reservoir model

Description of geology and fluid behavior as

well as discrete averaging and spatial dis-

cretization operators

State | Schedule |
Physical variables inside Time steps and controls and
the reservoir settings for wells and boundary
P; Sw; So; 8g, C, Ty, I's conditions

Grid | |Petr0physics| (

Fluids

Well state

Physical variables inside
the wellbore
9595, 95> 9 Pon

114 /117

ECLIPSE input decks

RUNSPEC — simulation description (name of the case, grid
dimensions, phases and components present, number of
wells, table dimensions, etc)

GRID — grid geometry/topology and petrophysical properties
(porosity, permeability, net-to-gross).

EDIT — user-defined changes of pore volume, cell centers,
transmissibilities, LGR, etc (optional)

PROPS — rock-fluid and PVT properties

REGIONS — spatial dependence for initialization, rock-fluid
and PVT properties (optional)

SOLUTION — specifies how the model is to be initialized

SUMMARY — specifies output of reservoir responses (well
curves, average pressure, etc) to summary file after each
time step (optional)

SCHEDULE — defines wells and how they are to be operated,
time step selection and solver tolerances, controls
output of cell properties

Data file: SPE1 benchmark

-- THIS IS THE FIRST SPE COMPARISON PROBLEM,"CONPARISON OF SOLUTIONS TO A

- AND MIN. BHP. OIL RATE, GOR, PRESSURE AND GAS SATURATION ARE TO BE REPC

RUNSPEC
TITE
ODEH PROBLEN - IWPLICIT OPTION - 1200 DAYS

DDMENS
0 10 3/

owie

DISGAS
FIELD
EQLDINS
1 100
TABDINS
11 16 12 1 12/
WELLDIS
2 1
NupCoL
4/
sTaRT
19 r0cT" 1982 /

NSTACK

—FuTouT
~-FuTI
utEouT
I
--noszi

—-IepES

115 /117

ECLIPSE input decks

RUNSPEC — simulation description (name of the case, grid
dimensions, phases and components present, number of
wells, table dimensions, etc)

GRID — grid geometry/topology and petrophysical properties
(porosity, permeability, net-to-gross).

EDIT — user-defined changes of pore volume, cell centers,
transmissibilities, LGR, etc (optional)

PROPS — rock-fluid and PVT properties

REGIONS — spatial dependence for initialization, rock-fluid
and PVT properties (optional)

SOLUTION — specifies how the model is to be initialized

SUMMARY — specifies output of reservoir responses (well
curves, average pressure, etc) to summary file after each
time step (optional)

SCHEDULE — defines wells and how they are to be operated,
time step selection and solver tolerances, controls
output of cell properties

Data file: SPE1 benchmark

GRID

TN THIS SECTION , THE GEOETRY OF THE SIMULATION GRID AND THE
ROCK PERMEABILITIES AND POROSITIES ARE DEFINED.

- THE X AND Y DIRECTION CELL SIZES (DX, DY) AND THE POROSITIES ARE
- CONSTANT THROUGHOUT THE GRID. THESE ARE SET IV THE FIRST 3 LINES
-~ AFTER THE BQUALS KEYWORD. THE CELL THICNESSES (DZ) AND

- PERMEABILITES ARE THEN SET FOR EACH LAYER. THE CELL TOP DEPTHS

- (TOPS) ARE NEEDED ONLY TN THE TOP LAYER (THOUGH THEY COULD BE
-~ SET THROUGHOUT THE GRID). THE SPECIFIED MULTZ VALUES ACT AS

-~ MULTIPLIERS ON THE TRANSMISSIBILITIES BETWEEN THE CURRENT LAYER
- AND THE LAYER BELOV.

mir

TCLUDE
»./SPE1 . GRDECL”
/

PoRO
300403
/

100+200.0
/

-- Note: ignoring MULTZ!
- layer 12 MULTZ? 0.64

- layer 2-3 MULTZ’ 0.265625 /
-~ Reducing PERMZ a little instead
PERMZ

100+300.0

100130.0

100+50.0

/

115 /117

ECLIPSE input decks

PROPS

THE PROPS SECTION DEFINES THE REL. PERMEABILITIES, CAPILLARY
PRESSURES, AXD THE PVT PROPERTIES OF THE RESERVOIR FLUIDS

RUNSPEC — simulation description (name of the case, grid

dimensions, phases and components present, number of =~ = ¥wriov o wren suearion

weIIs, table dimensions, etc) — Gemerated vith WST's fanily. 10 fumction from the original deck
GRID — grid geometry/topology and petrophysical properties B o-aooo000t :

(porosity, permeability, net-to-gross). °

EDIT — user-defined changes of pore volume, cell centers,
transmissibilities, LGR, etc (optional) ;

. . L ossosos00coonmn 5.000010000000000 .
PROPS — rock-fluid and PVT properties

scoF
o 0 1.000000000000000

0.001000000000000 1.000000000000000
0.020000000000000 0 0.997000000000000

REGIONS — spatial dependence for initialization, rock-fluid
and PVT properties (optional)

o o

SOLUTION — specifies how the model is to be initialized o

o
o

SUMMARY — specifies output of reservoir responses (well o
curves, average pressure, etc) to summary file after each Pt e ;

time step (optional)

- PUT PROPERTIES OF WATER

SCHEDULE —_ defines We“S and hOW they are to be Operated -~ REF. PRES. REF. FVF COMPRESSIBILITY REF VISCOSITY VISCOSIBILITY
) e
time step selection and solver tolerances, controls oot comessranrny
output of cell properties T wer s commessmemi

ROCK
0.7 3.08-6 ’

- SURFACE DENSITIES OF RESEWVOIR FLUIDS
T o wm as
bexstTy
s eats 00605 /

1 N -- PVT PROPERTIES OF DRY GAS (NO VAPOURISED OIL)
Data file: SPEL benchmark e T A Tt e e

= 115 /117

-- PGAS BGAS VISGAS

ECLIPSE input decks

soLuTION

THE SOLUTION SECTION DEFINES THE INITIAL STATE OF THE SOLUTION
VARTABLES (PHASE PRESSURES, SATURKTIONS AND GAS-OTL RATIOS)

RUNSPEC — simulation description (name of the case, grid

dimensions, phases and components present, number of - ’

We”S, table dlmenSiOnS, etc) - Euu\;ﬁrm PRESS DEPTH PCOW DEPTH PCOG TABLE TABLE METH
GRID — grid geometry/topology and petrophysical properties 7 VARIKTION OF INITIAL 35 VITH DS

(porosity, permeability, net-to-gross). w5
EDIT — user-defined changes of pore volume, cell centers, e S

transmissibilities, LGR, etc (optional) I

. . s

PROPS — rock-fluid and PVT properties 1o0ma7es. 020507125

100+4789. 60058593750
100+4800.00000000000
/

REGIONS — spatial dependence for initialization, rock-fluid

and PVT properties (optional) pee
SOLUTION — specifies how the model is to be initialized i,sﬁ“‘“
SUMMARY — specifies output of reservoir responses (well - ;im sosestosezait

curves, average pressure, etc) to summary file after each =
time step (optional)

-~ OUTPUT CONTROLS (SWITCH ON OUTPUT OF INITIAL GRID BLOCK PRESSURES)
RPTSOL
110 /

SCHEDULE — defines wells and how they are to be operated,
time step selection and solver tolerances, controls
output of cell properties

Data file: SPE1 benchmark

115 /117

ECLIPSE input decks

sumaRY
- - THIS SECTION SPECIFIES DATA TO BE VRITTEN TO THE SUMMARY FILES
- AND WHICH MAY LATER BE USED VITH THE ECLTPSE GRAPHICS PACKAGE

RUNSPEC — simulation description (name of the case, grid
dimensions, phases and components present, number of Ece

SEPARATE

wells, table dimensions, etc
' , etc) s s s i i s

RONSUM

GRID — grid geometry/topology and petrophysical properties
(porosity, permeability, net-to-gross).

- FIELD OIL PRODUCTION
FoPR

-~ WELL GAS-DIL RATIO FOR PRODUCER
WeoR

EDIT — user-defined changes of pore volume, cell centers, s

-~ WELL BOTTON-HOLE PRESSURE

transmissibilities, LGR, etc (optional) .
PROPS — rock-fluid and PVT properties L i o emmtons m omenes b s
REGIONS — spatial dependence for initialization, rock-fluid ‘53532”

and PVT properties (optional) W
SOLUTION — specifies how the model is to be initialized ;;Rmssm P —————
SUMMARY — specifies output of reservoir responses (well 30 Y

curves, average pressure, etc) to summary file after each
time step (optional)

SCHEDULE — defines wells and how they are to be operated,
time step selection and solver tolerances, controls
output of cell properties

Data file: SPE1 benchmark
115 /117

ECLIPSE input decks

RUNSPEC — simulation description (name of the case, grid
dimensions, phases and components present, number of
wells, table dimensions, etc)

GRID — grid geometry/topology and petrophysical properties
(porosity, permeability, net-to-gross).

EDIT — user-defined changes of pore volume, cell centers,
transmissibilities, LGR, etc (optional)

PROPS — rock-fluid and PVT properties

REGIONS — spatial dependence for initialization, rock-fluid
and PVT properties (optional)

SOLUTION — specifies how the model is to be initialized

SUMMARY — specifies output of reservoir responses (well
curves, average pressure, etc) to summary file after each
time step (optional)

SCHEDULE — defines wells and how they are to be operated,
time step selection and solver tolerances, controls
output of cell properties

Data file: SPE1 benchmark

SCHEDULE

rrrrrrrr THE SCHEDULE SECTION DEFINES THE OPERATIONS TO BE SIMVLATED

- CONTROLS ON OUTPUT AT EACH REPORT TINE
RPTSCHED

10 1 10 042 20 0 2 00
© 0o 000 00000 00 0 0
© 0o 0 00 00 0 1 0 00 00

THPES
- 1.0 1.0 10000.0 /

- SET ’N0 RESOLUTION’ OPTION
-DRSDT

- SET INITIAL TIME STEP T0 1 DAY AND MAXIMUM TO 6 MONTHS
ToNING

11825 /

1.0 0.5 1.056 /

/

-~ WELL SPECIFICATION DATA

-~ WELL GROUP LOCATION BHP PI
— NME e DEPTH DEFN
WELSPECS
JPRODUCER’ °G* 10 10
SINECTOR’ 'G' 1 1

8400 *0IL' /
8335 "GAS’ /

-~ CONPLETION SPECIFICATION DATA

-- WELL -LOCKTION- OPEN/ SAT CONN VELL
NAME T J K1 K2 SHUT TAB FACT DIAM
compDAT
'PRODUCER’ 10 103 3 "OPEN’ 0 -1 0.5 /
PDUECTOR’ 1 11 1°0PEN 1 -1 0.5 /

-~ PRODUCTION WELL CONTROLS

oPEN/ CHIL

OIL WATER GAS LIQU RES BHP

- NAME SHUT MODE RATE RATE RATE RATE RATE
COUPROD

'PRODUCER’ *OPEN’ *ORAT’ 20000 4+ 1000 /
- WCONPROD
- *PRODUCER’ "OPEN’ 'BEP’ 5+ 1000 /
-
-~ INJECTION WELL CONTROLS
- WELL TN OPEN/ ONTL FLOW

NAME TYPE SHUT MODE RATE

- veoNTNy
-~ VINJECTOR’ ‘GAS’ ‘OPEN’ 'RATE 100000 /
HCONTRIE

PINJECTOR’ "GAS’ "OPEN’ ’RATE’ 100000 100000 50000/
- YEMR 1
TSTEP
--0.2343 0.1393 0.1840 0.2189 0.2235 115 /117

1.0 292.0 245.0 5+¢10.0 11425.0

Example: the SPE 9 benchmark

Grid: 24x25x15, 9000 cells

3-phase model, dissolved gas but no vaporized oil

1 water injector, rate controlled, switches to bhp

25 producers, oil-rate controlled, most switch to bhp

Appearance of free gas due to pressure drop

From: ad-blackoil /examples/spe9/blackOil Tutorial SPE9

J. E. Killough (1995). Ninth SPE comparative solution project: A reexamination of black-oil simulation, doi: 10.2118/29110-MS 116 /117

Example: the SPE 9 benchmark

Grid: 24x25x15, 9000 cells
3-phase model, dissolved gas but no vaporized oil

1 water injector, rate controlled, switches to bhp

25 producers, oil-rate controlled, most switch to bhp
Appearance of free gas due to pressure drop

From: ad-blackoil /examples/spe9/blackOilTutorialSPE9

Reading input and construct basic MRST objects:

pth = fullfile(getDatasetPath('spe9'), 'BENCH_SPE9.DATA');
deck = readEclipseDeck(fn);
deck = convertDeckUnits(deck);

G = initEclipseGrid(deck);
G = computeGeometry(G);

rock = initEclipseRock(deck);
rock = compressRock(rock, G.cells.indexMap);

fluid = initDeckADIFluid(deck);

J. E. Killough (1995). Ninth SPE comparative solution project: A reexamination of black-oil simulation, doi: 10.2118/29110-MS 116 /117

Example: the SPE 9 benchmark

Grid: 24x25x15, 9000 cells

3-phase model, dissolved gas but no vaporized oil

1 water injector, rate controlled, switches to bhp

25 producers, oil-rate controlled, most switch to bhp

Appearance of free gas due to pressure drop

From: ad-blackoil /examples/spe9/blackOilTutorialSPE9

Initialization from given state in the input file:

gravity reset on

pO = deck.SOLUTION.PRESSURE;
swO = deck.SOLUTION.SWAT,;

sg0 = deck.SOLUTION.SGAS;

s0 = [sw0, 1—sw0—sg0, sg0];
rs0 = deck.SOLUTION.RS;

state = struct('s', s0, 'rs', rsO, 'rv', rv0, 'pressure', p0);

Generally, one may have to solve an equilibrium problem to set the initial state.

J. E. Killough (1995). Ninth SPE comparative solution project: A reexamination of black-oil simulation, doi: 10.2118/29110-MS 116 /117

Example: the SPE 9 benchmark

Grid: 24x25x15, 9000 cells

3-phase model, dissolved gas but no vaporized oil

1 water injector, rate controlled, switches to bhp

25 producers, oil-rate controlled, most switch to bhp
Appearance of free gas due to pressure drop

From: ad-blackoil /examples/spe9/blackOil Tutorial SPE9

Create model and simulation schedule:

model = selectModelFromDeck(G, rock, fluid, deck);

% Set maximum limits on changes in saturation, Rs and pressure
model.drsMaxRel = .2;
model.dpMaxRel = .2;
model.dsMaxAbs = .05;

% Convert the deck schedule into a MRST schedule
schedule = convertDeckScheduleToMRST(model, deck);

J. E. Killough (1995). Ninth SPE comparative solution project: A reexamination of black-oil simulation, doi: 10.2118/29110-MS 116 /117

Example: the SPE 9 benchmark

Grid: 24x25x15, 9000 cells

3-phase model, dissolved gas but no vaporized oil

1 water injector, rate controlled, switches to bhp

25 producers, oil-rate controlled, most switch to bhp

Appearance of free gas due to pressure drop

From: ad-blackoil /examples/spe9/blackOilTutorialSPE9

Select linear solver:

try
mrstModule add agmg
pressureSolver = AGMGSolverAD('tolerance', le—4);
catch
pressureSolver = BackslashSolverAD();
end
linsolve = CPRSolverAD('ellipticSolver', pressureSolver);

We select a CPR-type solver, with AGMG as multigrid preconditioner. The CPR
preconditioner attempts to decouple the linear system into a pressure component and
a transport component. Although not necessary here, it improves CPU time

J. E. Killough (1995). Ninth SPE comparative solution project: A reexamination of black-oil simulation, doi: 10.2118/29110-MS 116 /117

Example: the SPE 9 benchmark

Bl S0t Vew insert ook Desktop Wndow elp

Grid: 24x25x15, 9000 cells pomsltinsosesacHlaa

ol b-factor

3-phase model, dissolved gas but no vaporized oil '

1E(p)

1 water injector, rate controlled, switches to bhp

25 producers, oil-rate controlled, most switch to bhp
Appearance of free gas due to pressure drop

Shrinkags factor b{p)

From: ad-blackoil /examples/spe9/blackOilTutorialSPE9

00 200

400 500 800/ pii

00
Pressure Ibarl

Inspect the rock-fluid and PVD properties:

inspectFluidModel(model)

The AD-OO framework can interactively visualize the fluid model of a
ReservoirModel instance. Once active, the user can interactively explore the different
fluid properties (viscosities, relative permeabilities, densities) as functions of saturation
and pressure.

J. E. Killough (1995). Ninth SPE comparative solution project: A reexamination of black-oil simulation, doi: 10.2118/29110-MS 116 /117

Example: the SPE 9 benchmark

Grid: 24x25x15, 9000 cells

3-phase model, dissolved gas but no vaporized oil

1 water injector, rate controlled, switches to bhp

25 producers, oil-rate controlled, most switch to bhp
Appearance of free gas due to pressure drop

From: ad-blackoil /examples/spe9/blackOil TutorialSPE9

Run the schedule

Solving timestep 01/35: -> 1 Day
Well INJE1: Control mode changed from rate to bhp.

| It # | CNV_W | cNv_0 | CNV_G | MB_W

1] 2.82e-02 | 1.10e+00 | 5.00e-03 | 1.03e-05
2 | 1.14e-01 | 7.25e-02 | 8.13e-02 | 5.21e-06

|

|

Well PROD26: Control mode changed from orat to bhp
| 3 | 7.29¢-03 | 1.29e-02 | 7.41e-02 | 3.40e-06
| 4 | 1.68e-03 | 3.79e-03 | 1.85e-02 | 7.87e-06
| 5 [%9.60e-04 | 6.20e-03 | 4.29e-03 | 1.64e-06
| 6 |%6.79e-04 | 1.45e-03 |*9.00e-04 | 1.19e-06
| 7 |%2.66e-04 |*8.31e-04 |*5.90e-04 | 2.56e-07
| 8 |*8.83e-05 |*3.48e-04 |*8.72e-05 |*4.58e-08
| 9 |%2.08e-05 |*7.35e-05 |*4.96e-05 |*1.05e-08

Solving timestep 02/35: 1 Day -> 2 Day

model.verbose = true;

'plotWell', false, ' plotReservoir ', false);
[wellsols, states, reports| =...

fn = getPlotAfterStep(stateO, model, schedule, ...

simulateScheduleAD(stateO, model, schedule, ...
' LinearSolver ', linsolve, 'afterStepFn', fn);

We give the schedule with well controls and control time steps. The simulator may use

other timesteps internally, but it will always return values at the specified control steps.

Setting model.verbose=false removes extensive reports about convergence, etc.

J. E. Killough (1995). Ninth SPE comparative solution project: A reexamination of black-oil simulation, doi: 10.2118/29110-MS 116 /117

Example: the SPE 9 benchmark

selp

Grid: 24x25x15, 9000 cells

3-phase model, dissolved gas but no vaporized oil

G Well reservor rate (gas)

1 water injector, rate controlled, switches to bhp - R
25 producers, oil-rate controlled, most switch to bhp 0018 oo Weseztz
Appearance of free gas due to pressure drop oat

From: ad-blackoil /examples/spe9/blackOilTutorialSPE9

10

200 300 400 500 600 700 800 9DQ| S8ueesimege] Saveiowers:
Time [Davs!

Launch a viewer to inspect reservoir responses:

plotWellSols(wellsols, cumsum(schedule.step.val), 'field’, 'qTr')

Here, you can plot bottom-hole pressures, reservoir and surface rates, oil and water

cut, gas-oil ratio, etc. Plots are versus time or time step, and can be instantaneous or
cummulative.

J. E. Killough (1995). Ninth SPE comparative solution project: A reexamination of black-oil simulation, doi: 10.2118/29110-MS 116 /117

Example: the SPE 9 benchmark

Grid: 24x25x15, 9000 cells 2 pyel
3-phase model, dissolved gas but no vaporized oil

1 water injector, rate controlled, switches to bhp

Gas rate (ms)

25 producers, oil-rate controlled, most switch to bhp

Appearance of free gas due to pressure drop

From: ad-blackoil /examples/spe9/blackOil TutorialSPE9

1 15
Time (years)

MRST also offers functionality for processing ECLIPSE output. We can use
this to compare results from the two simulators:

compare = fullfile(mrstPath('ad—blackoil'), 'examples', 'spe9', 'compare');
smry = readEclipseSummaryUnFmt(fullfile(compare, 'SPE9'));

compd = 1l:(size(smry.data, 2));

Tcomp = smry.get(':+:+:+:+', 'YEARS', compd);

comp = convertFrom(smry.get('PROD13', '"WBHP', compd), psia)’;

T = convertTo(cumsum(schedule.step.val), year);

mrst = getWellOutput(wellsols, 'bhp', 'PROD13');

plot(T, mrst, Tcomp, comp);

J. E. Killough (1995). Ninth SPE comparative solution project: A reexamination of black-oil simulation, doi: 10.2118/29110-MS 116 /117

Computer exercises

Go through some of the tutorials from the ad-blackoil module. In
particular, | recommend:

spe9/blackoilTutorialSPE9 — we only covered parts of it here

simulatorWorkflowExample — a complete example that does not
use ECLIPSE input

multisegmentWellExample — shows use of multisegment well
models

blackoilSectorModelExample — specification of boundary
conditions

117 /117

	Introduction
	Getting started with MRST
	Grids and petrophysical data
	Incompressible flow
	Multiphase flow
	Compressible flow
	The AD-OO framework in MRST

